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Experimental Details
All spectra used in this analysis have previously been published in ref  1 and can be referred 
to for more detail. The 1H spectrum was collected using a 0.7mm probe at a 1H larmor 
frequency of 900 MHz at 298K with an MAS rate of 62.5kHz. The 13C CPMAS and 1H-13C 
HETCOR  spectra were collected using a 1.3 mm probe at a 1H larmor frequency of 500 
MHz.

Molecular dynamics for the amorphous structures

The MD simulations used here have been reported previously and as described in ref1, 
molecular dynamic (MD) simulations were carried out on periodic amorphous cells with 0, 
0.5, 1, 2, and 4% (w/w) of water molecules. The atomic positions from the single crystal 
XRD structure were used as a starting point for optimization in the gas-phase as the B3LYP-
D3/6-31G(d,p)2-5 level of theory using Gaussian 09 revised D.01 program6. CHELPG and 
optimized coordinates were extracted from the DFT optimization and used to generate the 
amorphous cells. Cubic amorphous cells were created using Material Studio7 and 
COMPASS-II8 force fields with 128 molecules of AZ5718 within the cells. The 
OPLS_20059,10 force field parameters generated using Schrödinger ffld_server11 with the 
optimized coordinates and CHELPG charges as inputs. The “ffconv.py” tool was used to 
convert the topology into GROMCS format12. Water was treated using the TIP3P model in 
the simulations13.

Experimental chemical shift distributions
Table S1: Solid-State NMR assignment of 13C Chemical shifts of the amorphous AZD5718

Atom 
Index

μ 
(ppm)

σ 
(ppm)

C1 11.38 1.73

C2 140.38 2.29

C3 103.36 1.93

C4 151.09 1.5

C7 140.38 2.29

C8 125.58 1.22

C9 129.73 1.89

C10 134.84 1.53

C11 129.73 1.89

C12 125.58 1.22

C13 202.66 2.81

C14 46.95 1.83

C15 30.78 1.88

C16 25.93 1.54

C17 25.93 1.54

C18 30.78 1.88

C19 46.95 1.83

C20 173.79 1.91

C22 125.58 1.22

C23 129.74 1.89

C26 46.95 1.83

C27 40.38 1.39



C29 161.41 1.91

C30 120.61 1.29



Table S1: Solid-State NMR assignment of 1H Chemical shifts of the amorphous AZD5718

H1 1.56 0.55

H3 5.17 0.82

H6 11.84 2

H8 7.07 0.99

H9 7.11 0.98

H11 7.11 0.98

H12 7.07 0.99

H14 2.67 0.9

H15a 0.54 0.88

H15
b

0.54 0.88

H16a 0.39 0.85

H16
b

0.39 0.85

H17a 0.39 0.85

H17
b

0.39 0.85

H18a 0.54 0.88

H18
b

0.54 0.88

H19 2.67 0.9

H23 7.11 0.98

H26a 2.67 0.9

H26
b

2.67 0.9

H27a 2.87 0.79

H27
b

2.87 0.79



Figure S1: Peak fitting  of the 13C CPMAS Spectrum (blue) with the gaussian using the 
parameters listed in Table S1 (red)



Predicted chemical shift distributions

Figure S2: Histogram of p-values for each structure in the MD set (blue) and the NMR set 
(orange) for all shifts. The counts are shown on the log scale.



Figure S3: Histogram of predicted 1H chemical shifts using shiftML2 for the MD set 
(orange) and the NMR set (orange) with the assigned experimental distribution shown in 
black. 



Figure S4: Histogram of predicted 13C chemical shifts using shiftML2 for the MD set 
(orange) and the NMR set (orange) with the experimental distribution shown in black



Figure S5: Histogram of predicted 15N chemical shifts using shiftML2 for the MD set 
(orange) and the NMR set (orange) 



Relative Cluster Energies of molecular interactions and conformations

Figure S6: (top) histogram of torsion angle between C3-C4-C7-C8 for the MD set (blue) and 
the NMR set (orange). (bottom) Relative cluster energies as a function of dihedral angle for 
the NMR set (orange) and random selections of the MD set (orange)



Figure S7: (top) histogram of torsion angle between C9-C10-C13-C14 for the MD set (blue) 
and the NMR set (orange). (bottom) Relative cluster energies as a function of dihedral angle 
for the NMR set (orange) and random selections of the MD set (orange)



Figure S8: (top) histogram of torsion angle between C15-C14-C19-C18 for the MD set 
(blue) and the NMR set (orange). (bottom) Relative cluster energies as a function of dihedral 
angle for the NMR set (orange) and random selections of the MD set (orange)



 
Figure S9: (top) histogram of torsion angle betweenC16-C17-C18-C19 for the MD set (blue) 
and the NMR set (orange). (bottom) Relative cluster energies as a function of dihedral angle 
for the NMR set (orange) and random selections of the MD set (orange)



Figure S10: (top) histogram of torsion angle between N21-C20-C19-C18 for the MD set 
(blue) and the NMR set (orange). (bottom) Relative cluster energies as a function of dihedral 
angle for the NMR set (orange) and random selections of the MD set (orange)



Figure S11: (top) histogram of torsion angle between N25-C26-C27-N28 for the MD set 
(blue) and the NMR set (orange). (bottom) Relative cluster energies as a function of dihedral 
angle for the NMR set (orange) and random selections of the MD set (orange)



Figure S12: (top) histogram of torsion angle between C19-C20-N21-C22 for the MD set 
(blue) and the NMR set (orange). (bottom) Relative cluster energies as a function of dihedral 
angle for the NMR set (orange) and random selections of the MD set (orange)

Figure S13: Average relative cluster energies for the hydrogen bond interaction with N5 for 
the MD set in (blue) and the NMR set (orange)



Figure S14: Average relative cluster energies for the hydrogen bond interaction with N5 for 
the MD set in (blue) and the NMR set (orange)

Figure S15: Average relative cluster energies for the hydrogen bond interaction with N21 for 
the MD set in (blue) and the NMR set (orange)



Figure S16: Average relative cluster energies for the hydrogen bond interaction with N24 for 
the MD set in (blue) and the NMR set (orange)

Figure S17: Average relative cluster energies for the hydrogen bond interaction with N28 for 
the MD set in (blue) and the NMR set (orange)



Figure S18: Average relative cluster energies for the hydrogen bond interaction with O13 for 
the MD set in (blue) and the NMR set (orange)

Figure S19: Average relative cluster energies for the hydrogen bond interaction with O20 for 
the MD set in (blue) and the NMR set (orange)



Figure S20: Average relative cluster energies for the hydrogen bond interaction with O29 for 
the MD set in (blue) and the NMR set (orange)
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