Supporting Information for

Characterization of Ephedrine HCl and Pseudoephedrine HCl Using Quadrupolar NMR Crystallography Guided Crystal Structure Prediction

Carl H. Fleischer III,^{1,2} Sean T. Holmes,^{1,2} Kirill Levin³ Stanislav L. Veinberg³ and Robert W. Schurko^{1,2*}

¹ Department of Chemistry & Biochemistry, Florida State University, Tallahassee, FL 32306

² National High Magnetic Field Laboratory, Tallahassee, FL, 32310

³ Department of Chemistry & Biochemistry, University of Windsor, Windsor, ON, N9B 3P4

* Author to whom correspondence should be addressed. E-mail: <u>rschurko@fsu.edu</u>; Web: <u>https://www.chem.fsu.edu/~schurko/;</u> Tel: 850-645-8614

Table of Contents:

Title:	Page #
Scheme S1. QNMRX-CSP protocol flowchart.	2
Figure S1. Simulated PXRD of the convergent geometry optimized crystal structures	3
of Eph (EPHECL02; black) and Pse (PEPHCL; black) and the experimental PXRD	
patterns of (A; red) Eph, (B; blue) Pse, and (C; green) Sudafed.	
Figure S2. $^{1}\text{H}\rightarrow^{15}\text{N}$ CP/MAS NMR spectra of (A; red) Eph and (B; blue) Pse	4
acquired at 9.4 T and $v_{rot} = 5$ kHz. The spectra feature single peaks corresponding to	
the nitrogen atoms in the charged secondary amine groups with $\delta_{iso}(^{15}N) = -331$ ppm	
(Eph) and -335 ppm (Pse).	
Figure S3. Simulated PXRD of the DFT-D2* geometry optimized known crystal	5
structure of Eph (EPHECL02; black) and structure 3-12 (A; blue), which failed	
structural validation based on poor agreement with simulated PXRD and CCDC	
thresholds.	
Figure S4. Simulated PXRD of NaCl (black) and experimental (green) PXRD	6
pattern of Sudafed.	
Figure S5. Simulated PXRD patterns of the six candidate structures from $P2_12_12_1$ for	7
Sudafed (A-F) and of the convergent geometry optimized known crystal structure of	
Pse (PEPHCL).	
Table S1. Experimental details for the acquisition of ${}^{1}\text{H} \rightarrow {}^{13}\text{C}$ and ${}^{1}\text{H} \rightarrow {}^{15}\text{N}$ CP/MAS	8
spectra.	
Table S2. Experimental details for the acquisition of ${}^{35}Cl{}^{1}H$ spectra.	9
Table S3. Crystallographic information for Eph and Pse.	10
Table S4. Experimental ¹³ C isotropic chemical shifts.	11
Table S5. Hirshfeld charges from the QNMRX-CSP charge database.	12
Table S6. CSD datamine summary of the top seven space groups.	13
Supplement 1: Charge Database.	14
Supplement 2: Computational Workstations.	14
References	15

Scheme S1. QNMRX-CSP protocol flowchart. The red path indicates the benchmarking of the protocol starting from the known crystal structure (§3.2.1), the green path indicates the benchmarking of the protocol starting from a refined isolated molecule (§3.2.2), the blue path indicates the application §3.2.3, the yellow path indicates the application of §3.2.4. The grey path indicates the benchmarking and application of §3.2.1, §3.2.2, and §3.2.3 and the black path indicates the parts of the protocol that all sections were applied to. Each module is highlighted in a green box, each of the applied metrics are in a red box, and the structural validation is highlighted in a blue box.

Figure S1. Simulated PXRD of the convergent geometry optimized crystal structures of Eph (Eph; black) and Pse (Pse; black) and the experimental PXRD patterns of (A; red) Eph, (B; blue) Pse, and (C; green) Sudafed. The experimental PXRD pattern of Pse features rough and spiky peaks *ca.* 7°. This roughness can be attributed to the sample not being fully grinded with a pestle prior to acquisition.

Figure S2. ¹H \rightarrow ¹⁵N CP/MAS NMR spectra of (A; red) Eph and (B; blue) Pse acquired at 9.4 T and v_{rot} = 5 kHz. The spectra feature single peaks corresponding to the nitrogen atoms in the charged secondary amine groups with $\delta_{iso}(^{15}N) = -331(10)$ ppm (Eph) and -335(10) ppm (Pse).

Figure S3. Simulated PXRD of the DFT-D2* geometry optimized known crystal structure of Eph (Eph; black) and structure 3-12 (A; blue), which failed structural validation based on poor agreement with simulated PXRD and CCDC thresholds.

Figure S4. Simulated PXRD of NaCl (black) and experimental (green) PXRD pattern of Sudafed.

Figure S5. Simulated PXRD patterns of the six candidate structures from $P2_12_12_1$ for Sudafed (**Table 8**), and of the convergent geometry optimized known crystal structure of Pse (Pse).

	¹³ C C	CP/MAS	¹⁵ N CP/MAS	
	Eph Pse	e Sudafed	Eph Pse	
B_0 (T)	9.4	14.1	9.4	
Time domain size	2048	4096	8144	
Dwell time (µs)	6.133	3.589	6.133	
Acquisition time (ms)	12.5	14.7	5.0	
Spectral width (kHz)	81.522	138.889	81.522	
Number of scans	288 256	5 256	109861 85646	
Recycle delay (s)	10.0 12.	5 18	2.0	
Spinning rate (kHz)	12.5	12	5.0	
¹ H Hartmann-Hahn matching field (kHz)	50	50	80	
Contact time (ms)	1.5	1	2.0	
¹ H $\pi/2$ pulse width (µs)	5.0	2.5	5.0	
¹ H SPINAL-64 decoupling field (kHz)	50	100	30	
Total experiment time (min)	48 53	77	3662 2855	

Table S1. Experimental details for the acquisition of ${}^{1}\text{H} \rightarrow {}^{13}\text{C}$ and ${}^{1}\text{H} \rightarrow {}^{15}\text{N}$ CP/MAS spectra.

1	0.4.5	$\frac{1}{211T}$			MAS	10) Q Т					
	9.4, 3	static			21.1 1, MAS		10.0 1					
	Eph	Pse	Eph	Pse	Eph	Pse	Su	dafed				
Experiment	Hahn echo		Quad. echo		o Quad. echo		Bloch decay		Hahn echo Bloch decay			
Time domain size	102	24	204	48	409	6	2048	1024				
Dwell time (μ s)	10	3.33	5.	0	10)	5.0	11				
Acquisition time (ms)	1.02	3.41	10.24		10.24 4.10		10.24	11.26				
Spectral width (kHz)	50	150	10	0	50		100	45.454				
Number of scans	8192	19580	6144	14336	4096		32768					
Recycle delay (s)	0.5	0.75	5.0 2.0		0.75							
Spinning rate (kHz)	n/	a	n/a		5.0	10.0	n/a	6				
$\pi/2$ CT selective pulse width (μ s)	14.3	4.8	2.0		2.0		2.0)	-	2.5		
¹ H decoupling field (kHz)	30	0	60		60		60		60	1		50
Total experiment time (min)	68	245	512 1195		512 1195		13	5	4	21		

Table S2. Experimental details for the acquisition of ${}^{35}Cl{}^{1}H$ spectra.

	Space Group	<i>a</i> (Å)	<i>b</i> (Å)	c (Å)	α (°)	β (°)	γ (°)	Volume(Å ³)	Ζ	Ż
Eph ^a	P21	7.2557	6.1228	12.5486	90.00	102.223	90.00	544.837	2	1
Pse ^a	P212121	25.358	6.428	6.901	90.00	90.00	90.00	1124.871	4	1
3 CSD reference codes for crystal structures Eph (EPHECI 02) and Pse (PEPHCI)										

Table S3. Crystallographic information for Eph and Pse.

CSD reference codes for crystal structures Eph (EPHECL02), and Pse (PEPHCL).

		C ₁ (ppm)	C ₂ (ppm)	C ₃ (ppm)	C ₄ (ppm)	C ₅ (ppm)
Eph	Exp.	7.2(5)	34.2(6)	63.7(9)	73.0(8)	140.2(4)
Pse	Exp.	13.1(5)	34.1(6)	63.0(9)	77.0(6)	140.4(5)

 Table S4. Experimental ¹³C isotropic chemical shifts.

Atomic Position ^{<i>a</i>}	Eph ^b	Pse b	Database ^c	Modified ^d
C1	-0.120	-0.120	-0.130	-0.130
C2	-0.050	-0.050	-0.130	-0.130
C3	0.040	0.040	-0.120	-0.120
C4	0.030	0.040	-0.120	-0.120
C5	0.000	0.000	0.027	0.030
C6	-0.04	-0.040	-0.048	-0.040
C7	-0.03	-0.040	-0.048	-0.040
C8	-0.04	-0.040	-0.048	-0.040
C9	-0.04	-0.040	-0.048	-0.040
C10	-0.05	-0.040	-0.048	-0.040
H1	0.030	0.030	0.036	0.060
H2	0.040	0.030	0.036	0.060
H3	0.040	0.040	0.036	0.060
H4	0.040	0.040	0.036	0.060
H5	0.040	0.050	0.036	0.060
H6	0.040	0.050	0.036	0.060
H7	0.090	0.090	0.100	0.100
H8	0.100	0.100	0.100	0.100
Н9	0.050	0.04	0.036	0.060
H10	0.020	0.03	0.036	0.060
H11	0.090	0.09	0.100	0.100
H12	0.04	0.030	0.036	0.060
H13	0.04	0.040	0.036	0.060
H14	0.03	0.040	0.036	0.060
H15	0.04	0.040	0.036	0.060
H16	0.03	0.040	0.036	0.060
0	-0.180	-0.190	-0.157	-0.150
Ν	0.010	0.010	0.010	0.010
Cl	-0.300	-0.320	-0.300	-0.270

Table S5. Hirshfeld charges from the QNMRX-CSP charge database.

^{*a*} For labeling of atomic position see **Scheme 1**.

^b Hishfeld charges obtained from the convergent geometry optimized known crystal structure.

^c Hirshfeld charges obtained from the charge database. For information on how the charge database was constructed see **Supplement 1**.

^d Hirshfeld charges that were modified from the database to apply a net charge of zero. Bold terms under the modified section are provided to show which charges were modified.

	$P2_1/c$	$P\overline{1}$	$P2_{1}2_{1}2_{1}$	$P2_1$	C2/c	Pbca	P na 2_1
Population	1552	856	801	543	251	184	83
Percentage	32.9	18.2	17	11.5	5.3	3.9	1.8
Ζ	4	2	4	2	8	8	4

Table S6. CSD datamine summary of the top seven space groups.

Supplement 1: Charge Database. When QNMRX-CSP is started from a refined isolated molecule there is the need to provide a set of Hirshfeld charges, see **Scheme S1**, M1 Step 3. Therefore, in Peach *et al.* 2024,¹ a Charge Database was constructed by refining 43 organic HCl salts obtained from the CCDC and refining the structures using convergent geometry optimizations. The atoms of each organic HCL salt were groups based on their functional groups and the average Hirshfeld charge for each functional group was tabulated. For the structural models used herein, we have balanced the net charges applied to our isolated molecule to be equal to zero by modifying the charges with the highest standard deviation. For our results herein, see **Table S5**.

Supplement 2: Computational Workstations. All calculations were run on either of two workstations both operating with a Windows 10 Pro operating system: a) The first featuring two Intel® Xeon Silver 4110 processors with a base frequency of 2.10 GHz for 8 core/16 threads, two NVIDIA® Quadro P2000 graphics cards, 192 GB of 2400 MHz RAM, and two NVMe solid-state hard drives, one KIOXIA 512 GB (reserved for OS and programs) and a SAMSUNG® 1024 GB (reserved for data storage). b) The second workstation features two Intel® Silver 4214R processors with a base frequency of 3.50 GHz for 12 cores/24 threads, two NIVIDIA® T1000 graphics cards, 384 GB of 2933 MHz RAM, two NVMe solid-state hard drives, a M.2 512 GB PCle (reserved for OS and programs) and a M.2 1024 GB PCle (reserved for data storage).

References

(1) Peach, A. A.; Fleischer, C. H. I.; Levin, K.; Holmes, S. T.; Sanchez, J. E.; Schurko, R. W. Quadrupolar NMR Crystallography Guided Crystal Structure Prediction (QNMRX-CSP). *CrystEngComm* In review.