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A Appendix

A.1 Supplementary figures

Fig. A.1 Calibration curves for the MODNet model used in the different iterations of the active learning
campaign
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Fig. A.2 The (n,Eg) space spanned by the P1725 (purple), and VT-2k datasets (green). The black 
crosses correspond to the materials that pass each of the filtering steps described in Fig. 2. They are also 
listed in Table 2.
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Fig. A.3 The filters described in Fig. 2 applied to the external datasets of C2426 (orange crosses, upper 
panel) and R2428 (red crosses, lower panel), in comparison with the filtered materials from VT-2k (black 
crosses). Exceptional outlier materials (Te-W-Mo and Sn-Te containing compounds) from each dataset 
are labelled explicitly.
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Fig. A.4 Effect of the order of the filters on the final screening of promising high-n materials. The y-
axis shows the relative quantity of selected materials with respect to the present dataset (2,413 entries).
The different orders of filters are situated along the horizontal axis where ’S’ stands for the criterion on
synthesisability, ’P’ for the restriction to the Pareto neighbourhood, and ’H’ for the exclusion of high HHI
elements.
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A.2 Active versus static learning

The advantage of active learning with respect to other common search methods is demon-
strated using the P17 dataset. Initially, a subset of 1,000 labeled samples from P17 is desig-
nated as the starting set L (simulating a known dataset), while the remaining ∼ 5,000 data
points form the candidate pool P and remain unlabeled (simulating known structures with
unknown characteristics). Different strategies are then employed to query b points (as defined
by the budget, up to 1,000) from P. These points are subsequently labeled using the P17
dataset (simulating an oracle). The quality of the selected points is quantified by computing
the top-k score over ωeff:

topk(ωeff) =
1
k

k

∑
i=1

ωeff,(i),

where ωeff,(i) represents the i-th highest score among the newly labeled samples. This metric
is calculated over the k samples with the highest ωeff, where k is an adjustable parameter.
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Fig. A.5 Top-k score as a function of k for different search budgets, comparing AL (Active Learning) and
SL (Static Learning) algorithms.

As a baseline strategy, one might randomly select points from P. The P17 dataset presents
average values of n = 2.29± 0.86, Eg = 2.44± 1.67, and ωeff = 11.91± 3.61 (± denoting the
standard deviation). For a random search baseline, the expected value of the top-k score,
calculated over the highest k scores from randomly selected points, would approximate the
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mean of ωeff, i.e., 11.91. The variance of this score would decrease with increasing k, scaling
approximately as 1/k2.

A more commonly used approach is to train a surrogate machine learning (ML) model
on L , and then use it to screen P for promising candidates, selecting the b candidates with
the highest predicted ωeff. We refer to this method as static learning (SL). In contrast, active
learning (AL) iteratively updates its ML model while exploring P. Both strategies are allowed
to query b new samples from P, as defined by the budget.

Figure A.5 represents the top-k score as a function of k, for different budget sizes. It
is observed that AL systematically outperforms SL. Although the advantage is small, it is
noteworthy that with a budget of 800, AL achieves a similar or better top-k score than SL with
a budget of 1000, across almost the entire range of k. This represents a non-negligible saving
of resources of 20%.
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Fig. A.6 Top-100 score as a function of iterations (i.e., search budget) for AL (Active Learning) and SL
(Static Learning) search algorithms. Error bars represent the standard deviation over 5 repeated experiments.

Figure A.6 displays the Top-100 score for various budgets, while also depicting the ob-
served standard deviation over repeated experiments. A slight yet consistent advantage is
observed for active learning, with a notably smaller variance among selected candidates. No-
tably, a budget of 1000 is necessary for static learning to achieve a Top-100 score comparable
to that reached by active learning with just a budget of 400.

Finally, Figure A.7 shows the Mean Absolute Error (MAE) on a hold-out test set as a
function of the AL iterations (i.e., search budget). As expected, it demonstrates that in AL,
the model progressively improves with each search iteration. In contrast, for SL, the accuracy
remains constant, as the model does not update during the search process.
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Fig. A.7 Mean Absolute Error (MAE) of the models used in Active Learning (AL) and Static Learning (SL)
on a hold-out test set, as a function of iterations (i.e., search budget).
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