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S1. Molecular Dynamics Simulations

The classical Molecular Dynamics (MD) simulations of the binary SiO2-Na2O glass were performed

with the DL_POLY_4 v5.0.0 package.1 Na-O, Si-O and O-O two-body interactions were parametrized in the

Buckhingham form for the short range repulsive interactions and partial charges were set to q O -1.2, qNa +0.6

and qSi +2.4 for the long range electrostatic Coulombic interactions computed with the Ewald summation

method with a cutoff radius of 8Å for MD models of 300 atoms ( i.e. at half of the simulation unit cell)

otherwise 10Å for larger models (600 atoms and more):
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The parameters were taken from the work of Du et al.2 Structural models were prepared using the standard

melt-quench procedure starting from a random configuration at experimental density, then melted and

equilibrated at 3500K during 100ps in the NVT ensemble. The temperature was decreased to 300K by steps

of 100K followed by NVT (30 ps) and NVE (10 ps) simulations at each temperature. A timestep of 0.5fs was

used for all simulations. The whole protocol (i.e. starting from a new random configuration) was repeated

for each new structural model and for each composition (from 10% to 50% mol. Na2O) 

DFT optimization of the structures and ab-initio MD simulations were performed with the CP2K

package.3 using mixed Gaussian and plane-waves basis sets under periodic boundary conditions (PBC). The

generalized  gradient  approximation  (GGA)  PBE4 +  DFTD3  functional  (where  DFTD3  is  a  correction  for

accounting Van der Waals dispersion effects)5 were used. All element were described with a TZVP Gaussian

basis from the built-in MOLOPT basis sets and GTH pseudpotential sets, electronic density and plane-waves

were  computed  with  a  cutoff  energy  of  960  Ry  with  a  relative  cutoff  of  40  Ry  (because  of  the  hard

description of the sodium atoms including 2s, 2p and 3s orbital in the valence states). aiMD simulations

were performed using a timestep of  0.5fs in NVE ensemble,  after a thermalization of  4 ps  in the NVT

ensemble using the CSVR thermostat6 with a short constant-time (500 fs). Machine Learning Potential (MLP)

structures of NS22.5 and NS43.1 glass compositions (22.5 and 43.1 %mol. Na2O, extracted from Bertani et

al. Ref7) was used as the initial configuration of aiMD simulations.

1 Corresponding author, thibault.charpentier@cea.fr

Electronic Supplementary Material (ESI) for Faraday Discussions.
This journal is © The Royal Society of Chemistry 2024



S2. Simulation boxes and the NMR database

The  classical  MD  model  (300  atoms)  compositions  and  dimensions  are  given  in  1.  For  each

composition, 20 independent simulations were performed and the final configuration extracted from the

trajectories at 300K, 1000K, 1500K and 2000K was chosen to form the MD-300K, MD-1000K, MD-1500K and

MD-2000K datasets, respectively. Models of 600 atoms were also simulated for the same compositions to

form the larger model testing datasets MD2-300K and MD2-1000K. In addition, very large models of 14400

atoms (one for each composition) were generated for assessing the performance of ML-NMR simulation

methodology; they are displayed in Figure S1. 

Two additional compositions with published NMR data8 (17O,  29Si and  23Na),  NS22.5 and NS43.1,

were also considered.  For each composition, three structures were generated with a Machine-Learning

Potential (MLP), as described by Bertani et al.7  (MLP models, see 2). Structures from an ab-initio Molecular

Dynamics (aiMD) trajectory at 300K in the NVE ensemble of 12 ps starting from one MLP model (shown in

Figure S2) were extracted every 50fs during the first 2ps (dataset aiMD-300K-a used for training), and every

500fs after 2ps (dataset aiMD-300K-b used for testing). 

An overview of the various datasets is given in Table S3. As explained in the main text and in section

S3, during the DFT-GIPAW calculations of the NMR interactions with a single point in the reciprocal space,

some structural model showed a partial occupation at the Fermi level causing the NMR parameters of some

atoms to be erroneous. These models were removed from the database. Note that part of the models were

already used in previous works.7, 9 

Table S1. Classical MD models of the NMR database used in the MD-cellopt, MD-300K, MD-1000K, MD-

1500K and MD-2000K datasets. 

Composition

%mol Na2O

Unit Cell

for 300 atoms
Box size(Å)

Density

MD

Density(a)

cellopt-DFT

10Na Si90Na20O190 16.35 2.289 2.418 (0.020)

20Na Si80Na40O180 16.15 2.383 2.525 (0.020)

30Na Si70Na60O170 15.98 2.466 2.570 (0.019)

40Na Si60Na80O160 15.86 2.532 2.608 (0.011)

50Na Si50Na100O150 15.82 2.560 2.647 (0.013)

(a) Mean values and standard deviations values in parentheses.



Figure S1: large MD structural models of 14400 atoms (with compositions and density values given in Table
S1) used for testing the application of the ML-NMR simulation algorithm. Silicon tetrahedra are in blue,
sodium atoms are in yellow. The figure was generated with VESTA.10

10% Na2O 20% Na2O 30% Na2O 40% Na2O 50% Na2O

Table S2. MLP-MD models of the NMR database used in the MLP (3 structures per composition) and the

aiMD-300K datasets (structures extracted from an aiMD NVE trajectory at 300K).

Composition

%mol. Na2O
Unit Cell Box size (Å)(a) Density(a)

22.5 Si186Na108O426 22.08 (0.01) 2.240 (0.011)

43.1 Si137Na378O208 21.73 (0.14) 2.375 (0.015)

(a) Mean values and standard deviations values in parentheses.

Figure S2 the MLP-MD structural models (with compositions and density values given in Table S2) used for
testing the application of the ML-NMR simulation algorithm. Silicon tetrahedra are in blue, sodium atoms
are in yellow. The figure was generated with VESTA.3

NS22.5 NS43.1



Table S3. Number of structures and atoms in the NMR database. 

Learning set
Number of

structures

Total number of atoms

Si O Na

MD-CELLOPT 50 3500 8500 3000

MD-300K 99 6940 16840 5920

MD-1000K 100 7000 17000 6000

MD-1500K 97 5820 16940 5820

MD-2000K 96 6720 16320 5760

MLP 6 969 2412 948

aiMD-300K-a (a) 82 13243 32964 12956

aiMD-300K-b (b) 18 2907 7236 2844

(a) Structures sampled every Δ=50 fs from 0 ps to 2 ps of the NVE aiMD trajectory at 300K

(b) Structures sampled every Δ=500 fs from 2 ps to 4 ps of the NVE aiMD trajectory at 300K

S.3 DFT-GIPAW calculations with VASP

The NMR properties were computed with the VASP code (version 5.x) 11 using the GIPAW method12–

15 with the GGA-PBE functional,4 a single k-point in the reciprocal space and a kinetic energy cutoff of 550 Ry

for the plane-wave expansion The PAW pseudopotentials of the built-in library (potcar, version 5.4) were

chosen for Si, O and Na with the valence state 3s23p2, 2s22p4 and 2s22p63s1 , respectively. For calibrating the

computed  isotropic  magnetic  shielding  value  σiso into  the  experimental  isotropic  chemical  shift  δiso,

reference samples from Ref.16 were used: cristobalite SiO2, quartz SiO2,  sodium metasilicate Na2SiO3 and

sodium disilicate  α- and  β-Na2Si2O5.  But for consistency with the glass procedure, the unit cell  of each

system  was  duplicated  to  form  a  supercell  of  about  300-400  atoms.  Each  supercell  was  subsequently

optimized with CP2K using the same parameters as in the DFT optimization of the MD models (optimization

of the atomic positions and lattice cell  vector lengths but conserving the angles to maintain the space

group). The calibration linear regression was chosen to be in the analytical form:

δiso=−α(σiso−σREF) (S2)

with the two parameters α  and σREF  to be fitted. The values for 29Si, 17O and 23Na are given in Table

S4. Because of  the slight dispersion of the NMR parameters in the supercell,  the mean value for each

crystallographic sites was considered for Eq. S2. Note that systems with a large experimental uncertainty

(i.e., with contradictory reported values) were not taken into account (see Ref.16 for experimental values).

Concerning the quadrupolar coupling constant CQ and biaxality (or asymmetry parameter)  η,  they were



computed from the computed from Electric Field Gradient (EFG) tensor V, after its diagonalization, yielding

the principal values (VZZ, VYY, VXX ):

CQ=
eQ
h
V ZZ ,η=

V YY−V XX

V ZZ

 with |V XX|<|V YY|<|V ZZ| (S3)

where Q is the nuclear quadrupolar moment ( -25.58 mb for 17O and 104 mb for 23Na).

Table S4. Parameters for the linear regression of δiso against σiso (Eq. S2)

Atom Si O Na

α 0.811 0.723 0.858

 σREF  (ppm) 309 273.3 560.5

Figure S3. Calibration linear regression of 29Si, 17O and 23Na GIPAW-DFT isotropic magnetic shielding values.

29Si 17O 23Na

S.4 Computation of SOAP descriptors

The SOAP descriptors were computed using an in-house code (written in C++11). First, the structure

is analysed to determine the list of neighbours of each of atom within the cutoff radius r cut so that a list of all

pairs of atoms can be established. For each pair of neighbouring atoms ij linked by the vector  r ij , the

partial SOAP descriptors cnlm
ij
=cnlm(rij)  are computed:

cnlm(r ij)=hnl(rij )×Y lm(θij ,ϕij)  (S4)

where rij  is the inter-atomic distance and (θij ,ϕij )  are the polar and azimuthal angles (also denoted

as r̂ij in literature). Note that throughout this work we are working with real spherical harmonics (RSH),

so that no complex conjugate quantities appears. The functions hnl(r )  are resulting from the Gaussian

smoothing in space:

hnl (r )=
1
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× f c (r ) ×∫
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where  f c(r)=1/2 {cos (π r /rcut )+1} is the smoothing function at the cutoff radius,  σ is the Gaussian

smoothing parameter (also denoted as σSOAP  in the main text for sake of clarity), Rnl(u)  are the radial

basis  functions and  il(x) denotes the modified spherical Bessel function of the first kind. For sake of

efficiency, the hnl(r )  are pre-computed on a r-grid on [0, rcut] and interpolated with cubic-spline for any

requested r value. Alternatively, taking benefit of the choice of the spherical Bessel function as the radial

functions:

Rnl(r )= jl(αnl r /rcut)  (S6)

where αnl  is the nth root of the Bessel function so that  Rnl(rcut)=0 for any n and l values (n≤l) as

shown in Figure S4. Another advantage of using spherical Bessel functions (Eq. S6) is the usage of the fast

Discrete Hankel Transform (DHT) for computing the integral Eq. S5. Finally, the SOAP descriptors of an atom

i are calculated as

cnlm
μ
=∑
j∈N i

μ

cnlm (rij )  (S7)

where N i
μ

 is the set of neighbouring atoms of kind μ of the central atom i.

Figure S4. The spherical Bessel function used as radial functions (Eq. S6) for computing the SOAP descriptors
(Eq. S4 and Eq. S5).

Rn ,l=0(r) Rn ,l=1(r )

Rn ,l=2(r ) Rn ,l=3(r)



Typical CPU times for computing the SOAP descriptors on a single Intel Core i7 processor are shown

in Figure S5 for various system sizes. We observe an excellent linearity with the number of atoms but with

an  increase  in  the  slope  when augmenting  the  cutoff-radius  value.  For  the  largest  system studied,  all

descriptors could be computed in less than 2s (without any parallelization). The efficiency of the procedure

implemented in our code allows calculating the descriptors on a MD trajectory (typically 100 000 structures

on a 1 ns trajectory), as discussed and illustrated in the main text. Parallelization is planned for future work.

S.5 Optimization of SOAP descriptors by LSSVR

For Si, O and Na atom, the descriptors are computed and the prediction of the isotropic magnetic

shielding σiso with the least-square support vector regression (LSSVR, see text for description) was used to

determine the optimal values of the following (hyper)parameters (maximum angular momentum was fixed

to Lmax=4): the maximum number of radial function NMAX (also denoted nRad), the Gaussian smoothing σSOAP

and cutoff radius r cut . We show here as an illustration the results obtained with the MD-300K and MD-

1000K dataset using the optimized value of σSOAP = 0.4 Å. For each set of values of the hyperparameters, the

convergence of  σ iso  mean absolute error (MAE) with respect to the Nyström size (Nξ,  see text)  was

calculated. Results are shown below for each atom for cutoff radius values ranging from 3 Å to 6 Å. 

The convergence curves for the MD-300K dataset are shown in Figure S6 (29Si), Figure S7 (17O) and

Figure S8 (23Na); for the MD-1000K dataset in Figure S9 (29Si), Figure S10 (17O) and Figure S11 (23Na). 

The agreement between the LSSVR predictions with the DFT-GIPAW values are shown for the MD-

300K, MD-1000K, MD-1500K and MD-2000K datasets in Figure S12, Figure S13 and Figure S14. 

Transferability tests between datasets are given in Tables  S5, S6 and S7.

Figure  S5.  CPU  time  for  the  calculations  of  the  SOAP
descriptors  (single  Intel  CORE  i7)  with  respect  to  the
number of atoms using Lmax=4, and σSOAP=0.4 Å in Eq. S5.



Figure S6. Convergence of 29Si σ iso  MAE (in ppm) with the Nyström size of the LSSVR algorithm with the

MD-300K dataset.

  

 
 

Figure S7. Convergence of 17O σ iso MAE (in ppm) with to the Nyström size of the LSSVR algorithm  with

the MD-300K dataset.

  

  



Figure S8. Convergence of 29Si σ iso  MAE (in ppm) with the Nyström size of the LSSVR algorithm with the

MD-300K dataset.

  

  

Figure S9. Convergence of the 29Si σ iso MAE (in ppm) with the Nyström size of the LSSVR algorithm with

the MD-1000K dataset.

  

  



Figure S10. Convergence of the 17O σ iso MAE (in ppm) with the Nyström size of the LSSVR algorithm with

the MD-1000K dataset.

 

  

Figure S11. Convergence of the  23Na σ iso MAE (in ppm) with  the Nyström size of the LSSVR algorithm

with the MD-1000K dataset.



Figure S12. LSSVR versus DFT-GIPAW 29Si σ iso values (Nyström size 2000).

MD-300K MD-1000K

MD-1500K MD-2000K



Figure S13. LSSVR versus DFT-GIPAW 17O σ iso (Nyström size 4000).

MD-300K MD-1000K

MD-1500K MD-2000K



Figure S14. LSSVR versus DFT-GIPAW 23Na σ iso (Nyström size 1000).

MD-300K MD-1000K

MD-1500K MD-2000K



Table S5.Prediction errors of the 29Si isotropic magnetic shielding between different datasets.

Testing set MD-300K MD-1000K MD-1500K MD-2000K

Training set
MAE

 (ppm)

RMSE

(ppm)

MAE

 (ppm)

RMSE

(ppm)

MAE

 (ppm)

RMSE

 (ppm)

MAE

 (ppm)

RMSE

 (ppm)

MD-300K 0.7 0.7 1.2 2.6 1.8 14.9 2.3 9.7

MD-1000K 0.8 1.1 1.0 1.6 1.6 13.6 1.9 7.2

MD-1500K 1.0 1.5 1.2 2.5 1.5 12.3 2.0 7.1

MD-2000K 1.0 1.8 1.3 2.8 1.7 14.0 1.7 5.5

Table S6. Prediction errors of the 23Na isotropic magnetic shielding values between different datasets.

Testing set MD-300K MD-1000K MD-1500K MD-2000K

Training set
MAE

 (ppm)

RMSE

(ppm)

MAE

 (ppm)

RMSE

(ppm)

MAE

 (ppm)

RMSE

 (ppm)

MAE

 (ppm)

RMSE

 (ppm)

MD-300K 1.0 1.7 1.7 4.7 2.3 10.5 2.9 17.6

MD-1000K 1.3 2.6 1.4 3.2 2.1 8.1 2.4 10.3

MD-1500K 1.4 3.0 1.7 4.5 1.8 6.0 2.4 9.4

MD-2000K 1.5 3.6 1.7 4.8 2.1 8.2 2.1 7.3

Table  S7.  Prediction errors  of  the  17O isotropic  magnetic  shielding  values  between  the  different  MD

training sets

Testing set MD-300K MD-1000K MD-1500K MD-2000K

Training set
MAE

(ppm)

RMSE

(ppm)

MAE

 (ppm)

RMSE

(ppm)

MAE

 (ppm)

RMSE

 (ppm)

MAE

 (ppm)

RMSE

 (ppm)

MD-300K 1.6 4.5 3.1 22.0 6.3 9583 9.4 1476

MD-1000K 2.2 8.9 2.5 12.1 5.2 9524 7.6 1382

MD-1500K 3.1 17.1 3.4 21.4 4.9 9500 7.1 1330

MD-2000K 4.3 36.8 4.5 38.5 6.0 9485 6.7 1270

S.6 Learning the EFG tensor

Results of application of the LSSVR algorithm to the prediction the quadrupolar parameters CQ,  η

and PQ are shown in Figure S15 for 23Na, and Figure S16 for 17O. 

The optimization of the SOAP descriptors (cutoff radius rcut and number of radial basis function

nRad=NMAX with  σSOAP=0.4  Å)  for  the  prediction  of  the  EFG  tensor  components  with  the  LRR  λ-SOAP

algorithm are shown in  Figure S17.  The agreement between the LSSVR predictions with the DFT-GIPAW

values are shown for the MD-300K, MD-1000K datasets in Figure S18.



Figure S15. LSSVR versus DFT-GIPAW 23Na quadrupolar parameters for the MD-300K dataset.

Figure S16. LSSVR versus DFT-GIPAW 17O quadrupolar parameters for the MD-300K dataset.



Figure S17. Variation of the mean absolute error (MAE) of the EFG components predicted with LRR λ-SOAP
with  respect  to  the  cutoff  radius  of  the  SOAP descriptor,  for  different  values  of  the  number  of  radial
functions (nRad) suing the MD-300K and MD-1000K datasets.

23Na EFG, MD-300K 17O EFG, MD-300K

23Na EFG, MD-1000K
17O EFG, MD-1000K



Figure S18. LRR  λ-SOAP versus DFT-GIPAW 23Na and 17O EFG components (in spherical form) for MD-300K
and MD-1000K datasets.

23Na MD-300K 17O MD-300K

23Na MD-1000K 17O MD-1000K



S.7 Transferability of ML predictors

The accuracy of the ML algorithms trained on 300 atoms datasets (with merged MD-300K and MD-

1000K datasets)  for  the prediction of  the isotropic  magnetic shielding and EFG tensor components are

shown in Figure S19 and Figure S20 , respectively. 

Similarly, accuracy of learning from the initial part of an aiMD trajectory (2 ps) to extrapolate to full

MD trajectory  (12  ps)  are  illustrated  in  Figure  S21 (NS22.5)  and  Figure  S22 (NS43.1)  for  the  isotropic

magnetic shielding and in and for the EFG tensor.

Figure  S19.  LSSVR  versus  DFT-GIPAW  29Si,  17O  and  23Na  σ iso of  the  MD2-300K+1000K  (600  atoms)

datasets. The LSSVR was trained with the MD-300K+1000K datasets (300 atoms).

29Si MD2-(300K+1000K) 17O MD2-(300K+1000K) 23Na MD2-(300K+1000K)

Figure S20. LRR  λ-SOAP versus DFT-GIPAW  23Na and  17O EFG components for the MD2-300K+1000K (600
atoms) datasets. The LRR was trained with the MD-300K+1000K datasets (300 atoms).

23Na MD2-(300K+1000K) 17O MD2-(300K+1000K)



Figure S21. LSSVR versus DFT-GIPAW 29Si,  17O and 23Na σ iso (NS22.5) LSSVR was trained with the aiMD-

300K-a dataset and tested on the aiMD-300K-a (Top) and aiMD-300K-b (Bottom) datasets. .

NS22.5-aiMD-300K-a NS22.5-aiMD-300K-a NS22.5-aiMD-300K-a

NS22.5-aiMD-300K-b S22.5-aiMD-300K-b NS22.5-aiMD-300K-b

Figure S22. LSSVR versus DFT-GIPAW 29Si,  17O and 23Na σ iso (NS43.1). LSSVR was trained with the aiMD-

300K-a dataset and tested on aiMD-300K-a (Top) and aiMD-300K-b (Bottom) datasets.

NS43.1-aiMD-300K-a NS43.1-aiMD-300K-a NS43.1-aiMD-300K-a

NS43.1-aiMD-300K-b NS43.1-aiMD-300K-b NS43.1-aiMD-300K-b



Figure S23. LRR λ-SOAP versus DFT-GIPAW 23Na and 17O EFG components (NS22.5). LRR was trained using
the aiMD-300K-a dataset and tested on aiMD-300K-a (Top) and aiMD-300K-b (Bottom) datasets.

NS22.5-aiMD-300K-a NS22.5-aiMD-300K-a

NS22.5-aiMD-300K-b NS22.5-aiMD-300K-b



Figure S24. λ-SOAP LRR versus DFT-GIPAW 23Na and 17O EFG components (NS43.1) . LRR was trained with the
aiMD-300K-a dataset and tested on aiMD-300K-a (Top) and aiMD-300K-b (Bottom) datasets.

NS43.1-aiMD-300K-a S43.1-aiMD-300K-a

NS43.1-aiMD-300K-b NS43.1-aiMD-300K-b



S.8 Simulation of 23Na MQMAS NMR spectra

Figure S25. ML-NMR simulation of 23Na MQMAS NMR spectra with MD-300K and large models (using EFG
scaling factor, see text).

10% mol. Na2O 20% mol. Na2O 30% mol. Na2O

40% mol. Na2O 50% mol. Na2O

Figure S26. Comparison between ML-NMR simulation of 23Na MQMAS NMR spectra with aiMD-300K (using
EFG scaling factor, see text) and experimental data.



S.9 Simulation of 17O MAS and MQMAS NMR spectra

Figure S27. ML-NMR simulation of 17O MQMAS NMR spectra with MD-300K (using EFG scaling factor, see
text).

10% mol. Na2O 20% mol. Na2O 30% mol. Na2O

40% mol. Na2O 50% mol. Na2O

Figure S28. Comparison between ML-NMR simulation of 17O MQMAS NMR spectra with aiMD-300K (using
EFG scaling factor, see text) and experimental data.



S10. EFG tensor correlation functions

Figure S29. 23Na and 17O EFG correlation functions GEFG (τ)=⟨V ( τ+ t0)V (t0)⟩t0  of the NS22.5 and NS43.1

glasses (aiMD trajectory at 300K). Dashed lines represents fits with a single stretched exponential decay.
Values of the plateau are indicated.

23Na 17O
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