
Supporting Information for

Making the InChI FAIR and sustainable while moving to Inorganics

Gerd Blanke,*[a] Jan Brammer,[b] Djordje Baljozovic,[b] Nauman Ullah Khan,[b] Frank Lange,[b]

Felix Bänsch,[c] Clare Tovee,[d] Ulrich Schatzschneider,[e] Richard M. Hartshorn,[f] Sonja
Herres-Pawlis*[b]

Appendix A. Additional information on programming details

For the first time in three years, a new release of the InChI software (with version number 1.07)
was published in December 2023 on a newly created GitHub repository.[1] All existing code
fragments left by the late developer Igor Pletnev had been integrated into a new code project
which served as a foundation for InChI 1.07 development. Since then, more than three
thousand bugs, warnings and hints were detected and fixed in the inherited code.

The InChI version 1.07 introduces several new features that can be accessed in
test/engineering mode such as:

● support for six additional types of tautomeric transformations
● support for processing of molecules with up to 32766 atoms

Particular emphasis has been given to fixing security issues and bugs, the vast majority of
which had been inherited from earlier InChI versions, predominantly 1.06. Moreover, all InChI
software versions have been closely monitored by the Google® oss-fuzz project team,[2] who
have until now detected more than 60 bugs and security issues using various fuzz testing
techniques.[3]
The source code has been methodically debugged using 64- and 32-bit versions of all available
C/C++ compilers in Microsoft® Windows and Ubuntu Desktop computer operating systems. The
following table (Table A1) summarizes all C/C++ compilers which were used on Microsoft®

Windows and Ubuntu Linux platforms for testing and the InChI code development.

C/C++ compiler name Compiler
versions 64-bit 32-bit

Microsoft®
Windows

Ubuntu
Linux

Microsoft® Visual Studio
C++ 17.9.1 - 17.10.4 ✓ ✓ ✓ -

GNU GCC 7.5 - 14.1 ✓ ✓ ✓ ✓

LLVM/Clang 14.0.3 - 18.0.4 ✓ ✓ ✓ ✓

Table A1. Summary of compiler versions used for testing and developing of InChI

The following list shows a summary of all bug and security fixes:

Supplementary Information (SI) for Faraday Discussions.
This journal is © The Royal Society of Chemistry 2024



9 functions were rewritten to address issues with function arguments related to arrays of
various dimensions
25 blocks of code were rewritten to address memory leaks, buffer overruns, various
security issues, and improperly written conditional statements or bitwise operations
33 heap overflow issues were fixed due to use of large array dimensions
157 security bugs related to improper pointer dereferencing were fixed, which might
cause crashes or undesired exits
71 memory leaks were fixed
530 places have been marked where optional bounds-checking functions could be used
2480 various bugs and other issues were addressed, such as type conversions and
mismatches, removing redundant variables and/or code as well as addressing
LLVM/Clang warnings
58 Google® oss-fuzz [2] issues were fixed, and 5 additional Google® oss-fuzz issues
have been partially fixed

Finally, in order to provide a further layer of security, optional support for bounds-checking
functions[4] has been provided (in accordance with Annex K of the C11 standard[5]).

Because of the primary focus to fix bugs and security fixes, regression tests were run to
compare the results between version 1.06 and 1.07 against all PubChem "Compounds" [6], "3D
Compounds" [7], and "Substances" [8]. In terms of the nearly 300 million PubChem
"Substances" only 2 failed. In terms of invariance tests 2131 substances failed (6,4*10-5%). Most
of the failures were caused by insufficient determination of H tautomerism with the structures.

All binaries/API, instructions for compiling InChI software from the source code, a
comprehensive list of known issues as well as many other important technical details and the
test suite as Docker container can be found on the landing page of the new InChI GitHub
repository.[1]

Appendix B Interactive InChI user interfaces

InChI’s Graphical User Interface for Windows – WInChI

An interactive tool for Microsoft Windows called WInChI has been part of previous releases. It
calculates InChIs representations from both MDL Molfiles containing a single chemical structure
or SDFiles containing multiple structures.
After the calculation, the chemical structures are displayed together with the canonical InChI
atom numbers (marked in yellow in Figure S1). Tautomeric areas within the molecules are
indicated with dashed lines which depict the result of the InChI canonicalization. InChI, AuxInfo
and InChIKey are displayed below the canvas with helpful information on each of the layers.
WInChI calculates the standard InChI by default, but the InChI parameters can be changed in
the option menu (Figure S2).



Figure S1: Screenshot of the WInChI canvas



Figure S2: InChI parameter selection tool in WInChI

InChI web demo

This section describes the InChI web demo[9], a new interactive and browser-based application
that enables the generation of InChIs and reaction InChIs (RInChIs). Such a browser-native
application has the key advantage that there is no need to install any additional software on the
user’s computer, such as the InChI software suite, WInChI or chemical structure editors that
include the InChI library. In addition, the InChI web demo is designed such that all data remains
the local browser, thus no web backend infrastructure is required.
The main use case of the application is the generation of InChIs from drawn chemical
structures. Structure drawing is facilitated by the powerful Ketcher chemical structure editor[10]
and InChI, AuxInfo, InChIKey, and the log of the calculation (for error messages) are shown
below the drawing canvas (Figure S3). All InChI parameters and the InChI version (1.07 as well
as 1.06 as legacy version) can be selected from the right part of the panel.



Figure S3: Screenshot of the InChI web demo demonstrating the drawing of a chemical
structure, the immediate generation of InChI representation, InChIKey and AuxInfo as well as
the interactive selection of the InChI parameters and version.

As an additional functionality, Mofiles can be generated from an InChI representation or AuxInfo,
and the evaluation of chemical reactions to obtain RInChIs and the related Long-, Short-, and
Web-RInChIKeys beside the reaction AuxInfo (RAuxInfo), which is depicted in Figure S4.
Similar to the functionalities related to InChI and Molfiles, a reverse-generation of RXN/RD files
from RInChI representations or RAuxInfo was implemented.



Figure S4: Screenshot of the RInChI view in the InChI web demo. A chemical reaction drawn in
the Ketcher structure editor is transformed into a RInChI string, its respective RInChIKeys and
RAuxInfo.

On the technical level, the InChI web demo utilizes the WebAssembly technology stack[11]
(Wasm) by compiling InChI’s C and RInChI’s C++ source code to the Wasm binary instruction
format using the Emscripten compiler[12]. The design and feasibility of such an application has
been demonstrated previously[13,14] and the InChI algorithm has already been integrated in the
web versions of major open-source cheminformatics frameworks such as RDKit.js[15] and
Indigo[16] via the Emscripten tool chain. We would like to emphasize that the port to Wasm
opens the InChI algorithm to be used on any processor architecture and operating system with
a Wasm-compatible web browser.
The InChI web demo will follow the ongoing InChI and RInChI development. Future extensions
will introduce a mode to inspect InChI’s canonical atom numbering and the labeling of



tautomeric systems similar to WInChI’s capabilities, bond types specific to organometallic
compounds and atom mappings in reactions for RInChIs. For easier use, specific tutorials such
as a RInChI tutorial are being developed.

Appendix C Testing

An important part in our effort of more open and sustainable development of the InChI is to
provide a test suite, including test code, data, and documentation. Accordingly, objective and
transparent quality criteria were defined that enable convenient and replicable testing. Such a
test environment is indispensable for collaborative development, especially with external
contributors. Our test suite consists of two kinds of tests.

a) Regression tests
Regression tests are used to detect problems with the stability of the InChI across versions. A
regression means that the current behavior of a software package deviates from the established
proper behavior of a previous version. While developing a feature or fixing a bug, developers
repeatedly run these tests to increase their confidence that no regressions are introduced. In
Figure S5, the first and second run represent tests that are conducted after alterations to the
codebase. During the first run, the output matches the reference state while the one results in a
regression, since the output no longer matches the reference. We use the output of the last
stable version as a reference for our regression tests.

Figure S5: Schematic representation of regression tests: the first test run is successful because
the output strings are identical, the second one fails because of a different output



b) Invariance tests
Invariance tests are used to detect problems with the InChI canonicalization algorithm. As such,
they increase confidence in an essential feature of the InChI, the unique and stable identification
of structures. During an invariance test, the atom indices of a structure are permuted repeatedly
and each permutation is expected to result in the same InChI output. In Figure S6, the output of
the third permutation deviates from the previous two permutations, resulting in a failed
invariance test.

Figure S6: Permutation tests: While the input molecule features a different atom numbering in
each test, the test is successful in case the output string remains identical due to a proper
canonicalization algorithm. It fails in cases where one output differs from the other permutations.

We run our test suite against two data sets, each serving a unique purpose.

Automated tests
Every contribution to our GitHub repository, by team members or external collaborators, triggers
a run of the test suite. The practice of automatically running tests against each contribution is
part of the continuous integration (CI).
To facilitate quick feedback, automated testing needs to be fast but thorough, to increase
confidence (note that those two requirements are antagonistic). We ensure speed by limiting the
size of our CI data, resulting in a test suite that runs in a matter of seconds. Furthermore, we
make the data informative by including known problematic structures, which have triggered
bugs in the past, as well as structures that challenge the InChI algorithmically. The CI data is



included in our GitHub repository to facilitate transparency and re-use. For example, developers
can run the test suite against the CI data on their local machines, before contributing on GitHub.

Manual release tests
Prior to each release, the test suite is run manually against the PubChem database. Specifically,
tests are run against all PubChem "Compounds"[6], "3D Compounds"[7], and "Substances".[8]
The PubChem data are used for testing as is, no pre-processing is applied. These
comprehensive test runs are limited to releases, since they require significantly more time than
the automated tests. The test results for the current stable release (1.07.0 at the time of writing)
can be found here:
https://github.com/JanCBrammer/presentation_inchi_tests/blob/main/slides.pdf. Finally, users
can run our test suite against their own datasets to pilot new InChI versions before integrating
them in their workflows or production environments.

Appendix D More inorganic examples of bond handling

Figure S7: Bond handling for a Grignard compound

https://github.com/JanCBrammer/presentation_inchi_tests/blob/main/slides.pdf


Figure S8: Bond handling for a Zintl ion synthesised by the Dehnen group[17]

Figure S9: Bond handling for MeLi

References
[1] GitHub, Official home of the InChI, accessed on 17/July/2024,
https://github.com/IUPAC-InChI/InChI
[2] Google, OSS-Fuzz, accessed on 17/July/2024, https://google.github.io/oss-fuzz/
[3] The Fuzzing Project, accessed on 17/July/2024, https://fuzzing-project.org/
[4] SEI CERT C Coding Standard, accessed on 17/July/2024,
https://wiki.sei.cmu.edu/confluence/display/c/Scope
[5] C11, accessed on 17/July/2024, https://en.cppreference.com/w/c/11

https://github.com/IUPAC-InChI/InChI
https://google.github.io/oss-fuzz/
https://fuzzing-project.org/
https://wiki.sei.cmu.edu/confluence/display/c/Scope
https://en.cppreference.com/w/c/11


[6] National Center for Biotechnology Information (NCBI), PubChem Compound FTP site,
accessed on 17/July/2024, https://ftp.ncbi.nlm.nih.gov/pubchem/Compound/
[7] National Center for Biotechnology Information (NCBI), PubChem Compound3D FTP site,
accessed on 17/July/2024, https://ftp.ncbi.nlm.nih.gov/pubchem/Compound_3D/
[8] National Center for Biotechnology Information (NCBI), PubChem Substance FTP site,
accessed on 17/July/2024, https://ftp.ncbi.nlm.nih.gov/pubchem/Substance/
[9] InChI Trust, InChI Web Demo, accessed on 17/July/2024,
https://iupac-inchi.github.io/InChI-Web-Demo/
[10] GitHub, Ketcher, accessed on 17/July/2024, https://github.com/epam/ketcher
[11]WebAssembly, accessed on 17/July/2024, https://webassembly.org/
[12] Emscripten, accessed 17/July/2024, https://emscripten.org/
[13] R. L. Apodaca, Compiling InChI to WebAssembly Part 1: Hello InChI, accessed on
17/July/2024, https://depth-first.com/articles/2019/05/15/compiling-inchi-to-webassembly-part-1/
[14] Kekule.js Lab, InChI Demo, accessed on 17/July/2024,
https://partridgejiang.github.io/cheminfo-to-web/demos/items/InChI/inchiDemo.html
[15] G. Landrum and the RDKit contributors, RDKit.js, accessed on 17/July/2024,
https://www.rdkitjs.com/
[16] GitHub, EPAM Indigo projects, accessed on 17/July/2024, https://github.com/epam/Indigo
[17] Y. R. Lohse, B. Weinert, B. Peerless, S. Dehnen, Z. Anorg. Allg. Chem. 2024, 650,
e202300229

https://ftp.ncbi.nlm.nih.gov/pubchem/Compound/
https://ftp.ncbi.nlm.nih.gov/pubchem/Compound_3D/
https://ftp.ncbi.nlm.nih.gov/pubchem/Substance/
https://iupac-inchi.github.io/InChI-Web-Demo/
https://github.com/epam/ketcher
https://webassembly.org/
https://emscripten.org/
https://depth-first.com/articles/2019/05/15/compiling-inchi-to-webassembly-part-1/
https://partridgejiang.github.io/cheminfo-to-web/demos/items/InChI/inchiDemo.html
https://www.rdkitjs.com/
https://github.com/epam/Indigo

