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Theoretical Framework 

Basic Assumptions  

The nucleation and growth of Ag particles can be assumed to follow a reaction scheme of the form: 

𝐴𝑔+ + 𝑒−
𝑘1
⇌
𝑘−1

𝐴𝑔 

𝐴𝑔 + 𝐴𝑔+ + 𝑒−
𝑘2
⇌
𝑘−2

𝐴𝑔2 

𝐴𝑔2 + 𝐴𝑔
+ + 𝑒−

𝑘3
⇌
𝑘−3

𝐴𝑔3 

which can be more compactly expressed as: 

𝐴𝑔𝑛−1 + 𝐴𝑔
+ + 𝑒−

𝑘𝑛
⇌
𝑘−𝑛

𝐴𝑔𝑛 

where 𝐴𝑔𝑛 is a particle consisting of 𝑛 atoms and 𝑘𝑛/𝑘−𝑛 are forward/reverse rate constants for the 

formation of 𝐴𝑔𝑛. These rate constants can be assumed to adopt the standard expressions for a one-electron 

reduction or oxidation: 

𝑘𝑛 = 𝑎𝐴𝑔+𝑘
0𝑒
−
αΔ𝐺𝑛−1→𝑛

𝑘𝑏𝑇  

𝑘−𝑛 = 𝑘
0𝑒
(1−α)Δ𝐺𝑛−1→𝑛

𝑘𝑏𝑇  

Here, 𝑘0 is a rate constant (s-1) reflecting the general facility of 𝐴𝑔+ reduction, 𝛼 is the corresponding 

transfer coefficient, 𝑎𝐴𝑔+ is the activity of 𝐴𝑔+ ions in solution, 𝑘𝑏𝑇 is Boltzmann’s constant times the 

absolute temperature, and Δ𝐺𝑛−1→𝑛 represents the change in free energy associated with the reaction. This 

free energy change is: 

Δ𝐺𝑛−1→𝑛 = Δ𝐺𝑓,𝑛 − Δ𝐺𝑓,𝑛−1 
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where the free energy of formation is given by: 

Δ𝐺𝑓,𝑛 = Δ𝐺
0𝑛 + ∑𝐴𝑖𝛾𝑖 

Here, Δ𝐺0 is the standard free energy change associated with the deposition of an atom onto bulk silver, 𝐴𝑖 

is the area of the 𝑖-th interface involved in the deposition process, and 𝛾𝑖 is its corresponding surface energy. 

This equation assumes that the stability of the particles can be treated in a defined way as a function of size, 

which while a good first approximation, is not appropriate for very small clusters. The 𝐴𝑖 can be expressed 

in terms of 𝑛 by introducing geometric factors, 𝐵𝑖: 

𝐵𝑖 =
𝐴𝑖
3

𝑉2
=

𝐴𝑖
3

𝑉𝑎
2𝑛2

 

Here, 𝑉 is the particle volume, 𝐴𝑖 is the area of the 𝑖-th interface, and 𝑉𝑎 is the atomic volume of the particle 

material (here Ag). Incorporating these expressions make the free energy of formation: 

Δ𝐺𝑓,𝑛 = Δ𝐺
0𝑛 + 𝑉𝑎

2/3
𝑛2/3∑𝐵𝑖

1/3
𝛾𝑖 

This equation would include terms from each relevant interface in the particle deposition process, of which 

there would usually be three: substrate-electrolyte, particle-electrolyte, and substrate-particle. More 

conveniently, these could be implicitly described in terms of an “effective” surface energy using based on 

the particle-electrolyte interface, where it is assumed: 

𝐵𝑝−𝑒
1/3
𝛾𝑒𝑓𝑓 = 𝐵𝑝−𝑒

1/3
𝛾𝑝−𝑒 + 𝐵𝑠−𝑒

1/3
𝛾𝑠−𝑒 +𝐵𝑠−𝑝

1/3
𝛾𝑠−𝑝 

In the discussion in the main text, we assume 𝐵 = 𝐵𝑝−𝑒 and 𝛾 = 𝛾𝑒𝑓𝑓. Although it is not a focus of the 

present work, the observed difference in the effective particle surface energy would therefore represent 

(assuming similar particle geometries): 

𝛾𝑒𝑓𝑓,𝐶 − 𝛾𝑒𝑓𝑓,𝐼𝑇𝑂 =
𝐵𝑠−𝑒
1/3
(𝛾𝐶−𝐻2𝑂 − 𝛾𝐼𝑇𝑂−𝐻2𝑂) + 𝐵𝑠−𝑝

1/3
(𝛾𝐶−𝐴𝑔 − 𝛾𝐼𝑇𝑂−𝐴𝑔)

𝐵𝑝−𝑒
1/3

 

I.e., if the surface energies of the substrate-electrolyte interfaces were known, the difference in the surface 

energies of the substrate-particle interfaces could be determined.  

 Ignoring these subtleties, the free energy of formation can be expressed more simply as: 

Δ𝐺𝑓,𝑛 = Δ𝐺
0𝑛 + 𝐵1/3𝑉𝑎

2/3
𝛾𝑛2/3  

 Δ𝐺𝑛−1→𝑛 is then given by: 

Δ𝐺𝑛−1→𝑛 = Δ𝐺
0 + 𝐵1/3𝑉𝑎

2/3
𝛾[𝑛2/3 − (𝑛 − 1)2/3]   

 It’s instructive to recognize that as 𝑛 → ∞  Δ𝐺𝑛−1→𝑛 → Δ𝐺
0. This expression can be simplified somewhat 

by making the following substitutions: 

𝜂 =
𝑞(𝐸 − 𝐸0)

𝑘𝑏𝑇
=
Δ𝐺0

𝑘𝑏𝑇
                                          𝜒 =

𝐵1/3𝑉𝑎
2/3
𝛾

𝑘𝑏𝑇
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where 𝐸 is the applied potential, 𝐸0 is the standard reduction potential. 𝜂 and 𝜒 are dimensionless constants 

representing the applied electrochemical driving force and surface energy, respectively. The rate constants 

can then be expressed more simply as: 

𝑘𝑛 = 𝑎𝐴𝑔+𝑘
0𝑒−𝛼𝜒[𝑛

2/3−(𝑛−1)2/3]𝑒−𝛼𝜂 

𝑘−𝑛 = 𝑘
0𝑒(1−𝛼)𝜒[𝑛

2/3−(𝑛−1)2/3]𝑒(1−𝛼)𝜂 

The critical nucleus size, where Δ𝐺𝑓,𝑛 reaches a maximum, can be found in terms of 𝜂 and 𝜒 as: 

𝜕Δ𝐺𝑓,𝑛

𝜕𝑛
|
𝑛=𝑛𝑐

= 0         ⇒           𝑛𝑐 = −
8

27

𝜒3

𝜂3
 

Quasi-equilibrium Kinetic Models 

Traditional models employed to model the electrochemical nucleation of small particles rely on an 

assumption of quasi-equilibrium. Following this approach, one assumes the densities of particles below a 

certain critical size and of vacant nucleation sites on the electrode surface are effectively constant. While 

details can be found elsewhere,1,2 this ultimately predicts a nucleation rate of the form: 

𝐽𝑛𝑢𝑐 ≈ 𝑍Γ0𝑘𝑛𝑐𝑒
−
Δ𝐺𝑓,𝑐
𝑘𝑏𝑇 = 𝑘𝑛𝑢𝑐Γ0 

Here, 𝑍 is a numerical factor which depends on the geometry of the particle, 𝑘𝑛𝑐 has the definition provided 

above, and Δ𝐺𝑓,𝑐 is the free energy of formation of a cluster of critical size, 𝑛𝑐. Γ0 is the surface density of 

vacant nucleation sites on the electrode surface. 𝐽𝑛𝑢𝑐 therefore represents the formation rate (cm-2 s-1) of 

stable nuclei on the electrode.  

 Following these assumptions, the generation of nuclei on the electrode surface would follow: 

𝑑Γ𝑛𝑢𝑐
𝑑𝑡

= 𝑘𝑛𝑢𝑐Γ0 = (Γ
0 − Γ𝑛𝑢𝑐)𝑘𝑛𝑢𝑐 

Γ𝑛𝑢𝑐(𝑡) = Γ
0(1 − 𝑒−𝑘𝑛𝑢𝑐𝑡) 

Here, Γ0 is the total number of possible nucleation sites on the surface. The probability of a particle 

nucleating in the vicinity of a particular time can be generated from this expression via: 

𝑃𝑛(𝑡) =
𝑑

𝑑𝑡

Γ𝑛𝑢𝑐
Γ0

= 𝑘𝑛𝑢𝑐𝑒
−𝑘𝑛𝑢𝑐𝑡 

This implies that the nucleation times observed for a system following the quasi-equilibrium approximation 

should be exponentially distributed with a timescale dictated by 𝑘𝑛𝑢𝑐. If one adopts a more stringent view 

of the quasi-equilibrium condition, requiring Γ𝑛𝑢𝑐 ≪ Γ0, this becomes: 

𝑃𝑛(𝑡) ≈ 𝑘𝑛𝑢𝑐(1 − 𝑘𝑛𝑢𝑐𝑡) 

which predicts an even or linear distribution of nucleation times. As described in the main text, neither 

assumption does an appropriate job of modeling the nucleation times observed in our SECCM studies. 

Time-Dependent Kinetic Model 

Here, we have modeled the nucleation and growth of particles by generating explicit solutions to the set of 

coupled differential equations: 
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𝑑Γ0
𝑑𝑡

= −𝑘1Γ0 + 𝑘−1Γ1 

𝑑Γ1
𝑑𝑡

= 𝑘1Γ0 − (𝑘−1 + 𝑘2)Γ1 + 𝑘−2Γ2 

𝑑Γ2
𝑑𝑡

= 𝑘2Γ1 − (𝑘−2 + 𝑘3)Γ2 + 𝑘−3Γ3 

…and so on. This can be generically represented (making appropriate exceptions for Γ0) as: 

𝑑Γ𝑛
𝑑𝑡

= 𝑘𝑛Γ𝑛−1 − (𝑘−𝑛 + 𝑘𝑛+1)Γ𝑛 + 𝑘−(𝑛+1)Γ𝑛+1 

While the generation of explicit solutions to this set of differential equations is infeasible, they can be 

straightforwardly solved numerically. To do so, consider a set of 𝑁 + 1 differential equations of the above 

form (where 𝑁 is significantly larger that 𝑛𝑐) written in matrix form as: 

𝑲𝚪 = 𝑫 

where the matrices are defined via: 

𝑲 =

(

 
 
 
 
 

−𝑘1 𝑘−1 0 ⋯ 0 0 0

𝑘1 −(𝑘−1 + 𝑘2) −𝑘2 ⋯ 0 0 0

0 𝑘2 −(𝑘−2 + 𝑘3) ⋯ 0 0 0
⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮
0 0 0 ⋯ −(𝑘−(𝑁−2) + 𝑘(𝑁−1)) 𝑘−(𝑁−1) 0

0 0 0 ⋯ 𝑘𝑁−1 −(𝑘−(𝑁−1) + 𝑘𝑁) 𝑘−𝑁
0 0 0 ⋯ 0 𝑘𝑁 −𝑘−𝑁)

 
 
 
 
 

 

𝚪 = (

Γ0
Γ1
⋮
Γ𝑁

)         𝐃 =

(

 
 
 
 

𝑑Γ0
𝑑𝑡
𝑑Γ1
𝑑𝑡
⋮
𝑑Γ𝑁
𝑑𝑡 )

 
 
 
 

 

Solutions to the resulting differential equations can be found through analysis of 𝑲 to find its corresponding 

eigenvalues (𝜆𝑖’s) and eigenvectors (𝜓𝑖). Solutions can then be found via: 

𝚪(t) = 𝝍𝝀𝑿 

Here, 𝝍 is a square matrix composed of the obtained eigenvectors and 𝝀 is a diagonal matrix of the form: 

𝝀 =

(

 
 

𝑒𝜆0𝑡 0 ⋯ 0 0
0 𝑒𝜆1𝑡 ⋯ 0 0
⋮ ⋮ ⋱ ⋮ ⋮
0 0 ⋯ 𝑒𝜆𝑁−1𝑡 0
0 0 ⋯ 0 𝑒𝜆𝑁𝑡)

 
 

 

 𝑿 is a vector consisting of constants which accounts for the initial values of Γ𝑛 through: 
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𝝍𝑿 = 𝚪(𝑡 = 0) = (

Γ0

0
⋮
0

) 

  The vector resulting from these calculations, 𝚪(𝑡), can be used to calculate nucleation rates by 

differentiating the total surface coverage of particles above a critical size: 

𝑃𝑛 =
1

Γ0
𝑑

𝑑𝑡
∑Γ𝑛>𝑛𝑐 

The 𝑃𝑛 distributions displayed in the main text were calculated following this procedure, varying 𝜒 and 𝑘0 
in the rate constant expressions to achieve good agreement with experimental data. In these calculations, 

𝑛𝑐 was chosen to be that where Δ𝐺𝑓,𝑛 = 0, 𝑛𝑐 = −(𝜒/𝜂)
3, which was found to yield more consistent results 

in the Monte Carlo simulations described below. 

Monte Carlo Simulations of Particle Nucleation Kinetics 

Nucleation time distributions can also be generated through a Monte-Carlo type simulation. To illustrate 

this, consider that the lifetime of a particle of size 𝑛  (𝜏𝑛) can be described via: 

𝜏𝑛 =
1

𝑘−𝑛 + 𝑘𝑛+1
 

where 𝑘−𝑛 and 𝑘𝑛+1 have the same definitions. The time spent at this size (Δ𝑡𝑛) would be expected to 

follow an exponential distribution: 

𝑃Δ𝑡 =
1

𝜏𝑛
𝑒
−
Δ𝑡
𝜏𝑛 

The probability of the particle increasing in size at the next reaction step is: 

𝑝+ =
𝑘𝑛+1

𝑘𝑛+1 + 𝑘−𝑛
= 1 − 𝑝− 

With this in mind, the random nucleation trajectory of an individual particle can be generated through a 

simple algorithm where: 

1. A time-step is generated by sampling an exponential distribution. A random number, 𝑥, between 

0 and 1 is generated and used to calculate a time step via: 

Δ𝑡𝑛 = −𝜏𝑛 ln(1 − 𝑥) 

2. The direction (forward or backward) is determined by comparing another random number to 𝑝+. 

If 𝑥 < 𝑝+, 𝑛 is increased by 1. If 𝑥 > 𝑝+, it is decreased by 1. 

3. If 𝑛 > 𝑛𝑐, the simulation is terminated. Otherwise, the process is repeated from 1. 
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Additional Experimental Data 
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Figure S1: Rescaled data from Figure 4 in the main text depicting probability density of Ag nucleation times on ITO at -0.18 V 

vs. Ag QRCE.  

 

Figure S2: SEM images of Ag nanoparticle arrays deposited on C and ITO electrodes (left) and atomic force microscopy images 

of bare C and ITO electrodes (right). 


