Supporting Information

Designing Anti-bacterial Supramolecular Gels from Primary Ammonium Dicarboxylate (PAD) salts for Self-Delivery Applications.

Authors Nabanita Roy, Subhajit Ghosh, Abhishek Dutta and Parthasarathi Dastidar*

Affiliation School of Chemical Sciences, Indian Association for the Cultivation of Science (IACS), 2A and 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata-700032, West Bengal (India).

E mail. <u>ocpdastidar@gmail.com</u>, <u>ocpd@iacs.res.in</u>

Table of Contents

Serial	Topics	Page No.
1	FT-IR data of salts	3-4
2	Gelation table	4-5
3	T _{gel} , MGC of the MS gels	5
4	Amplitude sweep experiments of gels	6
5	tan δ table of gels	6
6	Crystallographic data table	7
7	ORTEPs and H-bonding table	8-15
8	PXRD plots of gelators and non gelators	16
9	Zone Inhibition assay of gelators	17
10	Determination of MIC	18
11	MTT assay of C ₁₄ •2MAF against Hek 293 and <i>E. derm</i>	19
12	Colony inhibition assay of C ₁₄ •2MAF against <i>P. aeruginosa</i> , <i>S. aureus</i> and <i>B. subtilis</i>	19
13	Component dependent turbidity assay of C14•2MAF	20
14	Calibration curve of C ₁₄ •2MAF in water.	20
15	Comapartive rheology data of gels	21
16	PXRD and Zone-inhibition of crystals C ₁₀ - H•AMN and [C ₁₄ •2MAF].C ₁₄ -H ₂	21

Fig. S1 FT-IR spectra of the salts.

Table S1 Approximate shifts in the FT-IR stretching frequencies upon salt formation from carboxylic acids to carboxylates.

Dicarboxylic acids	IR str. Freq. of >COOH in diacids	Salts	IR str. Freq. of >COO ⁻ in salts	$\Delta \overline{\nu}$ shifts in salts
		C ₄ •2AMN	1636	54
		C ₄ •2TRM	1613	77
C ₄ (COOH) ₂	1690	C ₄ •2TRP	1616	74
		C ₄ •2MAF	1622	68
		C7•2AMN	1625	68
		C7•2TRM	1612	81
C7(COOH)2	1693	C7•2TRP	1622	71
		C7•2MAF	1707, 1631	-14
		C ₁₀ •2AMN	1719, 1623	-28
		C ₁₀ •2TRM	1629	62
C ₁₀ (COOH) ₂	1691	C ₁₀ •2TRP	1644	47
		C ₁₀ •2MAF	1691, 1624	0
		C ₁₂ •2AMN	1693, 1635	-3
		C ₁₂ •2TRM	1629	61
C ₁₂ (COOH) ₂	1690	C ₁₂ •2TRP	1617	73
		C ₁₂ •2MAF	1651	39
		C ₁₄ •2AMN	1720, 1632	-28
	1602	C ₁₄ •2TRM	1616	76
	1092	C ₁₄ •2TRP	1617	75
		C ₁₄ •2MAF	1681	11

Table S2 Gelation table

Organic salts	water	Methyl 19		11
		salicylate (MS)	DMSO/water	DMSO/water
C ₄ •2AMN	Р	GP	Р	Р
C ₄ •2TRM	S	GP	S	S
C ₄ •2TRP	S	Р	S	S
C ₄ •2MAF	S	INS	S	S
C7•2AMN	Р	G	Р	Р
C7•2TRM	S	PS	S	S
C7•2TRP	S	GP	S	S
C7•2MAF	S	GP	Р	S
C ₁₀ •2AMN	Р	G	Р	Р
C ₁₀ •2TRM	S	Р	S	S
C ₁₀ •2TRP	INS	Р	Р	S
C ₁₀ •2MAF	S	Р	WG	S
C ₁₂ •2AMN	INS	G	INS	Р

C ₁₂ •2TRM	PS	G	INS	S
C ₁₂ •2TRP	PS	G	INS	S
C ₁₂ •2MAF	GP	G	Р	S
C ₁₄ •2AMN	INS	G	Р	Р
C ₁₄ •2TRM	Р	GP	INS	S
C ₁₄ •2TRP	Р	GP	INS	S
C ₁₄ •2MAF	GP	G	Р	S

S= Soluble; PS= Partially soluble; INS=Insoluble; P=Precipitate; GP=Gelatinous precipitate; G=Gel

Table S3 MGC and T_{gel} table for various gels.

Gels	Solvent	MGC	7 _{gel} at 10 wt. % (in ℃)
C7●2AMN	MS	8	65
C ₁₀ ●2AMN	MS	8	57
C ₁₂ •2AMN	MS	10	52
C ₁₂ ●2TRM	MS	10	87
C ₁₂ ●2TRP	MS	6	85
C ₁₂ ●2MAF	MS	10	72
C14●2AMN	MS	10	64
C14●2MAF	MS	8	89

Fig. S2 Amplitude sweep experiments of the 10 wt. % MS gels Table S4 tan $\delta\,$ (G"/G') values of the reported gels.

Gels	G'(in Pa)	G″ (in Pa)	tan δ (G″/G')
C7•2AMN	362687.5	49156.25	0.135
C ₁₀ •2AMN	114337.5	17633.75	0.162
C ₁₂ •2AMN	2•2AMN 90568.75		0.144
C ₁₂ •2TRM	207625	45412.5	0.235
C12•2TRP	557937.5	85593.75	0.156
C ₁₂ •2MAF	15875	4491.875	0.284
C 14•2AMN	23956.25	2879.375	0.124
C14•2MAF	C ₁₄ •2MAF 32200		0.241

Table S5 Crystallographic data table.

	C ₄ •2AMN	C ₄ •2TRM	C4•2TRP	C4•2MAF	C7•2AMN	C10-H•AMN	C ₁₀ •2TRM	C ₁₀ •2TRP	[C ₁₄ •2MAF].C ₁₄ -H ₂
Crystallising solvent	MeOH	EtOH	MeOH+ DCM	H2O+ MeOH	MeOH	MeOH	DMSO	MeOH+ DCM	MeOH+ DCM
Empirical formula	$C_{26}H_{44}N_2 \\ O_4$	$C_{33}H_{48}N_3O_9$	C ₂₆ H ₃₄ N ₄ O 4	$C_{20}H_{22}N_4O_{8}S_2$	C ₂₉ H ₅₀ N ₂ O 4	$C_{22}H_{39}NO_4$	$C_{28}H_{44}N_2O_6$	C ₃₂ H ₄₆ N ₄ O 4	$C_{23}H_{40}N_2O_6S$
Formula weight	448.63	630.74	466.57	510.53	490.71	381.54	504.65	550.73	472.63
Temperature/K	140.55	145.01	290.15	monoclinic	273.15	273.15	296.00 orthorhom	290.15	295.75
Crystal system	triclinic	triclinic	monoclinic		monoclinic	triclinic	bic	triclinic	triclinic
Space group	P1	P1	$P2_1/n$	P2 ₁ /n	P2 ₁ /C	P1	$Pca2_1$	P1	P1
a/A	0.3023(4)	11.4036(6)	9.766(6)	10.4023(3) 5.0160(2)	20.775(19)	0.003(2)	21.09(3)	0.4647(19)	5.6262(16)
b/Å)	12.7819(7)	6.098(4)	5.9100(2)	6.448(6)	13.220(4)	6.077(8)	7.741(2)	9.250(3)
c/Å	14.2734(8)	13.6007(8)	21.090(14)	20.1437(6)	21.727(19)	13.306(4)	22.48(3)	16.693(5)	24.521(7)
α/°	75.183(2)	88.897(2)	90	90	90	107.090(4)	90	91.501(4)	79.998(8)
β/°	78.290(2)	70.005(2)	96.993(9)	104.9680(10)	97.79(3)	91.044(5)	90	98.704(4)	88.376(9)
γ/°	80.854(2)	65.733(2)	90	90	90	96.239(4)	90	108.733(4)	80.227(9)
Volume/Å ³	1186.97(1 3)	1681.25(18)	1249.3(14)	1204.49(6)	2884(4)	1115.5(6)	2963(7)	781.9(4)	1282.5(6)
Z	2	2	2	2	4	2	4	1	2
ρ _{calc} g/cm ³	1.255	1.246	1.240	1.408	1.130	1.136	1.131	1.170	1.224
µ/mm⁻¹	0.054	0.090	0.085	0.273	0.074	0.077	0.079	0.077	0.165
F(000)	492.0	678.0	500.0	532.0	1080.0	420.0	1096.0	298.0	512.0
Crystal size/mm ³	0.2 × 0.05 × 0.04	0.4 × 0.03 × 0.02	0.4 × 0.1 × 0.03	0.3 × 0.04 × 0.02	0.4 × 0.03 × 0.02	0.3 × 0.03 × 0.02	0.1 × 0.03 × 0.02	0.4 × 0.04 × 0.03	0.2 × 0.05 × 0.03
Padiation	AgKα (λ =	ΜοΚα (λ =	ΜοΚα (λ =	ΜοΚα (λ =	ΜοΚα (λ =	ΜοΚα (λ =	ΜοΚα (λ =	ΜοΚα (λ =	ΜοΚα (λ =
Raulation	0.56086)	0.71073)	0.71073)	0.71073)	0.71073)	0.71073)	0.71073)	0.71073)	0.71073)
20 range for	3.804 to	4.588 to	3.892 to	6.528 to	1.978 to	3.206 to	5.22 to	4.954 to	4.536 to
data collection/°	50.82	50.938	50.05	63.408	53.266	50.218	50.47	51.148	56.542
	$-10 \le n \le$	-13 ≤ N ≤	-11 S N S	-15 ≤ N ≤	-25≤n≤	-7 ≤ h ≤ 7, -	-26 ≤ N ≤	$-7 \le n \le 7$,	-7 ≤ h ≤ 7, -12
Index ranges	$9, -19 \le K$ < 20 _21	$13, -13 \le K$ < 15 -16 <	11, -7 ≥ K < 7_25 < 1	$14, -0 \ge K$ < 7 -20 < 1	20, -7 ≥ K < 7_25 < I	15 ≤ k ≤ 15,	$20, -7 \le K \le$ 7 -26 < 1 <	$-9 \le K \le 9$,	≤ k ≤ 12, -32 ≤
	≤ ≤ 17	I ≤ 15	≤ 25	≤ 29	≤ 25	-15 ≤ l ≤ 15	26	20 21 2	l ≤ 28
Reflections	15179	16204	17992	16545	42337	16637	24367	12445	14756
	7620 [R _{int}	6172 [R _{int} =	2211 [R _{int}	3967 [R _{int}	5274 [R _{int}	3952 [R _{int} =	5191 [R _{int} =	2934 [R _{int}	0010 / D
Independent	= 0.0586,	0.0501,	= 0.0323,	= 0.0548,	= 0.1004,	0.0680,	0.0719,	= 0.0560,	$6313 [R_{int} = 0.0624 P]$
reflections	R _{sigma} =	R _{sigma} =	R _{sigma} =	R _{sigma} =	R _{sigma} =	R _{sigma} =	R _{sigma} =	R _{sigma} =	$0.0024, R_{sigma}$ = 0.08311
D <i>i i i i i i i i i i</i>	0.0824]	0.0641]	0.0182]	0.0495]	0.0600]	0.0666]	0.0659]	0.0561]	_ 0.0001]
arameters	7620/0/46 5	6172/0/413	2211/0/15 6	3967/0/16 4	5274/0/31 9	3952/51/25 4	5191/71/34 1	2934/0/18 2	6313/2/333
Goodness-of-fit on F ²	1.028	1.012	1.063	1.036	1.024	1.034	1.046	1.000	1.108
	R ₁ =	R ₁ =	R ₁ =	R ₁ =	R1 =	R ₁ =	R ₁ =	R ₁ =	
Final R indexes	0.0578,	0.0438,	0.0362,	0.0540,	0.0617,	0.0496,	0.0682,	0.0506,	$R_1 = 0.1055,$
[I>=2σ (I)]	wR ₂ =	$WR_2 = 0.0930$	$WR_2 =$	$WR_2 = 0.1553$	$WR_2 = 0.1543$	$WR_2 = 0.1294$	$WR_2 = 0.1531$	$WR_2 = 0.1078$	$WR_2 = 0.2621$
	R₁ =	R₁ =	R₁ =	R₁ =	R₁ =	R1 =	R₁ =	R₁ =	
Final R indexes	0.0799.	0.0746.	0.0439.	0.0650.	0.1216.	0.0846.	0.1345.	0.1053.	$R_1 = 0.1417$.
[all data]	$wR_2 =$	$wR_2 =$	$wR_2 =$	$wR_2 =$	$wR_2 =$	$wR_2 =$	$wR_2 =$	$wR_2 =$	$wR_2 = 0.2829$
	0.1675	0.1086	0.0964	0.1671	0.1885	0.1502	0.1884	0.1312	
Largest diff. peak/hole / e Å ⁻³	0.45/-0.36	0.21/-0.21	0.19/-0.17	0.86/-0.83	0.35/-0.26	0.20/-0.20	0.44/-0.50	0.16/-0.16	0.59/-0.47

Fig. S3 ORTEP diagram of C₄•2AMN (50% probability).

D-H•••A	d(D-A)/Å	d(H•••A)/Å	d(D•••A)/Å	∠D-H•••A/°	Symmetry
N1-H1A•••O3	0.98	1.85	2.8176(16)	167	x,y,z
N2-H1B•••O4	0.93	1.79	2.7165(16)	172	-x+1,y,-z
N1-H1C•••O1	0.93	1.87	2.7838(15)	169	-x,1-y,2-z
N2-H2A•••O2	1.00	1.80	2.7795(16)	166	-x,-1+y,z
N2-H2B•••O3	0.93	1.89	2.8035(16)	168	1-x,-y,2-z
N1-H2C•••O1	0.93	1.89	2.7994(16)	135	-x,-y,2-z

Table	S6	Hvdrod	aen bo	ondina	table	of C ₄	2AMN.
						0.04	

Fig. S4 ORTEP diagram of C₄•2TRM (50% probability).

D-H•••A	d(D-A)/Å	d(H•••A)/Å	d(D•••A)/Å	∠D-H•••A/°	Symmetry
O1-H1•••O3	0.84	1.82	2.656(2)	170	x, -1+y, z
N1-H1A•••O8	0.91	1.98	2.794(19)	148	1-x,-y,-z
N1-H1B•••O2	0.91	1.89	2.725(2)	151	x,y,z
N1-H1C•••O7	0.91	1.99	2.823(2)	152	-1+x,y,z
N1-H1C•••O8	0.91	2.48	3.189(2)	134	-1+x,y,z
N2-H2C•••O7	0.91	1.86	2.745(2)	162	x, -1+y, z
N2-H2D•••O5	0.91	1.87	2.768(2)	169	x,-1+y,z
N2-H2E•••O2	0.91	2.07	2.828(3)	139	1-x,-y,1-z
N2-H2E•••O3	0.91	2.30	3.159(3)	157	1+x,-1+y,z
N3-H3A•••O6	0.91	1.88	2.775(2)	169	1+x,-1+y,z
N3-H3B•••O6	0.91	1.93	2.797(3)	158	1-x,-y,1-z
N3-H3C•••O3	0.91	1.93	2.804(3)	161	x,y,z
O4-H4A•••O8	0.84	1.86	2.701(2)	179	1-x,1-y,1-z
O9-H9•••O5	0.84	1.83	2.663(3)	173	1-x,-1-y,-z

Fig. S5 ORTEP diagram of C₄•2TRP (50% probability).

D-H•••A	d(D-A)/Å	d(H•••A)/Å	d(D•••A)/Å	∠D-H•••A/°	Symmetry
N1-H1A•••O2	0.89	1.82	2.710(2)	174	x,-1+y,z
N2-H1B•••O1	0.89	1.86	2.745(2)	179	x,y,z
N1-H1C•••O1	0.89	2.59	3.366(3)	146	3/2-x,-1/2+y,1/2-z
N2-H1C•••O2	0.89	2.22	2.993(2)	145	3/2-x,1/2+y,1/2-z
N2-H2•••O1	0.93	2.03	2.763(2)	143	x,y,z

Table S8 Hydrogen bonding table of C₄•2TRP.

Fig. S6 ORTEP diagram of C₄•2MAF (50% probability).

D-H•••A	d(D-A)/Å	d(H•••A)/Å	d(D•••A)/Å	∠D-H•••A/°	Symmetry
N1-H1A•••O1	0.88	2.37	2.927(2)	122	3/2-x,-1/2+y,3/2-z
N2-H2A•••O3	0.91	1.87	3.176(2)	175	x,1+y,z
N1-H2B•••O4	0.91	1.91	2.757(2)	162	-x,1-y,1-z
N2-H2C•••O4	0.91	1.84	2.807(3)	164	x,y,z

Fig. S7 ORTEP diagram of C7•2AMN (50% probability).

D-H•••A	d(D-A)/Å	d(H•••A)/Å	d(D•••A)/Å	∠D- H••••A/°	Symmetry
N1-H1A•••O4	0.89	1.89	2.774(4)	173	x,-1+y,z
N1-H1B•••O3	0.89	1.92	2.792(4)	164	x,y,z
N1-H1C•••O3	0.89	2.04	2.930(4)	174	1-x,-1/2+y,3/2-z
N2-H2A•••O2	0.89	1.86	2.729(4)	167	1+x,1+y,z
N2-H2B•••O2	0.89	1.96	2.842(4)	169	1-x,1/2+y,3/2-z
N1-H2C•••O1	0.89	1.90	2.790(4)	174	1-x,3/2+y,3/2-z

Table S10 Hy	drogen	bonding	table of	C ₇ •2AMN
--------------	--------	---------	----------	----------------------

Fig. S8 ORTEP diagram of C10-H•AMN (50% probability).

D-H•••A	d(D-A)/Å	d(H•••A)/Å	d(D•••A)/Å	∠D-H•••A/°	Symmetry
N1-H1A•••O1	0.89	1.96	2.837(3)	169	-1+x, y, z
N1-H1B•••O2	0.89	2.01	2.871(3)	163	1-x, -y, 1-z
N1-H1C•••O2	0.89	1.92	2.776(3)	160	x, y, z
O3-H3•••O1	0.82	1.80	2.605(3)	168	-1+x, 1+y, z

 Table S11 Hydrogen bonding table of C10-H•AMN.

Fig. S9 ORTEP diagram of C₁₀•2TRM (50% probability).

D-H•••A	d(D-A)/Å	d(H•••A)/Å	d(D••••A)/Å	∠D- H••••A/°	Symmetry
O1-H1•••O3	0.82	1.91	2.712(8)	167	1/2+x,1-y,z
N1-H1A•••O5	0.89	1.95	2.817(9)	166	1-x,-y,-1/2+z
N1-H1B•••O2	0.89	1.97	2.834(9)	164	x,y,z
N1-H1C•••O3	0.89	1.87	2.765(8)	179	x,-1+y,z
N2-H1A•••O4	0.89	1.90	2.784(10)	174	-1/2+x,-y,z
N2-H2B•••O5	0.89	1.83	2.715(9)	177	-1/2+x,1-y,z
N2-H2C•••O2	0.89	1.93	2.823(9)	176	1/2-x,y,1/2+z
O6-H6•••O4	0.82	1.89	2.828(3)	166	x,1+y,z

Table S12 Hydrogen bonding table of C₁₀•2TRM.

Fig. S10 ORTEP diagram of C₁₀•2TRP (50% probability).

Table S13 Hydrogen bonding table of C₁₀•2TRP.

D-H•••A	d(D-A)/Å	d(H•••A)/Å	d(D•••A)/Å	∠D-H•••A/°	Symmetry
N1-H1A•••O1	0.89	2.05	2.929(2)	168	1-x,2-y,1-z
N2-H1A•••O2	0.89	2.52	3.176(2)	131	1-x,2-y,1-z
N1-H1B•••O2	0.89	1.87	2.757(2)	177	1+x,y,z
N2-H1C•••O1	0.89	1.95	2.807(3)	161	x,y,z
N2-H2•••O2	0.86	2.14	2.848(3)	139	-x,2-y,1-z

Fig. S11 ORTEP diagram of [C₁₄•2MAF].C₁₄-H₂ (50% probability).

Table S14 Hyd	drogen bonding	g table of].C ₁₄ -H ₂ .
---------------	----------------	------------	--	-------------------------------------

D-H•••A	d(D-A)/Å	d(H•••A)/Å	d(D•••A)/Å	∠D-H•••A/°	Symmetry
O1-H1•••O3	0.82	1.91	2.712(8)	167	1/2+x,1-y,z
N1-H1A•••O5	0.89	1.95	2.817(9)	166	1-x,-y,-1/2+z
N1-H1B•••O2	0.89	1.97	2.834(9)	164	x,y,z
N1-H1C•••O3	0.89	1.87	2.765(8)	179	x,-1+y,z
N2-H1A•••O4	0.89	1.90	2.784(10)	174	-1/2+x,-y,z
N2-H2B•••O5	0.89	1.83	2.715(9)	177	-1/2+x,1-y,z
N2-H2C•••O2	0.89	1.93	2.823(9)	176	1/2-x,y,1/2+z
O6-H6•••O4	0.82	1.89	2.828(3)	166	x,1+y,z

Fig. S12 PXRD (Simulated vs Bulk) comparison plots of various salts.

Fig. S13 PXRD plots of C₁₀•2AMN and C₁₄•2MAF.

Fig. S14 Zone Inhibition Assay of the gelators against Gram-negative bacterial *E. coli* **and** *P. aeruginosa* In graphs, data were represented as mean+SD (n=3); where *p<0.05, **p<0.01, ***p<0.001 and ns is non-significant.

Fig. S15 Zone Inhibition Assay of the gelators against Gram-positive bacterial S. aureus and B. subtilis In graphs, data were represented as mean+SD (n=3); where *p<0.05, **p<0.01, ***p<0.001 and ns is non-significa

Fig. S16 Determination of MIC (Turbidity and Resazurin assay) of C_{12} •2MAF and C_{14} •2MAF against Gram-negative bacterial E. coli and P. aeruginosa. In graphs, data were represented as mean+SD (n=3); where *p<0.05, **p<0.01, ***p<0.001 and ns is non-significant.

Fig. S17 Determination of MIC (Turbidity and Resazurin assay) of C_{12} •2MAF and C_{14} •2MAF against Gram-positive bacterial S. aureus and B. subtilis. In graphs, data were represented as mean+SD (n=3); where *p<0.05, **p<0.01, ***p<0.001 and ns is non-significant.

Fig. S18 MTT assay of C₁₄**•2MAF against E. derm and HEK-293 cell lines.** In graphs, data were represented as mean+SD (n=3); where *p<0.05, **p<0.01, ***p<0.001 and ns is non-significant.

Fig. S19 Dose dependent bacterial colony inhibition assay of C₁₄•2MAF against P. aeruginosa, S. aureus and B. subtilis.

Fig. S20 (a) Turbidity and Resazurin assay of the components present in gelator salt C_{14} -2MAF (1 equivalent of C_{14} -H₂ and 2 equivalents of MAF present in the corresponding weights) against *E. coli.* (b) MTT assay of components C_{14} -H₂ and MAF against *E. derm*. In graphs, data were represented as mean+SD (n=3); where *p<0.05, **p<0.01, ***p<0.001 and ns is non-significant.

Fig. S21 Standard calibration curves of C₁₄•2MAF in water.

Fig. 22 (a) G' values of all MS gels (b) tan δ (G''/G') of the MS gels reported in this project.

Fig. 23 (a) PXRD plots (Simulated vs Recrystallized bulks) of C_{10} -H•AMN and $[C_{14}$ •2MAF]. C_{14} -H₂ (b) Anti-bacterial zone inhibition assay of C_{10} -H•AMN and $[C_{14}$ •2MAF]. C_{14} -H₂ against *E. coli.*