Supplementary Information

Exploring the crystallisation of aspirin in a confined porous material using solid-state nuclear magnetic resonance

Marie Juramy,^{a†} Eric Besson,^a Stéphane Gastaldi,^a Fabio Ziarelli,^b Stéphane Viel,^{ac} Giulia Mollica^a and Pierre Thureau*a

^a. Aix-Marseille Univ, CNRS, ICR UMR 7273, 13397 Marseille, France.

^{b.} Aix-Marseille Univ, Centrale Mediterranée, CNRS, Fédération des Sciences Chimiques FR 1739, 13397 Marseille, France.

^c Institut Universitaire de France, 75005 Paris, France. †Present address: Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.

1. Signal Deconvolution using 2 Gaussian Peaks

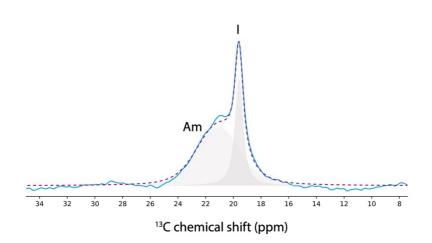


Fig S1: ¹³C NMR resonances corresponding to the methyl group of aspirin spectrum (blue curve) recorded at 98K on a mesoporous silica 2 days after impregnation with a solution of aspirin in ethanol (0.8 M). The 2 Gaussian peaks used for the deconvolution are shown as filled grey shapes and their sum is shown as a dotted purple line. The 2 Gaussian peaks correspond to the individual 13C NMR resonances of the amorphous phase (Am) and the crystalline phase of form I of aspirin.