Supporting Information for "Tracking Li atoms in real-time with ultra-fast NMR simulations"

Angela F. Harper¹, Tabea Huss¹, Simone S. Köcher^{1,2}, and Christoph Scheurer¹

¹Fritz-Haber Institute of the Max Planck Society, Berlin (DE), ²Institut für Energie und Klimaforschung (IEK-9), Forschungszentrum Jülich GmbH, Jülich, (DE)

Appendix A: ML-EFG model hyperparameter optimization

All DFT calculations were performed with CASTEP v22.1 [1] using the C19 pseudopotential set and PBE exchange correlation functional [2]. The individual components of the EFG tensor, V_{ij} , were converged to within $4 \times 10^{-3} \text{ V/Å}^2$ at a plane wave cutoff of $1200 \,\text{eV}$ and kpoint spacing of $0.03 \times 2\pi \text{\AA}^{-1}$. The ML-EFG approach uses λ -SOAP as the descriptor [3] which has hyperparameters l, n, r_c , and σ . These describe the number of angular components, number of radial components, cutoff radius, and Gaussian width of the descriptor. These hyperparameters were optimized using a combination of a Box-Behnken [4] design-of-experiment approach with 5-fold cross validation across a training set of 11,391 Li EFG tensors (80% of the total dataset). The optimal hyperparameters are l = 6, n = 6, $r_c = 6.0$ and $\sigma = 0.3$, which have a mean absolute error (MAE) of 7.4 kHz in ω_{Q} over the remaining 3057 Li environments (20% of the total data set) in the test set, which was withheld from cross validation. The MAE in C_O and η is given in Figure S1. There is good Pearson correlation in both cases $\left(r>0.85\right)$ and low MAE (6.8 kHz MAE in C_Q and 0.99 MAE in η).

FIG. S1. **MAE** over test set for C_Q and η Histogram and correlation plot for C_Q and η evaluated over the 20% separated test set of 2057 Li environments in the ML-EFG model.

By testing the model using 11,391 Li EFG tensors on four additional large-scale structures withheld from training (results shown in Figure S2), we show that the ML-EFG model can be extended to the large LPS structures in our β -LPS and am-LPS simulations. The MAE in ω_Q over four large structures extracted from the UFP-MD trajectories is 9.2 kHz, which is within experimental accuracy of ⁷Li SAE.

FIG. S2. MAE in ω_Q for four large structures extracted from the UFP-MD trajectories The left panel shows the MAE and distribution of ω_Q for a set of two β -LPS and two am-LPS structures extracted from the 1 μ s UFP-MD simulations. Two of the structures are shown in the right panel, with PS₄ tetrahedra shown in purple (P) and yellow (S) and Li atoms shown in green.

Appendix B: Calculating autocorrelation functions

For all autocorrelation function calculations of β - and am-LPS, snapshots were extracted every 100 ps across the full trajectory. For the 1 μ s calculations, this resulted in 10,000 total snapshots over which the ⁷Li EFG tensors were predicted. The am-LPS structure has 576 atoms total with the stoichiometry Li₃PS₄, so there are a total of 216 Li atom trajectories in am-LPS over which the $\langle ACF_{\omega_Q} \rangle$ is averaged. For β -LPS there are 144 Li atoms, which $\langle ACF_{\omega_Q} \rangle$ is averaged over, and for $\langle ACF_{C_Q} \rangle$, the average is taken over only the Li ions which hop during the simulation (13 sites at 300 K and 102 sites at 350 K).

Both $\langle ACF_{\omega_Q} \rangle$ and $\langle ACF_{C_Q} \rangle$ were calculated using a sliding window averaging method in order to reduce the numerical noise between $\bar{\omega}_Q$ or \bar{C}_Q at different timesteps, t_i . The sliding window average was 10 ns for $\langle ACF_{\omega_Q} \rangle$ and 1 ns for $\langle ACF_{C_Q} \rangle$. For the individual atom ACF_{C_Q} shown in Figures 5 and S3, the window was 10 ns to highlight the differences between LiS₄ and LiS₆. We can justify the validity of using the sliding window averaging through ergodicity, as averaging over a longer timescale is equivalent to averaging over a larger number of Li atoms at a fixed time. In addition, in order to account for the equilibration within the am-LPS structure, the initial $\omega_Q(t_0)$ used to reference the $\langle ACF_{\omega_Q} \rangle$ was taken as the average over the first 100 frames, or $\langle \omega_Q(t_0), \omega_Q(t_1), \dots, \omega_Q(t_{100}) \rangle$. Finally, the $\langle ACF_{\omega_Q} \rangle$ is normalized between [0, 1].

Appendix C: Simulations at 350 K

Given the slow diffusion time in β -LPS, there are a low number of hops (13 in total out of 144 Li atoms) at 300 K, and for that reason, we have included another trajectory at 350 K for β -LPS which has 102 hops in 1 μ s. The corresponding hopping rate at 350 K is $1.70 \times 10^6 \text{ s}^{-1}$, as extracted from the $\langle \text{ACF}_{C_Q} \rangle$ shown in Figure S3. This is an order of magnitude faster than for β -LPS at 300 K, which is the expected difference in hopping rates between these two temperatures.

FIG. S3. $\langle ACF_{C_Q} \rangle$ for β -LPS at 350 K The calculated $\langle ACF_{C_Q} \rangle$ for a 1 μ s trajectory of β -LPS at 350 K gives a decay rate of 0.59 μ s or a Li hopping rate of $1.70 \times 10^6 \text{ s}^{-1}$. Of the total 144 Li atoms in the cell, 102 atoms experienced a Li hopping event during the 1 μ s simulation. The top panel distinguishes hopping events based on the initial site the Li atom was in at time t = 0. Initial LiS₆ sites (green) and initial LiS₄ sites (blue). The ACF_{CQ} of each hopping event is labeled.

In addition to the $\langle ACF_{C_Q} \rangle$ over the 1 μ s simulation, we also compare the angles θ and ϕ across the different sites in β -LPS in Figure S4. In the top panel, we find that for the Li atoms which remained in their original site, the angles (θ, ϕ) were centered around $(\pi/2, 0)$ for LiS₄ tetrahedra and $(\pi/2\pm\pi/6, \pm\pi/4)$ for LiS₆. For the Li sites which experience a hopping event at some point during the 1 μ s simulation, we separate these into Li-ions which started out at a LiS₄ and LiS₆ site, respectively. As expected, the distribution of angles is wider for the hopping sites than for those that do not hop, but the majority of the hopping sites are LiS₆ sites which hop to another LiS₆ site. We can see this in the LiS₆ hop histogram (bottom right Figure S4) which has the highest density of (θ, ϕ) at $(\pi/2\pm\pi/6, \pm\pi/4)$, which are all LiS₆ sites. Whereas, the LiS₄ hopping sites have a distribution of angles at both $(\pi/2\pm\pi/6, \pm\pi/4)$, and $(\pi/2, 0)$, indicating that some ions from LiS₄ sites hop into LiS₆ sites. However, all of these hopping events are masked in the $\langle ACF_{\omega_Q} \rangle$, as in Figure 3, and are only shown here in Figure S4 by decomposing the Li trajectories by their angular components.

FIG. S4. Distribution of θ and ϕ in β -LPS MD at 350 K separated by local environment. The four heatmaps show, qualitatively, the different angular environments accessed during the 1 μ s simulation for sites which do not experience a hopping event (top) and sites which do experience a hopping event (bottom) starting from either an LiS₄ or LiS₆ site. The histograms are colored by the number of Li sites across the trajectory which have a given (θ, ϕ).

Appendix D: Technical details of the UFP fitting

The UFP-MD simulations for training are executed at temperatures ranging from 300 K to 1000 K, using a time step of 2 fs, and a simulation time of either 1 ns or 1 μ s in the NpT ensemble. All DFT reference calculations used for generating the UFP are performed using FHI-AIMS [5], the PBE exchange-correlation functional [6] and a $2\times2\times2$ k-point sampling. Hyperparameter optimization was performed and the results are shown in Table I. The RDFs of β -LPS and am-LPS compared to AIMD from [7, 8] are shown in Figure S5.

Finally, to compare the atom dynamics in the UFP versus another high quality machine learning potential for LPS, we simulated a 1 ns trajectory at 500 K for both β and am-LPS using the UFP [9] and TurboGAP [10]. The resulting MSDs are shown in Figure S6, and we find that for am-LPS the MSD is comparable between TurboGAP and the UFP, and for β -LPS we have a five times faster transport in the TurboGAP compared to UFP. This can be explained by a insufficient barrier sampling in the approaches, as the fitting of the interatomic potentials is done using snapshots from MD simulations. Those snap-

	TABLE I. Hyperparameters of the UFI						FΡ
	Description cutoff				2B	3B	
					6 Å	5 Å	
		lower cutoff			1 Å	1 Å	
		splin	e distance		0.4 Å	0.4 Å	
		ridge	e regularisati	ion	1e-5	1e-6	
		curv	ature regula	risation	1e-5	1e-5	
		κ			0.1		
		leading trim			0		
rdf / a.u.		trail	ing trim		;	3	-
	7.5	F	P-S	β-LP	S 300K		UFP
			X ILS				AIMD
	F 0			-P			
	5.0					DD	Λ
				S-S Li	-Li	F-F	\mathbb{N}
	2 5	LI		5			/ ` \
	2.5	Γ		1/	ĘΫΛ		
		ΙĒ				-9	
	0.0					0	
	0.0	ينا		-		~	
	~		P-S	am-	LPS 30	0 K	
	6	F F	LI-S Li-	Р			
	ΞA	LE		5-5		P	Р-Р
	Т	11					
	lf /					~	i.
	² 2	F				ļ:	li.
		ΙĒ		Party and	-		TA SALA
	0		n terflicion				
		2		4		6	
distance / Å							

FIG. S5. Radial distribution functions of β -LPS and am-LPS in comparison to AIMD references. β -LPS (top) is compared to the AIMD RDF from Sadowski *et al.* [7] and am-LPS (bottom) to the AIMD RDF from Smith *et al.* [8].

shots are strongly biased towards the minima and a better estimate of the barrier height could be achieved by including nudged elastic band [11] trajectories from DFT into the training sets of both MLIPs.

Appendix E: Technical details of jump detection

For the discretization in order to detect jumps, we utilize a hopping classification inspired by Smith *et al.* [8],

$$h_i(t,a) = \theta(|r_i(t) - r_i(t_0)| - a),$$
 (S1)

FIG. S6. Mean square displacement of a 1 ns MD run of β -LPS and am-LPS at 500 K The MSD for β -LPS (left) and am-LPS (right) is compared between 1 ns simulations in TurboGAP [10] and UFP [9] in order to validate the Li diffusion behavior in the UFP model.

where θ is the Heaviside function and a is a threshold of square displacement. We set a to 3 Å and provide a sensitivity analysis for this parameter (Figure S7). The hopping detection method, Equation S1, is run over a single Li trajectory until a hop is detected, and then repeated iteratively, using the detected hopping point as a new starting point. Also an additional filter is used which ensures a residence time of 0.5 ns to exclude jump attempts from the detection. Examples of discretized Li squared displacement trajectories of the β -LPS are shown in Figure 2 (right).

We test the sensitivity of the calculated jump frequency from MD simulations on the selected threshold a from Equation S1 and show the result in Figure S7. We find a plateau between 2.8 and 3.2 Å and thus select a cutoff of 3 Å.

FIG. S7. Sensitivity of the computed jump frequency on the selected threshold a of the absolute displacement for am-LPS By varying the threshold distance, a for computing a jump frequency we find a window in which the jump frequency is stable (between 2.8 and 3.2 Å) and use this to select the optimal threshold distance, 3.0 Å.

- S. J. Clark, M. D. Segall, C. J. Pickard, P. J. Hasnip, M. I. Probert, K. Refson, and M. C. Payne, First principles methods using CASTEP, Z. Kristallogr. Cryst. Mater. 220, 567 (2005).
- [2] J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77, 3865 (1996).
- [3] A. Grisafi, D. M. Wilkins, G. Csányi, and M. Ceriotti, Symmetry-adapted machine learning for tensorial properties of atomistic systems, Physical Review Letters 120, 036002 (2018).
- [4] G. E. Box and N. R. Draper, *Empirical model-building* and response surfaces. (John Wiley & Sons, 1987).
- [5] V. Blum, R. Gehrke, F. Hanke, P. Havu, V. Havu, X. Ren, K. Reuter, and M. Scheffler, Ab initio molecular simulations with numeric atom-centered orbitals, Computer Physics Communications 180, 2175 (2009).
- [6] J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Physical Review

Letters 77, 3865 (1996).

- [7] M. Sadowski and K. Albe, Computational study of crystalline and glassy lithium thiophosphates: Structure, thermodynamic stability and transport properties, Journal of Power Sources 478, 229041 (2020).
- [8] J. G. Smith and D. J. Siegel, Low-temperature paddlewheel effect in glassy solid electrolytes, Nature Communications 11, 10.1038/s41467-020-15245-5 (2020).
- [9] S. R. Xie, M. Rupp, and R. G. Hennig, Ultra-fast interpretable machine-learning potentials, npj Computational Materials 9, 162 (2023).
- [10] M. A. Caro, Optimizing many-body atomic descriptors for enhanced computational performance of machine learning based interatomic potentials, Physical Review B 100, 024112 (2019).
- [11] H. Jónsson, G. Mills, and K. W. Jacobsen, Nudged elastic band method for finding minimum energy paths of transitions, in *Classical and Quantum Dynamics in Condensed Phase Simulations* (World Scientific, 1998).