
Electronic Supplementary Information to: Force and stress calculation with
neural network wavefunction for solids

Yubing Qian,a,b Xiang Li,b and Ji Chen∗a,c

Contents

1 More details for force estimators 1

1.1 The infinite variance problem . . . . . . . . . . . . 1

1.2 Assaraf–Caffarel estimator . . . . . . . . . . . . . . 1

1.2.1 Minimal form . . . . . . . . . . . . . . . . . 1

1.2.2 More complicated forms . . . . . . . . . . . 2

1.3 Space warp coordinate transformation estimator . 2

1.3.1 Fast warp estimator . . . . . . . . . . . . . 2

1.4 Antithetic variates technique . . . . . . . . . . . . . 2

2 Implementation 3

2.1 Neural network hyperparameters . . . . . . . . . . 3

2.2 Settings for evaluation time . . . . . . . . . . . . . 3

1 More details for force estimators

1.1 The infinite variance problem

If ψT is assumed to be in the vicinity of the exact ground state, FI

can be calculated with Hellmann–Feynman theorem:

FI =− ∂

∂RI

⟨ψT |ĤS|ψT ⟩
⟨ψT |ψT ⟩

=
⟨ψT |−∂RI ĤS|ψT ⟩

⟨ψT |ψT ⟩
. (1)

Considering that only the Coulomb potential part of local energy
Ep

L is relevant, the bare estimator FBare
I takes the following form

in the X-representation:

FBare
I = ⟨−∂RI E

p
L (X)⟩, (2)

In molecular systems, the r−2 Coulomb force results in the in-
finite variance problem during the Monte Carlo sampling pro-
cess1,2. In solid systems, the summation of Coulomb potential is
carried out with the Ewald summation technique for a better con-
vergence3,4. The summation of the Coulomb potential is split into
a short-range part and a long-range part. The short-range part in-
cludes the contribution of original point charge surrounded by a
Gaussian charge density distribution of equal charge and opposite
sign, and the corresponding potential is erfc(ar)/r instead of 1/r,
where a is the width of the Gaussian distribution. However, when
r is small, erfc(ar)/r is still proportional to 1/r, and the infinite
variance problem is still relevant.
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1.2 Assaraf–Caffarel estimator
Assaraf–Caffarel estimator is introduced in the main text, and it
reads

FAC
I = FBare

I +
〈
−

(ĤS −E∗
L)ψ⃗I

ψT
−2Re(E∗

L∂RI logψT )

+2EVMC Re(∂RI logψT )
〉
, (3)

where ψ⃗I is an approximation to ∂RI ψ0.

1.2.1 Minimal form

A simple approximation of ψ⃗I was proposed by Assaraf and Caf-
farel for molecular systems:

ψ⃗
mol
I = Qmol

I ψT , Qmol
I = ZI ∑

i

ri −RI

|ri −RI |
. (4)

By substituting ψ⃗mol
I into the second term on the right-hand side

of Eq. (3), we found that

−
(ĤS −E∗

L)ψ⃗I

ψT
=

1
2 ∑

i
∇

2
i Qmol

I +∑
i

(
∇iQmol

I

)
(∇iψT ) (5)

=−ZI ∑
i

ri −RI

|ri −RI |3
+∑

i

(
∇iQmol

I

)
(∇iψT ) , (6)

where the r−2 singularity from FBare
I is exactly cancelled, and thus

removing the infinite variance. Here we dub the estimator “min-
AC-mol”, which stands for the minimal form of AC estimator for
molecular systems.

However, the choice in Eq. (4) is not applicable in periodic sys-
tems, because the summation does not converge. A new form
ψ⃗I suitable for solids is needed to cancel the erfc(ar)/r2 diver-
gence from the short-range part of Ewald summation. A new
“min-AC-solid” estimator is introduced in the main text with
ψ⃗solid

I = Qsolid
I ψT , and gradient of the x component of QI satis-

fies

∇Qsolid
Ix =−∑

i
∑
L

ZI

(
erfc(ariIL)x2

iIL
r3
iIL

− erfc(ariIL)

riIL
− a√

π
Ei(−a2r2

iIL),

erfc(ariIL)xiILyiIL
r3

iIL
,

erfc(ariIL)xiILziIL
r3

iIL

)
, (7)

where riIL = |ri −RI −L|, and xiIL,yiIL,ziIL are its components.
The parameter a and range of L are the same as those in the
short-range Ewald summation. And Ei(−a2r2) is the exponential
integral function6, which can be calculated efficiently in an ap-
proximate way7:

−Ei(−x) = E1(x) =
(

A−7.7 +B
)−0.13

(8)
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where

A = ln
[(

0.56146
x

+0.65
)
(1+ x)

]
(9)

B = x4e7.7x(2+ x)3.7 (10)

With the form of ∇Qsolid
I given, it is straightforward to verify that

1
2 ∇2Qsolid

I cancels the erfc(ar)/r2 divergence and ∇×∇Qsolid
I is

zero, making sure that Eq. (7) is a valid gradient. Although it
must exist, the explicit form of Qsolid

I is not needed, as shown in
Eq. (5).

1.2.2 More complicated forms

Another natural choice is ψ⃗I = ∂RI ψT . Since we only focus on the
real part, it is essentially the same as:

FI =− ∂

∂RI

⟨ψT |EL|ψT ⟩
⟨ψT |ψT ⟩

=
⟨ψT |Fno-SWCT

I |ψT ⟩
⟨ψT |ψT ⟩

, (11)

Fno-SWCT
I = ⟨−∂RI EL +2(EVMC −EL)Re(∂RI logψT )⟩ , (12)

1.3 Space warp coordinate transformation estimator

Space warp coordinate transformation (SWCT) is a variance re-
duction technique to further improve the no-SWCT estimator8–12.
To demonstrate the SWCT method more clearly, let us first con-
sider a finite displacement case, where the I-th nucleus is dis-
placed by ∆RI . By using correlated sampling, the energy of the
original geometry (E0) and the displaced geometry (E1) are eval-
uated using the same Monte Carlo samples from the original
geometry, and the variance of E1 − E0 goes to zero linearly as
∆RI → 09. This is the picture behind the no-SWCT estimator.
However, after the displacement, the ground state wavefunction
and electron probability distribution will change accordingly, and
the core electrons will closely follow the movement of the nu-
cleus. To avoid bad samples and deterioration of accuracy, a coor-
dinate transformation is applied instead of directly using original
Monte Carlo samples:

r̄i = ri +∆RIωI(ri), ωI(r) =
∑LS

f (|r−RI −LS|)
∑LS ∑J f (|r−RJ −LS|)

, (13)

With ∆RI → 0, the Jacobian of the transformation still has a
non-zero contribution to the force, and the SWCT estimator can
be formulated as10–12

FSWCT
I =

〈
−∂RI EL −∑

i
ωI(ri)∂ri EL +2(EVMC −EL)RePSWCT

〉
,

(14)
where

PSWCT = ∂RI logψT +∑
i

(
ωI(ri)∂ri logψT +

1
2

∂ri ωI(ri)

)
. (15)

The effectiveness of SWCT can be easily seen in an isolated atom
case where ωI = 1, and the terms cancel exactly due to transla-
tional symmetry, leading to zero variance. Besides, the relation
1−ωI ≪ 1 is guaranteed near the nuclei, making the SWCT esti-
mator better at variance reduction.

1.3.1 Fast warp estimator

The formula of fast-warp estimator is introduced in the main text,
and here we elaborate the derivation and explanation. The most
expensive and difficult part of the SWCT estimator is the deriva-
tives of the kinetic energy. The aim of the fast-warp estimator is to
remove this part, enabling faster evaluation and better variance
reduction.

We start from the first term in Eq. (14):

⟨∂RI EL⟩= ⟨∂RI

ĤSψT

ψT
⟩=

〈
∂RI E

p
L
〉
+

〈
(ĤS −EL)∂RI ψT

ψT

〉
(16a)

=
〈
∂RI E

p
L
〉
+

〈
(E∗

L −EL)∂RI ψT

ψT

〉
. (16b)

Eq. (16b) holds because the Hamiltonian operator is Hermitian
and can act on the bra state ⟨ψT |. In the no-SWCT and SWCT
estimator, Eq. (16b) is not used because Eq. (16a) can reduce the
variance in ∂RI

ĤSψT
ψT

. However, this is not needed in the fast-warp
estimator and Eq. (16b) is used instead.

We then shift our focus to the second term of Eq. (14):〈
∑

i
ωI(ri)∂ri EL

〉
=

〈
∑

i
ωI(ri)∂ri E

p
L

〉
+

〈
ωI(ri)

(Ĥ −EL)∂ri ψT

ψT

〉
.

(17)
It is impossible to do the same trick directly as Eq. (16b). How-
ever, we can move ω to the right-hand side of the Hamiltonian
operator:

ωI(ri)
(Ĥ −EL)∂ri ψT

ψT
=

(E∗
L −EL) [ωI(ri)∂ri ψT ]

ψT

+
1
2

[
∇2

i ωI(ri)
]

∂ri ψT

ψT
+

(∇iωI(ri))(∇i∂ri ψT )

ψT
, (18)

where the last two terms of Eq. (18) are simplified based on the
fact that ∇ jωI(ri) = δi j∇iωI(ri).

After some organization, we obtain the expression of the fast-
warp estimator:

Ffast-warp
I =

〈
−∂RI E

p
L −∑

i
ωI(ri)∂ri E

p
L − 1

2

[
∇2

i ωI(ri)
]

∂ri ψT

ψT

− (∇iωI(ri))(∇i∂ri ψT )

ψT
+2EVMC RePSWCT −2Re(E∗

LPSWCT)

〉
.

(19)

1.4 Antithetic variates technique

Antithetic variates13,14 can be used in combination with other
estimators. The basic idea is to reduce the variance of the ex-
pectation by using pairs of negatively correlated samples. In the
context of force calculation in VMC, given a Monte Carlo sam-
ple with a set of electron coordinates X = {ri}, our aim is to
find X′ = {r′i} which contributes approximately the same mag-
nitude of atomic force but on the opposite direction. And then,
the force contribution is summed over with an additional weight
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w = |ψ(X′)|2/|ψ(X)|2 to keep the importance sampling correct:

Fantithetic
I =

1
2
⟨FI(X)+wFI(X′)⟩. (20)

If the antithetic variables X′ further satisfies w ≈ 1, then the sta-
tistical fluctuation can be greatly reduced.

The process for finding X′ is given as follows15. For each elec-
tron coordinate ri, we first find its closest nucleus RI . If the dis-
tance |ri −RI | is less than the core electron cutoff radius rcore, we
choose r′i = 2RI − ri which is the mirror of ri with respect to RI .
Otherwise, we simply let r′i = ri. The purpose of such differential
treatment is to maximize the negative correlation between X and
X′ since core electrons contributes the most, while avoiding bad
samples and maintaining w ≈ 1.

2 Implementation
The estimators for solid systems are implemented within the
DeepSolid software16. The algorithm used in this work is sum-
marized as follows.

Markov chain Monte Carlo (MCMC) is used for sampling, and
the value of the estimators and local energies are evaluated and
stored along the Markov chain. To minimize the correlation with
an affordable cost, 5000 steps of MCMC warm-up is performed
before the first evaluation, and 50 steps of MCMC is performed
between evaluation steps. At the end, we average all the local
energies to get EVMC, and obtain a list of force results from each
evaluation step.

The estimators are implemented with Python JAX17 code, and
the automatic differentiation feature from JAX is used for calcu-
lating derivatives with respect to all nuclei coordinates in all di-
rections in one go. The Python functions for local energy and
Ewald summation require some modifications to obtain well-
defined gradients of local energies. To get robust statistical re-
sults, interquartile range (IQR) method is used to remove the out-
liers. IQR is the difference between the first quartile (Q1) and the
third quartile (Q3). All data less than Q1 − 3IQR or greater than
Q3 +3IQR are clipped to the boundaries. Also, all standard errors
given are based on the clipped data with Monte Carlo autocorre-
lation considered18,19.

2.1 Neural network hyperparameters

The default settings for the network training process are listed in
Table 1.

Table 1 Default training settings

Name Value
Type of distance feature tri
Pretrain No
Numerical precision Float32
Batch size 4096
Hidden units per one-electron layer 256
Hidden units per two-electron layer 32
Number of layers 3
Number of determinants 1
Training iterations for lithium hydride 105

Training iterations for graphene 2×105

Other settings Default 16

2.2 Settings for evaluation time

In the main text, we compared the force variance and evaluation
time of different estimators. The settings for the evaluation are
listed in Table 2, and the hyperparameters for the neural network
are the same as those listed in Table 1.

Table 2 Settings for evaluation time

Name Value
Hardware 4 V100 GPU cards
System equilibrium graphene
Evaluation steps 200
Split chunks per batch SWCT: 8, Others: 1
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