Electronic Supplementary Material (ESI) for Faraday Discussions. This journal is © The Royal Society of Chemistry 2024

Speciation of the proton in water-in-salt electrolytes

Kateryna Goloviznina,^{1,2,a)} Alessandra Serva,^{1,2} and Mathieu Salanne^{1,2,3}
¹⁾Sorbonne Université, CNRS, Physicochimie des Électrolytes et Nanosystèmes Interfaciaux, F-75005 Paris, France
²⁾Réseau sur le Stockage Electrochimique de l'Energie (RS2E), FR CNRS 3459, 80039 Amiens Cedex, France
³⁾Institut Universitaire de France (IUF), 75231 Paris, France

^{a)}Electronic mail: kateryna.goloviznina@sorbonne-universite.fr

Figure S1. Initial configuration extracted from AIMD run (S-II) used to compute free energy profiles of proton transfer. The configurations represented in subfigures (a) and (c) were used to investigate the proton transfer from H_3O^+ to the N atom of the TFSI⁻ anion, while subfigures (b) and (c) to the O atom of the anion.

Figure S2. Equilibration of the S-II system: (a) Simulation snapshots revealing the environment of the proton (represented by a small purple sphere) as a function of time. (b) Time evolution of hydrogen–oxygen distances in the H_3O^+ cation. The horizontal dashed line corresponds to the value of 1.3 Å used for the proton speciation definition. Here, the equilibration time reaches 0.45 ps when a stable H_3O^+ cation is formed.

Figure S3. Simulation snapshot (S-V) revealing the local environment of the $H_9O_4^+$ Eigen cation, which includes the local environment of lithium cation not shown in Figure 2b (4.1 ps frame).

Figure S4. Radial distribution functions (g(r)) and running coordination numbers (CN) of O and N atoms of the TFSI⁻ anion around H_w atoms of water molecules, obtained from the previously reported 70 ps AIMD trajectory of 21 m LiTFSI WiS.

Figure S5. Simulation snapshot (at 5.1 ps, S-IV) illustrating the formation of a hydrogen bond between a water molecule and an oxygen atom of a third TFSI⁻ anion, after moving away from the first and second anions, as shown in Figure 3c.

Figure S6. Time evolution of the fraction of the lithium cations $(\phi(t))$ with a Li⁺...Li⁺ distance smaller or greater than 4.1 Å in system S-V with a single Li⁺ ion in a nanochain substituted by a H⁺.

Figure S7. Simulation snapshots (S-III) revealing the evolution of lithium nanochains when a single Li^+ cation is replaced by a proton (represented by a big red sphere in a red circle). The subfigure at 0.0 ps shows the starting configuration obtained from a previous 70 ps *ab initio* MD run with a replaced cation. Blue lines correspond to the $\text{Li}^+ \dots \text{Li}^+$ distances smaller than 3.0 Å, green lines to those larger than 3.0 Å and smaller than 4.1 Å, which are the first and second minima of the $\text{Li}^+ \dots \text{Li}^+$ radial distribution function (Figure 6, red curve).