Supplementary information for:

Trapping intermediates of the NO₂ hydrolysis reaction on ice.

Josée Maurais, Clément Wespiser, Raphaël Robidas, Claude Y. Legault, and Patrick Ayotte*

Département de chimie, Université de Sherbrooke, 2500 Boulevard de l'Université, Sherbrooke, Québec, CANADA J1K 2R1.

Evolution of the NO stretching vibrational frequencies for the planar and non-planar conformers of *c*-ONONO₂ in *c*-ONONO₂·(H₂O)_n (Figure S1). Evolution of the intramolecular NO and NN bond lengths in NO₂·(H₂O)_n and O₂NNO₂·(H₂O)_n (Figure S2), in *t*-ONONO₂·(H₂O)_n (Figure S3), and in the planar and non-planar conformers of *c*-ONONO₂ in *c*-ONONO₂·(H₂O)_n (Figure S4).

*Patrick.Ayotte@USherbrooke.ca; 819-821-7889.

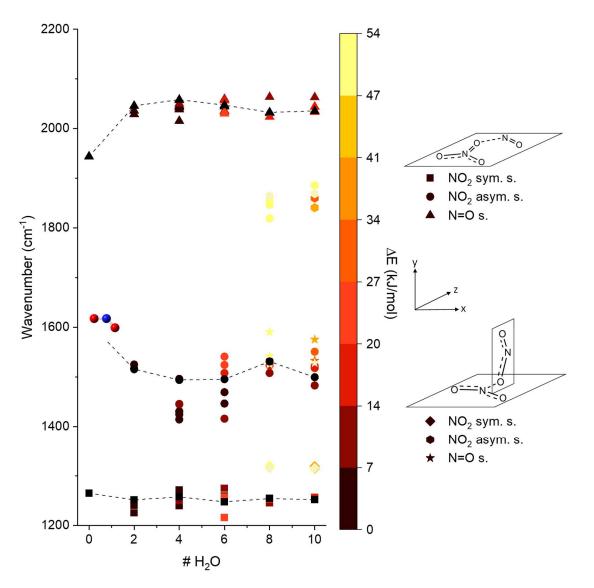


Figure S1 - (A) Vibrational frequencies for the planar and non-planar conformers of *c*-ONONO₂ in *c*-ONONO₂·(H₂O)_n with n = 0-10. Vibrational frequencies are calculated using B3LYP/6-311g++(3df,3dp) and are scaled by 0.976 to account for their anharmonicity.⁷³ The symmetric and asymmetric ONO stretching modes are labeled by squares and circles, respectively, while the N=O stretching modes are labeled by triangles. Symbols for the individual isomers are color-coded to account for their energy relative to the most stable isomer for each *n* using the scale provided as insets.

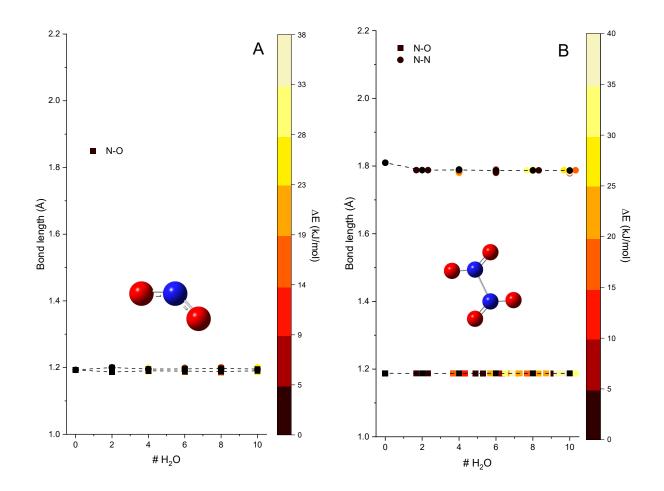


Figure S2 - (A) Intramolecular NO bond lengths for $NO_2 \cdot (H_2O)_n$ with n = 0-10; (B) Intramolecular NO and NN bond lengths for $O_2NNO_2 \cdot (H_2O)_n$ with n = 0-10. Structures are optimized using B3LYP/6-311g++(3df,3dp). NO and NN bond lengths are labeled by squares and circles, respectively. Symbols for the individual isomers are color-coded to account for their energy relative to the most stable isomer for each *n* using the scale provided as insets.

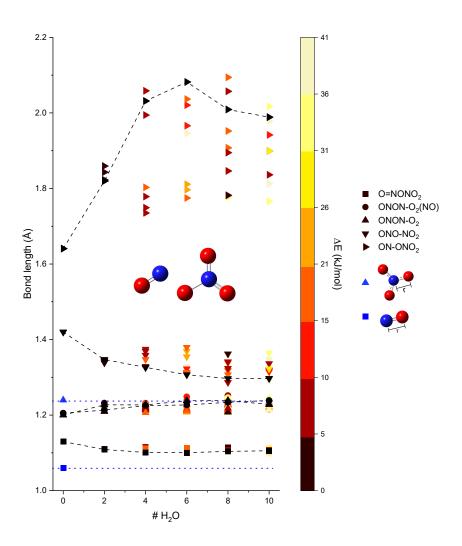


Figure S3 - Intramolecular NO bond lengths for *t*-ONONO₂·(H₂O)_n with n = 0-10. Structures are optimized using B3LYP/6-311g++(3df,3dp). Symbols for the different NO bond lengths are defined in the legend. Symbols for the individual isomers are color-coded to account for their energy relative to the most stable isomer for each *n* using the scale provided as insets. The NO bond lengths for NO₃⁻ and NO⁺ are indicated by blue triangles and squares, respectively.

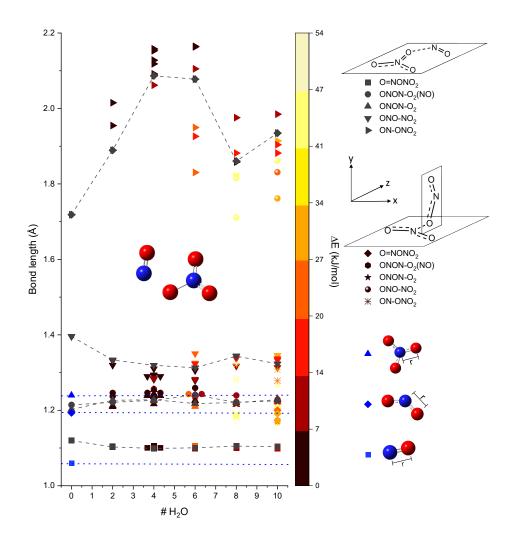


Figure S4 - Intramolecular NO bond lengths for the planar and non-planar isomers of *c*-ONONO₂·(H₂O)_{*n*} with n = 0-10. Structures are optimized using B3LYP/6-311g++(3df,3dp). Symbols for the different NO bond lengths are defined in the legend. Symbols for the individual isomers are color-coded to account for their energy relative to the most stable isomer for each *n* using the scale provided as insets. The NO bond lengths for NO₃⁻, NO₂, and NO⁺ are indicated by blue triangles, diamonds, and squares, respectively.