Supporting Information

Controlling Droplet Cell Environment in Scanning Electrochemical Cell Microscopy (SECCM) via Migration and Electroosmotic Flow

Samuel F. Wenzel¹, Heekwon Lee¹, Hang Ren^{1,2,3} *

1. Department of Chemistry, 2. Center for Electrochemistry, 3. Texas Materials Institute, The University of Texas at Austin, Austin, TX 78712, USA

*Corresponding author: <u>hren@utexas.edu</u>

Table of Contents

S1. SEM Image of Dual-Channel Pipette	S-2
S2. Additional Information on Finite Element Simulation	S-3
S3. References	S-4

S1. SEM Image of Dual-Channel Pipette

The opening diameter of the pipette was measured by scanning electron microscope (Scios2 Dual Beam SEM, Thermo Fisher Scientific) under 10 kV with a 7 mm working distance. The pipette has 380 nm radius openings, as shown in **Figure S1**. The dimensions from the pipette were used for simulation in SI section S2.

Figure S1. SEM image of a dual-channel pipette.

S2. Additional Information on Finite Element Simulation

Table S1 shows the parameters for the Finite Element Simulation. **Figure S2** show the pipette geometry utilized for the 3-D model and the boundary conditions employed for different areas of the pipette.

T (temperature)	293.15 K
D_{K^+} (K ⁺ diffusion coefficient)	$1.96 \times 10^{-9} \text{ m}^2/\text{s}$ [1]
$D_{\rm FcTMA}$ FcTMA ⁺ diffusion coefficient)	$7.5 \times 10^{-10} \text{ m}^2/\text{s}$ [2]
D_{RuHex} (Ru(NH ₃) ₆ ³⁺ diffusion coefficient)	$7.4 \times 10^{-10} \text{ m}^2/\text{s}$ [2]
$D_{\rm Cl}$ (Cl ⁻ diffusion coefficient)	$2.03 \times 10^{-9} \text{ m}^2/\text{s}$ [1]
ρ (water density)	998 kg/m ³
μ (dynamic viscosity)	1.005×10 ⁻³ P·s
$c_{\rm K}$ (K ⁺ concentration)	2.0 mM
$c_{\rm Fc}$ (FcTMA ⁺ concentration)	2.0 mM
$c_{\rm Ru}$ (Ru(NH ₃) ₆ ³⁺ concentration)	2.0 mM
$c_{\rm Cl}$ (Cl concentration)	2.0 mM
ζ (zeta potential)	-0.030 V [3]

 Table S1. Parameters used in the numerical simulation of dual-barrel SECCM.

Figure S2. 3D geometry of the model used in the simulation. The model consists of two channels, each containing a redox mediator. The meniscus cell is at the bottom enclosed in the red box.

S3. References

- 1. P. Atkins, J. de Paula and J. Keeler, Physical Chemistry 11th Edition, Oxford, 2018.
- 2. A. J. Bard, L. R. Faulkner and H. S. White, Electrochemical Methods Fundamentals and Applications, John Wiley & Sons Ltd, 2022.
- 3. H. C. Li and P. L. De Bruyn, Surface Science, 1966, 5, 203-220.