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I. METHODS

We study the mapping of a protein sequence to its property represented

by a single numeric label f(x⃗). As we shall describe later, this f(x) could

be the second virial coefficient B22, or a quantity that provides an estimate

of the affinity of a sequence to bind to a condensate. Our scientific problem

thus reduces to training a model to learn the mapping x⃗ 7→ f(x⃗), and simul-

taneously exploring the protein sequence space to maximize this label. We

utilize the wazy package which provides the framework for performing such

optimization tasks implemented here.

An overview of our workflow is shown in Fig. 1: We begin with an initial set

of protein sequences, and run residue-level coarse-grained molecular dynamics

simulations using HOOMD-blue1 from which the quantity of interest f(x) is

to be extracted. We initialize a surrogate model with the protein sequence

Bayesian Optimization (BO) package wazy2, and provide this set of sequences

and their labels for an initial calibration. In what follows, we will refer to

this initial stage as Iteration 0. Next, the model is interrogated to suggest

which training examples should be provided next. The Bayesian optimizer

uses an acquisition function to rank proteins in the sequence space, in terms

of their utility for the model. Coase-grained simulations of this new batch

of protein sequences are again performed, which becomes input for the next

cycle of learning. A schematic of this framework is shown in Figure 1. In

what follows, we provide a detailed account of the training and optimization

methodology.
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Model Description

In Bayesian Optimization (BO) problems, the most commonly used choice

of a surrogate model is a Gaussian Process (GP)3. In contrast, in our work we

utilize the wazy package2, which uses deep ensembles of feed-forward neural

networks. This is desirable, as neural networks have greater expressive power

and potential to be pre-trained than GPs.

For training the model for predicting the label f(x), the sequence is first

mapped to a numeric vector. In wazy, mapping from a FASTA protein se-

quence to a continuous vector x⃗ (called, featurization) is done using UniRep4,

which is a Long-Short Term Memory (LSTM) model designed for next amino

acid prediction, trained on the UniRef50 dataset. In mapping sequence-

property relationships, appropriate featurization is necessary for for similar

sequences in the protein sequence space to be clustered together.

The desired numeric label is then predicted from from the feature vector

x⃗ via a multi-layer perceptron. To allow uncertainty analysis, an ensemble

of MLPs (in short, a deep ensemble) is used to simultaneously predict the

same quantity in parallel. UniRep4 parses the sequence into a fixed-length

vector of dimensions N = 1900. As for network architecture, each single

MLP takes an input of dimension 1900, followed by layers of 128, 32 and 2

neurons respectively. The final output layer thus provides two numbers µm

and σm that characterize a normal distribution N (µ̂m, σ̂m). The mean over

the ensemble of M multi-layer perceptrons

µ̂ =
1

M

∑
m

µm

is used as the final estimate. Estimates of model (epistemic) uncertainty
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hatσe are obtained from the dispersion in the predictions of different MLPs

in the ensemble

σ̂2
e =

1

M

∑
m

(µ− µm)
2

In addition, a statistical (aleatoric) uncertainty is estimated as

σ̂2
a =

1

M

∑
m

σ2
m

Throughout the discussion, we will refer to the combined total uncertainty,

computed as σ2 = σ2
e + σ2

a

The state-of-the-art solution to uncertainty estimation is Bayesian Neural

Networks. However, Bayesian NNs require non-trivial modifications of the

training procedure, compared to non-Bayesian NNs. Deep ensembles use

model combinations (in the present case, multi-layer perceptrons; MLPs) to

provide predictive uncertainty estimates. Further, they are much simpler

to implement, and require little hyperparameter tuning (see ref.5 for a de-

tailed discussion). For further details about wazy, we refer the reader to ref.2.

Bayesian optimization works via ranking sequences using an acquisition

function A. We choose the “upper confidence bound” (UCB) acquisition

function3 which balances both exploitation and exploration:

A(x;λ) = µ(x) + λσ(x) (1)

Here, the exploitation term µ(x), is the current estimation of the value.

And the exploration term, σ(x), measures the uncertainty. The parameter λ

acts as a control to adjust the balance between exploitation and exploration.

Expected Improvement (EI) is another common acquisition function used in
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Bayesian Optimization, along with UCB. The key idea behind EI is to select

the next point to evaluate based on the current best result. The choice of

the acquisition function sensitively affects which regions of sequence space

get explored for, and thus the arrival at an optimal solution.

Training, Optimization, and Validation

For calibrating the model with sequence-label relationship as input, we

chose an initial set of sequences drawn from ProtGPT26, a protein language

model constructed for de novo protein design. We ensured that the initial

set was diverse in its composition, and spanned a wide range of values for

the numeric label of interest (here, B22)(SI fig). To track the learning of the

model, we used in addition a set of sequences for validation that was never

shown to the model for training. Following ref2 we will refer to “optimization

step” as the single training step in which the model is updated after each

sequence and numeric label input. After each optimization, we predict the

numeric label for validation set, and estimate the mean squared error from

the residual between true (computed values, from simulations) and predicted

values.
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Figure S1. Training with an initial calibration set of 200 sequences, instead of 50 does not lead to

improved outcomes (compare with Fig.1 in the main text).

Figure S2. Comparison of B22 distribution of sequences suggested by wazy in each iteration. A)

Optimisation using UCB. B) Optimisation using EI.
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Figure S3. Sequence characteristics favoured by the model during the optimisation process for de-

signing multiphasic condensates. The optimisation process favoured the enrichment of hydrophobic

amino acid residues.
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Figure S4. characterisation of peptides binding to phase-separated condensates of CTD and hCTD.

A) Sequence characteristics of peptides that bind to ideal CTD suggested by wazy across iterations.

Net charge per residue decreases with iteration, while hydropathy value generally increases, with

a slight decrease after the 4th iteration. B) Distribution of ∆G shifts towards higher values after

calibration. A slight shift towards lower values is observed for the 4th and 5th iterations, followed

by a subsequent increase.
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Figure S4. (Previous page.) C) Characteristics of peptides designed by wazy to bind to hCTD.

Hydropathy values show an increase across iterations. D) ∆G distribution for hCTD-binding

peptides shifts towards higher values after calibration. E) Comparison of sequence characteristics

between LIN65 fragments and all peptides suggested and trained by wazy. F) Comparison of ∆G

distributions, showing that LIN65 fragments represent a subset of less interacting sequences within

the full range of designed peptides.
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