Supporting Information

Metastable Layered Lithium-rich Niobium and Tantalum Oxides via Nearly Instantaneous Ion Exchange

Sarah L. Ko,¹ Jordan A. Dorrell,² Andrew J. Morris,² Kent J. Griffith^{1,3*}

¹Department of Chemistry and Biochemistry, University of California, San Diego, California 92093, United States ²School of Metallurgy and Materials, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom ³Program in Materials Science and Engineering, University of California, San Diego, California 92093, United States

*E-mail: k3griffith@ucsd.edu

Table of Contents

Supplementary Figures

- Supplementary Figure S1 T_1 magnetization saturation recovery curves of ⁶Li, ⁷Li, and ²³Na for A_3MO_4 (A = Li, Na; M = Nb, Ta).
- Supplementary Figure S2 ⁹³Nb NMR spectra of LiNbO₃ and NaNbO₃
- Supplementary Figure S3 Neutron powder diffraction patterns of L-Na₃NbO₄ and L-Li₃NbO₄ at 20 K and 300 K
- Supplementary Figure S4 Rietveld refinement of L-Na₃NbO₄ and L-Li₃NbO₄ at 300K
- Supplementary Figure S5 Scanning electron microscopy images of A_3MO_4 (A = Li, Na; M = Nb, Ta)
- Supplementary Figure S6 Particle size distributions of A_3MO_4 (A = Li, Na; M = Nb, Ta)
- Supplementary Figure S7 ⁹³Nb NMR spectra of c-Li₃NbO₄
- Supplementary Figure S8 Water instability of L-Na₃NbO₄.

Supplementary Tables

- Supplementary Table S1 T_1 relaxation times of ⁶Li, ⁷Li, and ²³Na for A_3MO_4 (A = Li, Na; M = Nb, Ta)
- Supplementary Table S2 Experimental ⁶Li, ⁷Li, ²³Na, and ⁹³Nb NMR measurement times
- Supplementary Table S3 Calculated lattice and NMR parameters for layered A_3MO_4 (A = Li, Na; M = Nb, Ta)
- Supplementary Table S4 Calculated lattice and NMR parameters for L-Li₃NbO₄ containing residual Na⁺ Supplementary Table S5 Calculated lattice and NMR parameters for L-Li₃NbO₄ containing residual H⁺

Supplementary Figure S1. T_1 magnetization saturation recovery curves of ⁶Li, ⁷Li, and ²³Na for A_3MO_4 (A = Li, Na; M = Nb, Ta).

Supplementary Figure S2. ⁹³Nb NMR spectra of LiNbO3 and NaNbO3 at 30 kHz MAS and 9.4 T.

Supplementary Figure S3. Neutron powder diffraction patterns of L-Na₃NbO₄ and L-Li₃NbO4 at 20 K and 300 K.

Supplementary Figure S4. Rietveld refinement of L-Li₃NbO₄ and L-Na₃NbO₄ with neutron powder diffraction data measured at 300 K. Square-root intensity is shown to better depict data to high *Q*.

Supplementary Figure S5. Scanning electron microscopy images of A_3MO_4 (A = Li, Na; M = Nb, Ta). (a) L-Na₃NbO₄, (b) L'-Li₃NbO₄ (1 min IX), (c) L-Li₃NbO₄ (12 hours IX), (d) c-Li₃NbO₄, (e) L-Na₃TaO₄, (f) L-Li₃TaO₄, (g) β -Li₃TaO₄.

Supplementary Figure S6. Particle size distributions of A_3MO_4 (A = Li, Na; M = Nb, Ta). Particle size distribution by (a) volume percentage, (b) cumulative distribution, and (c) d₅₀.

Supplementary Figure S7. ⁹³Nb NMR spectra of c-Li₃NbO₄ under static and 30 kHz MAS conditions at 9.4 T. Spectra are intensity normalized. Simulations are fit with the parameters listed in Table 3.

Supplementary Figure S8. Water instability of L-Na₃NbO₄. X-ray diffraction patterns of L-Na₃NbO₄ before and after immersion in water for 1 hr. The water-immersed sample was dried overnight in air at 80 °C prior to XRD. Asterisks denote observed NaNbO₃ reflections. The NaNbO₃ impurity is water stable.

		⁶ Li <i>T</i> ₁ (s)	⁷ Li T_1 (s)
	30 s	>800	19.9
	1 min	>600	22.7
$\mathbf{L} \rightarrow \mathbf{N} \mathbf{h} \mathbf{O} $ (IV)	10 min	237	13.3
$L-LI_{3}NOO_{4}(IX)$	30 min	305	12.7
	1 hr	340	12.2
	12 hr	456	11.7
c-Li ₃ NbO ₄		4040	59
LiNbO ₃		1236	17.6
L-Li ₃ TaO ₄ (IX)		15.5	3.2
β-Li ₃ TaO ₄		43.0	23.7
		²³ Na	<i>T</i> ₁ (s)
L-Na ₃ NbO ₄		8	.4
NaNbO ₃		7	.9
L-Na ₃ TaO ₄		7	.6
NaTaO ₃		13	3.5

Supplementary Table S1. T_1 relaxation times of ⁶Li, ⁷Li, and ²³Na for A_3MO_4 (A = Li, Na; M = Nb, Ta).

	⁶ Li		,	⁷ Li		²³ Na		⁹³ Nb	
	d1 (s)	No. FIDs	d1 (s)	No. FIDs	d1 (s)	No. FIDs	d1 (s)	No. FIDs	
L-Li ₃ NbO ₄ (IX) 30 s	4000	36	100	8	40	120	0.5	8192	
L-Li ₃ NbO ₄ (IX) 1 min	3000	24	115	4	40	120	0.5	8192	
L-Li ₃ NbO ₄ (IX) 10 min	1190	44	67	8	40	120	0.5	8192	
L-Li ₃ NbO ₄ (IX) 30 min	2500	36	65	8	40	120	0.5	8192	
L-Li ₃ NbO ₄ (IX) 1 hr	1750	40	65	4	40	120	0.5	8192	
L-Li ₃ NbO ₄ (IX) 12 hr	2110	20	60	4	40	120	0.5	8192	
L-Li ₃ NbO ₄ (IX) 1 min unwashed	n/r	n/r	n/r	n/r	40	1320	0.5	8192	
L-Li ₃ NbO ₄ (IX) 12 hr unwashed	n/r	n/r	n/r	n/r	40	1320	0.5	16,384	
c-Li ₃ NbO ₄	13,000	1	300	1	n/a	n/a	2	192	
L-Li ₃ TaO ₄ (IX)	80	184	16	16	40	1472	n/a	n/a	
β -Li ₃ TaO ₄	200	284	80	16	n/a	n/a	n/a	n/a	
L-Na ₃ NbO ₄	n/a	n/a	n/a	n/a	15	1024	4	592	
NaNbO ₃	n/a	n/a	n/a	n/a	40	60	0.5	256	
L-Na ₃ TaO ₄	n/a	n/a	n/a	n/a	40	128	n/a	n/a	
NaTaO ₃	n/a	n/a	n/a	n/a	40	60	n/a	n/a	

Supplementary Table S2. Experimental ⁶Li, ⁷Li, ²³Na, and ⁹³Nb NMR measurement times.

n/a = not applicable; n/r = not recorded

Layered C2/m	Na ₃ NbO ₄	Li ₃ NbO ₄	Na ₃ TaO ₄	Li ₃ TaO ₄
<i>a</i> (Å)	11.2122	10.3770	11.2571	10.4328
<i>b</i> (Å)	13.1336	12.0303	13.1432	12.0683
<i>c</i> (Å)	5.8035	5.1865	5.8262	5.2108
eta (°)	109.33	109.23	109.66	109.55
Volume (Å ³)	806.397	611.337	811.741	618.229

Supplementary Table S3. DFT calculated lattice and NMR parameters for layered A_3MO_4 (A = Li, Na; M = Nb, Ta).

	Site	σ_{iso} (ppm)	$\delta_{aniso}(\mathrm{ppm})$	$\eta_{\rm CS}$	$C_{\rm Q} ({\rm kHz})^{\rm a}$	$\eta_{ m Q}$
	Na1	530.98	13.47	0.71	1.7	0.71
	Li2	90.42	-2.61	0.35	-0.12	0.34
L- $(Na_{1/6}L_{15/6})_3NbO_4$	Li3	89.92	-1.77	0.32	0.14	0.40
a = 10.8887 A b = 12.1052 Å	Li4	91.20	2.13	0.45	-0.13	0.25
b = 12.1932 A c = 5.3497 Å	Li5	90.55	1.18	0.29	-0.065	0.62
$B = 112.6^{\circ}$	Li6	89.01	-2.53	0.59	-0.28	0.15
<i>p</i> 112.0	Nb1	277.98	-179.76	0.43	-28.0	0.47
	Nb2	302.91	120.83	0.89	-17.2	0.84
	Li1	89.26	-1.65	0.11	0.054	0.88
	Na2	531.10	19.25	0.34	-1.9	0.40
L- $(Na_{1/6}L_{15/6})_3NbO_4$	Li3	90.07	-0.91	0.49	-0.12	0.54
a = 10.4812 A b = 12.6983 Å	Li4	90.98	-0.67	0.68	0.03	0.84
b = 12.0985 A c = 5.1770 Å	Li5	89.72	-0.75	0.28	0.094	0.06
$B = 107.7^{\circ}$	Li6	89.75	-3.44	0.41	-0.092	0.29
<i>p</i> = 107.7	Nb1	248.59	-92.87	0.27	46.7	0.13
	Nb2	299.71	121.24	0.35	12.7	0.76
	Li1	89.24	-0.75	0.27	-0.054	0.62
	Li2	90.28	-1.51	0.81	0.095	0.78
L- $(Na_{1/3}L_{12/3})_3NbO_4$	Na3	531.69	-4.31	0.58	1.8	0.84
a = 10.6024 A b = 12.2521 Å	Li4	90.99	-1.01	0.54	0.10	0.29
b = 12.3321 A c = 5,5097 Å	Li5	90.15	-1.23	0.11	-0.081	0.85
$\beta = 108.6^{\circ}$	Li6	89.63	-2.77	0.48	-0.15	0.01
<i>p</i> 10010	Nb1	280.00	-89.77	0.50	38.8	0.32
	Nb2	293.59	93.28	0.64	-10.1	0.05
	Li1	88.87	-0.56	0.30	0.031	0.34
	Li2	90.19	-1.21	0.91	0.12	0.63
L-(Na _{1/12} L1 _{11/12}) ₃ NbO ₄	Li3	90.19	0.59	0.69	0.058	0.19
a = 10.4278 A b = 12.0855 Å	Na4	524.95	-7.97	0.55	-1.4	0.04
c = 53098 Å	Li5	90.09	0.77	0.63	-0.048	0.75
$\beta = 109.1^{\circ}$	Li6	89.44	-3.27	0.42	-0.13	0.44
<i>p</i> 10,11	Nb1	280.81	-151.84	0.08	44.1	0.42
	Nb2	327.43	118.91	0.92	20.8	0.75
	Li1	89.21	-0.81	0.27	-0.026	0.50
L-(Na1/6Li5/6)3NbO4	Li2	90.36	3.25	0.80	-0.058	0.69
a = 10.5787 Å	Li3	90.00	-0.77	0.14	0.11	0.43
<i>b</i> = 12.1957 Å	Li4	90.72	1.97	0.61	-0.13	0.09
c = 5.4092 Å	Na5	531.55	10.47	0.26	0.40	0.54

Supplementary Table S4. Calculated lattice and NMR parameters for L-Li₃NbO₄ containing residual Na⁺.

$\beta = 111.2^{\circ}$	Li6	89.97	-3.16	0.43	-0.12	0.12
	Nb1	277.17	-124.57	0.38	25.3	0.03
	Nb2	339.57	104.35	0.73	-40.2	0.10
	Li1	89.00	-0.65	0.64	0.044	0.27
	Li2	90.12	-3.30	0.74	0.13	0.51
L- $(Na_{1/12}Li_{11/12})_3NbO_4$	Li3	90.15	-0.56	0.32	0.052	0.96
a = 10.5282 A b = 12.0242 Å	Li4	91.09	1.39	0.27	-0.057	0.21
b = 12.0242 A c = 5.2459 Å	Li5	90.30	-0.39	0.46	0.11	0.37
$B = 108.5^{\circ}$	Na6	526.45	-27.90	0.38	1.8	0.93
p = 100.5	Nb1	290.94	-138.17	0.28	22.5	0.74
	Nb2	318.52	149.82	0.21	-22.0	0.47
	Na1	546.22	14.14	0.72	1.2	0.21
	Na2	544.21	18.27	0.56	-2.8	0.18
L- $(Na_{1/3}Li_{2/3})_3NbO_4$	Li3	89.87	-0.71	0.65	-0.14	0.49
a = 10.7688 A b = 12.0701 Å	Li4	90.96	-1.09	0.45	-0.042	0.50
b = 13.0701 A c = 5.2191 Å	Li5	89.83	-1.06	0.53	0.13	0.73
$B = 108.4^{\circ}$	Li6	89.42	-2.82	0.49	-0.20	0.01
p = 100.4	Nb1	234.97	-115.37	0.25	50.5	0.35
	Nb2	264.38	145.14	0.54	21.6	0.73

 $\overline{{}^{a}C_{Q}}$ for ⁷Li nucleus. ⁶Li C_{Q} s are scaled by $Q({}^{6}Li)/Q({}^{7}Li) = 0.808/40.1$.

	Site	σ_{iso} (ppm)	$\delta_{aniso}(\mathrm{ppm})$	$\eta_{\rm CS}$	$C_{\rm Q}~({\rm kHz})^{\rm a}$	$\eta_{ m Q}$
	H1	12.24	-16.81	0.49		
	Li2	89.73	1.06	0.69	0.10	0.48
L- $(H_{1/6}L_{15/6})_3NbO_4$	Li3	90.28	-1.83	0.63	0.10	0.56
a = 10.3078 A b = 12.3012 Å	Li4	90.94	-1.62	0.35	0.082	0.69
c = 5,1978 Å	Li5	89.98	1.36	0.03	0.087	0.24
$\beta = 108.0^{\circ}$	Li6	87.61	-4.13	0.62	-0.14	0.74
<i>p</i> 100.0	Nb1	350.15	-274.93	0.46	-45.9	0.57
	Nb2	294.50	215.25	0.33	-30.9	0.36
	Li1	88.08	-1.34	0.02	0.17	0.59
	H2	11.77	-8.65	0.33		
L- $(H_{1/6}L_{15/6})_3NbO_4$	Li3	89.88	-1.05	0.06	0.091	0.62
a = 10.8488 A b = 11.3108 Å	Li4	88.92	3.59	0.36	-0.33	0.11
b = 11.3108 A c = 5.3523 Å	Li5	89.10	-0.91	0.02	0.14	0.85
$\beta = 1115^{\circ}$	Li6	90.61	-6.29	0.34	0.23	0.13
p = 111.5	Nb1	340.58	254.21	0.74	78.5	0.70
	Nb2	143.93	172.14	0.29	119	0.94
	Li1	87.83	-1.54	0.93	0.23	0.95
	Li2	90.61	1.91	0.82	-0.28	0.50
L- $(H_{1/3}L_{12/3})_3NbO_4$	H3	18.95	-3.32	0.34		
a = 10.9188 A b = 12.2626 Å	Li4	91.12	4.58	0.97	-0.31	0.84
b = 12.3020 A c = 5.7249 Å	Li5	90.89	2.85	0.48	0.16	0.86
$B = 122.1^{\circ}$	Li6	88.18	2.63	0.12	0.30	0.99
p = 122.1	Nb1	175.82	-430.60	0.01	-197	0.68
	Nb2	316.66	165.63	0.15	-79.0	0.60
	Li1	88.60	-0.75	0.62	-0.077	0.30
	Li2	90.08	-3.87	0.56	0.15	0.16
L- $(H_{1/12}L_{111/12})_3NbO_4$	Li3	89.51	1.47	0.46	-0.11	0.94
a = 10.0543 A b = 11.7842 Å	H4	11.02	3.44	0.62		
b = 11.7642 A c = 5.3082 Å	Li5	90.85	1.89	0.49	-0.084	0.82
c = 5.5082 A $\beta = 114.1^{\circ}$	Li6	89.57	-2.90	0.56	-0.18	0.60
p = 114.1	Nb1	313.50	130.89	0.93	-27.1	0.17
	Nb2	329.66	103.11	0.38	-12.5	0.15
L-(H _{1/6} Li _{5/6}) ₃ NbO ₄	Li1	89.59	-1.51	0.03	0.073	0.52
a = 10.6073 Å	Li2	89.16	-1.61	0.97	-0.27	0.38
<i>b</i> = 12.1838 Å	Li3	88.81	-2.99	0.93	0.14	0.86
c = 5.0354 Å	Li4	89.18	-12.35	0.13	0.53	0.11
$\beta = 89.1^{\circ}$	Н5	11.20	-13.05	0.01		

Supplementary Table S5. Calculated lattice and NMR parameters for L-Li₃NbO₄ containing residual H⁺.

	Li6	89.01	-15.52	0.12	0.51	0.16
	Nb1	266.55	157.49	0.38	111	0.07
	Nb2	325.79	178.39	0.63	-50.4	0.01
	Li1	88.72	2.09	0.35	-0.13	0.11
	Li2	90.09	-1.75	0.38	0.12	0.63
L- $(H_{1/12}L_{111/12})_3NbO_4$	Li3	89.81	1.67	0.84	0.10	0.99
a = 10.585 / A b = 11.8077 Å	Li4	91.32	1.33	0.44	-0.12	0.19
c = 53371 Å	Li5	90.62	1.88	0.34	-0.10	0.32
$\beta = 113.9^{\circ}$	H6	8.09	-3.38	0.21		
p = 115.5	Nb1	312.43	-110.10	0.55	16.7	0.21
	Nb2	308.39	117.45	0.59	-17.5	0.01
	H1	12.93	-19.45	0.39		
	H2	13.78	-16.22	0.01		
L- $(H_{1/3}L_{12/3})_3NbO_4$	Li3	89.27	-3.32	0.35	0.22	0.62
a = 10.2121 A b = 11.7563 Å	Li4	90.30	-9.71	0.10	0.51	0.07
b = 11.7303 A c = 5.9172 Å	Li5	89.56	-4.97	0.33	0.24	0.97
$\beta = 99.4^{\circ}$	Li6	86.07	-4.37	0.87	-0.35	0.46
<i>μ</i> – <i>γ</i> ,	Nb1	377.60	-298.56	0.54	52.6	0.47
	Nb2	239.54	296.45	0.42	17.8	0.40

 ${}^{a}C_{Q}$ for ⁷Li nucleus. ⁶Li C_{Q} s are scaled by $Q({}^{6}Li)/Q({}^{7}Li) = 0.808/40.1$.