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SC-DFT

The extensive application of Density Functional Theory (DFT) in electronic structure calculations,

owing to its effective balance between precision and computational efficiency, has prompted its ex-

pansion to diverse systems. Superconductors present a distinctive case as they cannot be addressed

perturbatively due to the broken phase symmetry, which means the conservation of particle num-

bers is not guaranteed. Additionally, superconductors exhibit significant electron-phonon coupling,

necessitating the consideration of ionic displacements around equilibrium positions in the Hamil-

tonian. Thus, in Superconducting Density Functional Theory (SC-DFT), the nuclear dynamics

must be incorporated, as detailed in references1–4.

In brief, the purely ionic segment of the Hamiltonian is expressed using ionic field operators,
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Φ(R), encompassing kinetic and interaction terms:

Ĥi = −

∫
Φ†(R)

∇2

2M
Φ(R)dR (1)

+
1
2

∫
Φ†(R)Φ†(R′)

Z
|R − R′|

Φ(R′)Φ(R) dR dR′ . (2)

Meanwhile, the electron-ion interaction is described by:

Ĥie = −
1
2

∑
σ

∫
ψ†σ(r)Φ†(R)

Z
|R − r|

Φ(R)ψσ(r) dR dr . (3)

The electronic part of the Hamiltonian takes the form:

Ĥe =
∑
σ

∫
ψ†σ(r)

[
−
∇2

2
− µ

]
ψσ(r) dr (4)

+
1
2

∑
σσ′

∫
ψ†σ(r)ψ†σ′(r′)

1
|r − r′|

ψσ(r)ψσ′(r′) dr dr′ . (5)

Additionally, three external potentials are considered: one coupling to electrons, one to ions,

and an anomalous potential, ∆ext(r, r′), responsible for symmetry breaking, allowing Cooper pairs’

tunneling. If ∆ext(r, r′) tends towards zero, the Hamiltonian converges to a non-superconducting

state. Thus, SC-DFT enables the control of superconductivity and facilitates the comparison of sys-

tem properties in normal and superconducting states. Similar to conventional DFTs, a Hohenberg-

Kohn theorem establishes a one-to-one correspondence between the external potentials and cor-

responding densities. The inclusion of the anomalous potential necessitates working within the

grand-canonical ensemble.

Another Hohenberg-Kohn-like theorem demonstrates that the grand-canonical potential fol-

lows a variational principle concerning the densities. This potential incorporates kinetic and en-

tropy terms, along with system-independent functionals, resembling universal DFT functionals.

The explicit form of this functional remains unknown, necessitating the introduction of a refer-

ence (Kohn-Sham) system. The resulting equations lead to expressions for ions and electronic

Hamiltonians.
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In the superconducting state, the electron density is expressed as a summation over occupied

states, considering their respective occupation numbers. The difference in electron densities be-

tween normal and superconducting states is expressed as a variation in occupation numbers. It can

then be shown5 that the electron density in the superconducting state becomes:

ρS C(r) =
∑
nk

nS C
nk |φnk(r)|2 , (6)

where

nS C
nk = 1 −

ξnk

|Enk|
tanh

(
β |Enk|

2

)
. (7)

Notice that in the normal state limit, ∆s(nk) → 0, we recover the normal state density, so that we

can express the difference in the electron densities when going from the normal to the supercon-

ductor state as a difference in the occupation numbers, ∆n = nS C
nk − nS C

nk :

ρS C(r) − ρNS (r) =
∑
nk

(nS C
nk − nS C

nk )|φnk(r)|2 . (8)

∆n is illustrated in Figure 1 for ∆=10 meV and β=0.3 meV−1. It can be seen that the difference is

very small.

Figures
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Figure 1: Difference between the occupation numbers of the superconducting and normal states
with respect to the normal state energies, ξ, for a given gap of ∆ = 10 meV (at T=0 K), and β = 0.3
meV−1.

Figure 2: H3S isosurfaces at T=200K. Left: ρ=0.002 a.u. Right: ELF=0.005.
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Figure 3: H3S 0.0008 density difference isosurface (10-200K).

Figure 4: Occupations at T=10K and T=200K in the superconducting state. The normal state has
also been added as a reference. The calculation around the Fermi level is shown in the right pannel.

Figure 5: H3S isosurfaces at 10K (blue), 100K (orange) and 200K (red). Left: ELF=0.5; . Right:
ELFFL=0.1
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Figure 6: Occupations LaH10

Figure 7: LaH10 isosurfaces at 10K (blue), 100K (orange) and 250K (red). Left: ELF=0.5 a.u; .
Right: ELFFL=0.001 a.u.

Figure 8: ρFL=0.0022 a.u. at different temperatures in H3S: 10K in blue and 200K in red.
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Figure 9: ELF values (red line, left axis) and distances to nearest atom in a.u. (green line, right
axis) of the hydrogen saddle points.
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