A Combined ⁷Li NMR, Density Functional Theory and Operando Synchrotron X-Ray Powder Diffraction to Investigate a Structural Evolution of Cathode Material LiFeV₂O₇

SUPPORTING INFORMATION

Taiana L. E. Pereira¹, Jon Serrano Sevillano^{2,3}, Beatriz D. Moreno⁴, Joel W. Reid⁴, Dany Carlier⁴ and Gillian R. Goward⁴*

¹Department of Chemistry & Chemical Biology, McMaster University, 1280 Main St. West, Hamilton, Ontario L8S 4M1, Canada

² Centro de Investigación Cooperativa de Energías Alternativas (CIC energiGUNE), Basque Research and Technology Alliance (BRTA), 01510 Vitoria-Gasteiz, Spain.

³CNRS, Bordeaux INP, ICMCB UMR5026, Université Bordeaux, F-33600 Pessac, France.

⁴Canadian Light Source, 44 Innovation Boulevard, Saskatoon, Sk, S7N 2V3, Canada

*corresponding author

goward@mcmaster.ca

Figure S1. Photographs of (a) The custom-built cell holder and (b) a modified coin cell used for the *operando* studies.

⁷Li MAS NMR Experimental description

The pristine samples were collected using the same parameters. ⁷Li MAS NMR experiments were acquired using a Bruker Avance III HD spectrometer operating at a Larmor frequency of 116.64 MHz (7.05 T) using a Bruker 1.3 mm HX probe at a spinning frequency of 60 kHz. The spectra are referenced to 1M LiCl_(aq) at 0 ppm. One-dimensional ⁷Li MAS spectra were obtained using a double spin echo pulse sequence utilizing short, high-power adiabatic pulses (SHAPs)¹ following a 1.25 μ s $\frac{\pi}{2}$ excitation pulse. The SHAPs utilized a tanh/tan shape, a 5 MHz frequency sweep, and were 50 microseconds in length with a maximum RF field strength of 200 kHz. Under these conditions, the SHAPs are expected to be >99% efficient.² T₁ relaxation times were determined using a standard inversion-recovery sequence.

Figure S2. ⁷Li MAS ssNMR spectrum of pristine LiFeV₂O₇.

Figure S3. Calculated total spin DOS for the three models of LiFeV₂O₇ (ORG, LFVOD, and ORG-D) with GGA and GGAU where the color coding of lines are elements.

			Calculated ⁷ Li shifts (ppm)					
Atom	EX	KP	ORG GGA	ORG GGA+U (5.3 eV)	ORG GGA+U (4.3 eV)	ORG GGA+U (3.5 eV)	LFVOD GGA	LFVOD GGA+U (5.3 eV)
Li1	146	150.2	339.2	184.5	192.4	207.9	323.4	176.9
Li2	219		454.9	276.8	300.2	323.4	338.9	284.5
Li3	107.2	115.6	262.1	169.2	215.5	238.7	238.8	176.9
Extra Signal	29	92						

Table S1: Calculated Fermi contact shifts for Li sites in ORG and LFVOD structures calculated using GGA and GGA+U methods.

Table S2. Calculated Li-Fe distances and Li-O-Fe angle using GGA approach.

ORG			LFVOD		
Site	dLi-Fe (Å)	Li-O-Fe angles (°)	Site	dLi-Fe (Å)	Li-O-Fe angles (°)
Li1	Li1-Fe3 = 3.1199 Li1-Fe2 = 4.3147	Li1-O21-Fe2 = 139.51 Li1-O19-Fe3 = 100.72 Li1-O03-Fe3 = 92.41	Li1	Li1-Fe3 = 3.14778 Li1-Fe2 = 3.72287	Li1-O21-Fe2 = 129.25 Li1-O03-Fe3 = 93.80 Li1-O19-Fe3 = 101.88
Li2	Li2-Fe2 = 3.0527 Li2-Fe3 = 3.4602 Li2-Fe1 = 3.5226	Li2-O04-Fe2 = 98.55 Li2-O18-Fe2 = 96.47 Li2-O20-Fe1 = 118.49 Li2-O02-Fe3 = 112.51	Li2	Li2-Fe2 = 3.0559 Li2-Fe3 = 3.5075 Li2-Fe1 = 3.47579	Li2-O18-Fe2 = 96.88 Li2-O4-Fe2 = 98.85 Li2-O02-Fe1 = 113.83 Li2-O20-Fe3 = 117.45
Li3	Li3-Fe1 = 3.18089 Li3-Fe2 = 3.73974	Li3-O15-Fe1 = 102.79 Li3-O09-Fe1 = 94.33 Li3-O01-Fe2 = 129.53	Li3	Li3-Fe1 = 3.15090 Li3-Fe2 = 3.14713	Li3-O09-Fe1 = 99.03 Li3-O15-Fe1 = 100.24 Li3-O01-Fe2 = 140.21

Table S3. Calculated Li-Fe distances and Li-O-Fe angle using GGA+U (5.3 eV) approach.

ORG			LFV	OD	
Site	dLi-Fe (Å)	Li-O-Fe angles (°)	Site	dLi-Fe (Å)	Li-O-Fe angles (°)
Li1	Li1-Fe3 = 3.1389 Li1-Fe2 = 4.3273	Li1-O21-Fe2 = 140.12 Li1-O19-Fe3 = 100.70 Li1-O03-Fe3 = 100.70	Lil	Li1-Fe3 = 3.1716 Li1-Fe2 = 3.7070	Li1-O21-Fe2 = 129.88 Li1-O03-Fe3 = 95.75 Li1-O19-Fe3 = 101.39
Li2	Li2-Fe2 = 3.0421 Li2-Fe3 = 3.4569 Li2-Fe1 = 3.5458	Li2-O04-Fe2 = 97.96 Li2-O18-Fe2 = 96.80 Li2-O20-Fe1 = 118.76 Li2-O02-Fe3 = 112.72	Li2	Li2-Fe2 = 3.0368 Li2-Fe3 = 3.5171 Li2-Fe1 = 3.4789	Li2-O18-Fe2 = 96.97 Li2-O04-Fe2 = 98.67 Li2-O02-Fe1 = 114.66 Li2-O20-Fe3 = 118.13
Li3	Li3-Fe1 = 3.1790 Li3-Fe2 = 3.7448	Li3-O15-Fe1 = 102.59 Li3-O09-Fe1 = 94.74 Li3-O01-Fe2 = 129.57	Li3	Li3-Fe1 = 3.1509 Li3-Fe2 = 4.2966	Li3-O09-Fe1 = 98.71 Li3-O15-Fe1 = 100.54 Li3-O01-Fe2 = 141.77

ORG site	ORG-D Site	dLi-Fe (Å)	Li-O-Fe angles (°)
Li1	Lila	$Li1_a$ -Fe3 = 3.1722 $Li1_a$ -Fe2 = 4.2526	$Li1_a$ -O19-Fe3 = 102.71 $Li1_a$ -O21-Fe2 = 138.94 $Li1_a$ -O03-Fe3 = 97.30
Li1	Li1 _b	$Li1_b$ -Fe3 = 3.2005 $Li1_b$ -Fe2 = 4.2014	Li1 _b -O03-Fe3 = 99.96 Li1 _b -O19-Fe3 = 100.51 Li1 _b -O21-Fe2 = 140.56
Li1	Lilc	Li1 _c -Fe3 = 3.1379 Li1 _c -Fe2 = 4.2804	$Li1_c$ -O19-Fe3 = 100.68 $Li1_c$ -O03-Fe3 = 98.64 $Li1_c$ -O21-Fe2 = 141.72
Li1	Lild	$Li1_d$ -Fe3 = 3.1527 $Li1_d$ -Fe2 = 4.1537	$Li1_d$ -O03-Fe3 = 97.25 $Li1_d$ -O19-Fe3 = 101.91 $Li1_d$ -O21-Fe2 = 138.20
Li2	Li2 _a	$Li2_a$ -Fe2 = 3.0020 $Li2_a$ -Fe3 = 3.4707 $Li2_a$ -Fe1 = 3.4946	$Li2_a$ -O02-Fe3 = 114.11 $Li2_a$ -O20-Fe1 = 117.48 $Li2_a$ -O04-Fe2 = 98.04 $Li2_a$ -O18-Fe2 = 96.55
Li2	Li2 _b	$Li2_b$ -Fe2 = 2.9785 $Li2_b$ -Fe3 = 3.4663 $Li2_b$ -Fe1 = 3.5999	$Li2_b-O04-Fe2 = 98.04$ $Li2_b-O18-Fe2 = 96.20$ $Li2_b-O02-Fe3 = 112.90$ $Li2_b-O29-Fe1 = 118.13$
Li2	Li2 _c	Li2 _c -Fe2 = 3.0699 Li2 _c -Fe3 = 3.3429 Li2 _c -Fe1 = 3.6970	$Li2_{c}-O02-Fe3 = 111.69$ $Li2_{c}-O20-Fe1 = 117.57$ $Li2_{c}-O18-Fe2 = 97.07$ $Li2_{c}-O04-Fe2 = 102.29$
Li2	Li2 _d	$Li2_d$ -Fe2 = 3.0631 $Li2_d$ -Fe3 = 3.5162 $Li2_d$ -Fe1= 3.5750	$Li2_d$ -O18-Fe2 = 98.09 $Li2_d$ -O04-Fe2 = 99.01 $Li2_d$ -O02-Fe3 = 112.63 $Li2_d$ -O20-Fe1 = 118.52
Li3	Li3 _a	$Li3_a$ -Fe1 = 3.1700 $Li3_a$ -Fe2 = 3.8507	$Li3_a$ -O01-Fe2 = 132.47 $Li3_a$ -O15-Fe1 = 102.32 $Li3_a$ -O09-Fe1 = 97.81
Li3	Li3 _b	$Li3_b$ -Fe1 = 3.1103 $Li3_b$ -Fe2 = 3.8206	$Li3_b$ -O09-Fe1 = 93.45 $Li3_b$ -O15-Fe1 = 102.26 $Li3_b$ -O01-Fe2 = 131.19
Li3	Li3c	$Li3_{c}-Fe1 = 3.1847$ $Li3_{c}-Fe2 = 4.005$	Li3c-O15-Fe1 = 101.93 Li3c-O09-Fe1 = 98.75 Li3c-O01-Fe2 = 137.60
Li3	Li3 _d	$Li3_d$ -Fe1 = 3.1649 $Li3_d$ -Fe2 = 3.7304	$Li3_d$ -O15-Fe1 = 101.28 $Li3_d$ -O09-Fe1 = 96.69 $Li3_d$ -O01-Fe2 = 129.27

Table S4. Calculated Li-Fe distances and Li-O-Fe angle for ORG-D using GGA+U (5.3 eV) approach.

Figure S4. Environment for the three Li sites of ORG-D showing the local geometry. (a) $Li1_a$ (b) $Li2_a$ and (c) $Li3_a$.

Figure S5. Lattice parameter and unit cell volume change during the first discharge cycle.

Figure S6. Rietveld refinement profile obtained for Li_{1.71}V₂O₇ from the synchrotron XRPD pattern.

Table S5. Relaxed cell parameters for GGA+U optimized $Li_{1.71}FeV_2O_7$ Phase 1 compared to values obtained from Rietveld refinement.

Unit cell	Li _{1.71} FeV ₂ O7*	Li1.71FeV2O7
parameters	Phase 1	Phase1 – GGAU
a (Å)	13.595(2)	13.875(5)
b (Å)	8.2503(3)	8.3760(2)
c (Å)	14.2166(1)	14.4034(5)
β (°)	94.866(5)	95.874(0)
Volume (Å) ³	1588.7(7)	1665.1(7)

* Data obtained from the Rietveld refinement of $Li_{1.71}FeV_2O_7$ for phase 1.

Li _{1.71} FeV ₂ O ₇ Phase 1				
CIF site	Site	Fermi Shift ⁷ Li (ppm)		
Li1	Lila	59.5		
Li1	Li1 _b	394.5		
Li1	Li1 _c	-29.77		
Li1	Li1 _d	387.0		
Li2	Li2 _a	223.3		
Li2	Li2 _b	253.0		
Li2	Li ₂ c	156.2		
Li2	Li2 _d	119.1		
Li3	Li3a	215.8		
Li3	Li3 _b	133.9		
Li3	Li3 _c	104.2		
Li3	Li3 _d	141.4		
New	Li13	59.5		
New	Li14	-104.2		
New	Li15	66.98		
New	Li16	-96.7		
New	Li17	-141.4		
New	Li18	74.4		
New	Li19	-89.3		
New	Li20	29.77		

Figure S7. 3D spin density map calculated for $Li_{1.71}FeV_2O_7$ Phase1with GGA+U and isosurfaces value equal to 0.005 spin/Å². The positive and negative electron spin densities map are represented in yellow and blue, respectively.