Electronic Supplementary Material (ESI) for Food & Function. This journal is © The Royal Society of Chemistry 2024

Electronic Supplementary Information

ESI file 1. Experimental framework for evaluating the anti-inflammatory effects of combined treatment with Kluyveromyces marxianus A4 and sulfasalazine compared to

that of Saccharomyces boulardii ATCC MYA-796 in mice with dextran sulfate sodium (DSS)-induced colitis. CON, control (treated with sterilized saline after providing

autoclaved tap water); **DSS**, DSS-induced model (treated with sterilized saline after providing 3% DSS); **S**, sulfasalazine [treated with sulfasalazine (50 mg/kg/day) after providing 3% DSS); **A4+S**, *K. marxianus* A4 (treated with 1 × 10⁸ CFU/mL of *K. marxianus* A4 after providing 3% DSS); **A4+S**, *K. marxianus* A4 plus sulfasalazine [treated with 1 × 10⁸ CFU/mL of *K. marxianus* A4 plus sulfasalazine (50 mg/kg/day) after providing 3% DSS]; **Sb**, *S. boulardii* ATCC MYA-796 (treated with 1 × 10⁸ CFU/mL of *S. boulardii* ATCC MYA-796 after providing 3% DSS); **Sb+S**, *S. boulardii* ATCC MYA-796 plus sulfasalazine [treated with 1 × 10⁸ CFU/mL of *S. boulardii* ATCC MYA-796 plus sulfasalazine [treated with 1 × 10⁸ CFU/mL of *S. boulardii* ATCC MYA-796 plus sulfasalazine [treated with 1 × 10⁸ CFU/mL of *S. boulardii* ATCC MYA-796 plus sulfasalazine [treated with 1 × 10⁸ CFU/mL of *S. boulardii* ATCC MYA-796 plus sulfasalazine [treated with 1 × 10⁸ CFU/mL of *S. boulardii* ATCC MYA-796 plus sulfasalazine [treated with 1 × 10⁸ CFU/mL of *S. boulardii* ATCC MYA-796 plus sulfasalazine [treated with 1 × 10⁸ CFU/mL of *S. boulardii* ATCC MYA-796 plus sulfasalazine [treated with 1 × 10⁸ CFU/mL of *S. boulardii* ATCC MYA-796 plus sulfasalazine [treated with 1 × 10⁸ CFU/mL of *S. boulardii* ATCC MYA-796 plus sulfasalazine [treated with 1 × 10⁸ CFU/mL of *S. boulardii* ATCC MYA-796 plus sulfasalazine [treated with 1 × 10⁸ CFU/mL of *S. boulardii* ATCC MYA-796 plus sulfasalazine [treated with 1 × 10⁸ CFU/mL of *S. boulardii* ATCC MYA-796 plus sulfasalazine [treated with 1 × 10⁸ CFU/mL of *S. boulardii* ATCC MYA-796 plus sulfasalazine [treated with 1 × 10⁸ CFU/mL of *S. boulardii* ATCC MYA-796 plus sulfasalazine [treated with 1 × 10⁸ CFU/mL of *S. boulardii* ATCC MYA-796 plus sulfasalazine [treated with 1 × 10⁸ CFU/mL of *S. boulardii* ATCC MYA-796 plus sulfasalazine [treated with 1 × 10⁸ CFU/mL of *S. boulardii* ATCC MYA-796 plus sulfasalazine [treated with 1 × 10⁸ CFU/mL of *S. boul*

ESI File 2. Scores for the histological evaluation of colitis.

Feature	Score	Description	Reference
Inflammation severity	0	None	
	1	Mild	
	2	Moderate	
	3	Severe	
Inflammation extent	0	None	
	1	Mucosa	
	2	Mucosa and submucosa	
	3	Transmural	
Crypt damage	0	None	1
	1	Basal 1/3 damaged	1
	2	Basal 2/3 damaged	
	3	Crypts lost; surface epithelium present	
	4	Crypts and surface epithelium lost	
Percent involvement (%)	0	0	
	1	1–25	
	2	26–50	
	3	51–75	
	4	76–100	

ESI File 3. List of primers used to evaluate gene expression.

Gene	Forward primer (5'-3')	Reverse primer (5'-3')	Accession number
Gapdh	CACTCACGGCAAATTCAACGGCAC	GACTCCACGACATACTCAGCAC	NM_008084.3
II-16	TCCAGGATGAGGACATGAGCAC	GAACGTCACACCAGCAGGTTA	NM_008361.4
II-6	TGACAACCACGGCCTTC	TTCTGCAAGTGCATCATCG	NM_031168.2
Tnf-α	AAGCCTGTAGCCCACGTCGTA	GGCACCACTAGTTGGTTGTCTTTG	NM_013693.3
II-12p40	CAGAAGCTAACCATCTCCTGGTTTG	CCGGAGTAATTTGGTGCTCCACAC	NM_001303244.1
lfn-γ	GAAAGCCTAGAAAGTCTGAATAACT	ATCAGCAGCGACTCCTTTTCCGCTT	NM_008337.4
II-10	AGAAGCATGGCCCAGAAATC	CCAAGGAGTTGTTTCCGTTAGC	NM_010548.2
11-4	AATGTACCAGGAGCCATATCCAC	TCACTCTCTGTGGTGTTCTTCGT	NM_021283.2
Cox-2	CCGTGGTGAATGTATGAGCA	CCTCGCTTCTGATCTGTCTT	AY157736.1
inos	CTGCAGCACTTGGATCAGGAACCTG	GGGAGTAGCCTGTGTGCACCTGGAA	NM_010927.4
Zo-1	TGGAATTGCAATCTCTGGTG	CTGGCCCTCCTTTTAACACA	NM_009386.2
OcIn	GCTGTGATGTGTGTGAGCTG	GACGGTCTACCTGGAGGAAC	U49185.1
Cldn-1	GACTGTTGATGATGGTTATCGG	AGATGGTAAGGTACAGCCAAGG	NM_016674.4

Gapdh, glyceraldehyde 3-phosphate dehydrogenase; II, interleukin; Tnf-α, tumor necrosis factor-α; Ifn-γ, interferon-γ; Cox-2, cyclooxygenase-2; inos, inducible nitric

oxide synthase; *Zo-1*, zonula occludens-1; *Ocln*, occludin; *Cldn-1*, claudin-1.

ESI File 4. Body weight gain of the mice with dextran sulfate sodium (DSS)-induced colitis treated with sterilized saline, sulfasalazine, Kluyveromyces marxianus A4 (Km

Groups	Day 0		Day 1	Day 2	Day 3	Day 4	Day 5	Day 6	Day 7	Day 8	Day 9	Day 10	Day 11	Day 12	Day 13	Day 14
CON	0.0 0.0ª	±	0.01 ± 0.12 ^a	0.20 ± 0.15ª	0.65 ± 0.09ª	0.83 ± 0.14ª	1.09 ± 0.16ª	1.53 ± 0.16ª	1.58 ± 0.10ª	1.98 ± 0.10ª	1.35 ± 0.19ª	1.48 ± 0.18ª	1.40 ± 0.19ª	1.56 ± 0.16ª	1.64 ± 0.19ª	1.86 ± 0.18ª
DSS	0.0 0.0ª	±	0.35 ± 0.14ª	0.38 ± 0.18ª	1.11 ± 0.20ª	0.85 ± 0.21ª	0.70 ± 0.17ª	0.04 ± 0.11ª	-1.50 ± 0.21 ^b	-2.84 ± 0.27 ^b	-3.65 ± 0.28 ^b	-4.29 ± 0.41°	-3.19 ± 0.70 ^b	-2.24 ± 0.77 ^b	-1.88 ± 0.70 ^b	-1.09 ± 0.62 ^b
S	0.0 0.0ª	±	0.13 ± 0.08 ^a	0.51 ± 0.14ª	1.09 ± 0.18ª	0.99 ± 0.17ª	0.86 ± 0.19ª	0.24 ± 0.17ª	-1.16 ± 0.13 ^b	-2.38 ± 0.52 ^b	-2.93 ± 0.44 ^b	-3.10 ± 0.70 ^{bc}	-1.89 ± 0.76 ^b	-1.18 ± 0.83 ^{ab}	-0.90 ± 0.64 ^b	-0.31 ± 0.51 ^{ab}
A4	0.0 0.0ª	±	0.14 ± 0.12 ^a	0.39 ± 0.10ª	0.86 ± 0.23ª	0.85 ± 0.23ª	0.81 ± 0.28ª	0.24 ± 0.38ª	-0.86 ± 0.47 ^b	-2.14 ± 0.42 ^b	-3.00 ± 0.40 ^b	-2.86 ± 0.55 ^{bc}	-1.38 ± 0.51 ^b	-0.39 ± 0.44 ^{ab}	-0.20 ± 0.52 ^{ab}	0.53 ± 0.40 ^{ab}
A4+S	0.0 0.0ª	±	0.25 ± 0.15ª	0.60 ± 0.11ª	0.90 ± 0.12ª	0.82 ± 0.17ª	0.73 ± 0.33ª	-0.29 ± 0.38ª	-1.13 ± 0.43 ^b	-2.14 ± 0.21 ^b	-2.51 ± 0.20 ^b	-1.56 ± 0.41 ^b	-0.48 ± 0.50 ^{ab}	0.11 ± 0.31 ^{ab}	0.23 ± 0.24 ^{ab}	0.79 ± 0.16 ^{ab}
Sb	0.0 0.0ª	±	0.09 ± 0.12ª	0.24 ± 0.18ª	0.76 ± 0.15ª	0.78 ± 0.22ª	0.43 ± 0.18ª	-0.24 ± 0.32ª	-1.51 ± 0.45 ^b	-2.56 ± 0.57 ^b	-3.39 ± 0.45 ^b	-3.50 ± 0.56 ^{bc}	-2.13 ± 0.55 ^b	-1.43 ± 0.64 ^b	-0.96 ± 0.58 ^b	-0.41 ± 0.52 ^{ab}
Sb+S	0.0 0.0ª	±	0.10 ± 0.11ª	0.26 ± 0.15ª	0.91 ± 0.16ª	0.98 ± 0.15ª	0.69 ± 0.17ª	-0.05 ± 0.24ª	-1.39 ± 0.39 ^b	-2.41 ± 0.34 ^b	-2.94 ± 0.39 ^b	-2.96 ± 0.51 ^{bc}	-1.39 ± 0.52 ^b	-0.73 ± 0.46 ^{ab}	-0.14 ± 0.32 ^{ab}	0.41 ± 0.30 ^{ab}

A4), Km A4 plus sulfasalazine, *Saccharomyces boulardii* ATCC MYA-796 (Sb MYA-796), and Sb MYA-796 plus sulfasalazine.

All data are expressed as the mean ± standard deviation (n = 8). Different letters in a column indicate significant differences (*P* < 0.05), which were evaluated using a one-way analysis of variance followed by Tukey's test. **CON**, control (treated with sterilized saline after providing autoclaved tap water); **DSS**, DSS-induced model

(treated with sterilized saline after providing 3% DSS); **S**, sulfasalazine [treated with sulfasalazine (50 mg/kg/day) after providing 3% DSS]; **A4**, *K. marxianus* A4 (treated with 1 × 10⁸ CFU/mL of *K. marxianus* A4 after providing 3% DSS); **A4+S**, *K. marxianus* A4 plus sulfasalazine [treated with 1 × 10⁸ CFU/mL of *K. marxianus* A4 plus sulfasalazine (50 mg/kg/day) after providing 3% DSS]; **Sb**, *S. boulardii* ATCC MYA-796 (treated with 1 × 10⁸ CFU/mL of *S. boulardii* ATCC MYA-796 after providing 3% DSS); **Sb+S**, *S. boulardii* ATCC MYA-796 plus sulfasalazine (50 mg/kg/day) after providing 3% DSS]; **Sb**, *S. boulardii* ATCC MYA-796 (treated with 1 × 10⁸ CFU/mL of *S. boulardii* ATCC MYA-796 after providing 3% DSS); **Sb+S**, *S. boulardii* ATCC MYA-796 plus sulfasalazine (50 mg/kg/day) after providing 3% DSS].

ESI File 5. Significant relative taxonomy abundance ratio of the gut microbiota in mice with dextran sulfate sodium (DSS)-induced colitis treated with sterilized saline, sulfasalazine, *Kluyveromyces marxianus* A4 plus sulfasalazine, and *Saccharomyces boulardii* ATCC MYA-796 plus sulfasalazine at the phylum, class, order, family, and genus levels via 16S rDNA amplicon-based community analysis.

Rielegical towaraway classification		Experimental groups							
DIDIOgical Lax	conomy classification	CON	DSS S A4+S Sb+S		Sb+S				
Dhulum	Bacteroidota	81.98 ± 12.20ª	34.75 ± 6.50 ^b	54.06 ± 15.02 ^{ab}	74.63 ± 10.65ª	68.64 ± 17.41 ^{ab}			
Phylum	Firmicutes	16.93 ± 12.08 ^b	63.35 ± 6.44 ^a	41.54 ± 14.01 ^{ab}	19.75 ± 15.53 ^b	$\begin{array}{c} 68.64 \pm 17.41^{ab} \\ \hline 29.95 \pm 17.93^{ab} \\ \hline 68.64 \pm 17.41^{ab} \\ \hline 29.61 \pm 18.07^{ab} \\ \hline 68.64 \pm 17.41^{ab} \\ \hline 12.28 \pm 5.58^{ab} \\ \hline 13.76 \pm 11.05^{ab} \\ \hline 0.00 \pm 0.00^{b} \\ \hline 42.92 \pm 14.22^{ab} \end{array}$			
Class	Bacteroidia	81.98 ± 12.20ª	34.75 ± 6.50 ^b	54.06 ± 15.02 ^{ab}	74.63 ± 10.65ª	68.64 ± 17.41 ^{ab}			
Class	Clostridia	15.87 ± 12.25 ^b	60.87 ± 5.12 ^a	40.80 ± 13.11 ^{ab}	18.92 ± 16.04 ^b	29.61 ± 18.07 ^{ab}			
	Bacteroidales	81.98 ± 12.20 ^a	34.74 ± 6.51 ^b	54.06 ± 15.02 ^{ab}	74.63 ± 10.65 ^a	68.64 ± 17.41 ^{ab}			
Quala	Oscillospirales	5.14 ± 5.55 ^b	18.53 ± 1.73ª	14.07 ± 0.86 ^{ab}	6.29 ± 6.28 ^{ab}	12.28 ± 5.58 ^{ab}			
Order	Lachnospirales	7.33 ± 7.36 ^b	29.62 ± 2.87ª	16.67 ± 8.59 ^{ab}	8.50 ± 6.70 ^b	13.76 ± 11.05 ^{ab}			
	Acholeplasmatales	0.00 ± 0.00^{b}	2.31 ± 2.41ª	0.00 ± 0.00^{b}	0.00 ± 0.00^{b}	0.00 ± 0.00^{b}			
	Bacteroidaceae	60.62 ± 9.45°	7.06 ± 1.25 ^c	24.47 ± 6.24 ^{bc}	46.98 ± 11.80 ^{ab}	42.93 ± 14.22 ^{ab}			
Family	omy classificationDSSSA4+Sacteroidota 81.98 ± 12.20^a 34.75 ± 6.50^b 54.06 ± 15.02^{ab} 74.63 ± 1 irmicutes 16.93 ± 12.08^b 63.35 ± 6.44^a 41.54 ± 14.01^{ab} 19.75 ± 1 acteroidia 81.98 ± 12.20^a 34.75 ± 6.50^b 54.06 ± 15.02^{ab} 74.63 ± 1 lostridia 15.87 ± 12.20^a 34.75 ± 6.50^b 54.06 ± 15.02^{ab} 74.63 ± 1 lostridia 15.87 ± 12.25^b 60.87 ± 5.12^a 40.80 ± 13.11^{ab} 18.92 ± 1 acteroidales 81.98 ± 12.20^a 34.74 ± 6.51^b 54.06 ± 15.02^{ab} 74.63 ± 1 scillospirales 5.14 ± 5.55^b 18.53 ± 1.73^a 14.07 ± 0.86^{ab} 6.29 ± 6.2 achnospirales 7.33 ± 7.36^b 29.62 ± 2.87^a 16.67 ± 8.59^{ab} 8.50 ± 6.2 acteroidaceae 60.62 ± 9.45^a 7.06 ± 1.25^c 24.47 ± 6.24^{bc} 46.98 ± 1 ikenellaceae 6.60 ± 2.33^a 1.12 ± 0.97^b 2.57 ± 1.10^{ab} 3.60 ± 0.95^{ab} oscillospiraceae 3.09 ± 2.82^b 13.59 ± 1.21^a 6.89 ± 0.80^b 3.63 ± 3.25^{ab} achnospiraceae 7.33 ± 7.36^b 29.62 ± 2.87^a 16.67 ± 8.59^{ab} 8.50 ± 6.25^{ab} ikenellaceae 6.60 ± 2.33^a 1.12 ± 0.97^b 2.57 ± 1.10^{ab} 3.60 ± 0.95^{ab} oscillospiraceae 7.33 ± 7.36^b 29.62 ± 2.87^a 16.67 ± 8.59^{ab} 8.50 ± 6.25^{ab} achnospiraceae 7.33 ± 7.36^b 29.62 ± 2.87^a 16.67 ± 8.59^{ab} 8.50 ± 6.25^{ab} <tr< td=""><td>3.60 ± 0.94^{ab}</td><td>3.69 ± 3.02^{ab}</td></tr<>	3.60 ± 0.94 ^{ab}	3.69 ± 3.02 ^{ab}						
Family	Oscillospiraceae	3.09 ± 2.82 ^b	13.59 ± 1.21ª	6.89 ± 0.80 ^b	3.63 ± 3.79 ^b	Sb+S 3 ± 10.65^a 68.64 ± 17.41^{ab} 5 ± 15.53^b 29.95 ± 17.93^{ab} 3 ± 10.65^a 68.64 ± 17.41^{ab} 2 ± 16.04^b 29.61 ± 18.07^{ab} 3 ± 10.65^a 68.64 ± 17.41^{ab} 2 ± 6.28^{ab} 12.28 ± 5.58^{ab} $\pm 6.70^b$ 13.76 ± 11.05^{ab} $\pm 0.00^b$ 0.00 ± 0.00^b 8 ± 11.80^{ab} 42.93 ± 14.22^{ab} $\pm 0.94^{ab}$ 3.69 ± 3.02^{ab} $\pm 3.79^b$ 5.12 ± 1.88^b $\pm 6.70^b$ 13.76 ± 11.05^{ab} 8 ± 11.80^{ab} 42.93 ± 14.22^{ab} $\pm 0.94^{ab}$ 3.69 ± 3.02^{ab} $\pm 11.80^{ab}$ 42.93 ± 14.22^{ab} $\pm 6.70^b$ 13.76 ± 11.05^{ab} 8 ± 11.80^{ab} 42.93 ± 14.22^{ab} 40.94^{ab} 3.11 ± 3.68^{ab} 8 ± 3.59^{ab} 19.24 ± 7.30^{ab}			
	Lachnospiraceae	7.33 ± 7.36 ^b	29.62 ± 2.87ª	16.67 ± 8.59 ^{ab}	8.50 ± 6.70 ^b	13.76 ± 11.05 ^{ab}			
Genus	Bacteroides	60.62 ± 9.45 ^a	7.06 ± 1.25°	24.47 ± 6.24 ^{bc}	46.98 ± 11.80 ^{ab}	42.93 ± 14.22 ^{ab}			
	Alistipes	6.60 ± 2.33 ^a	0.00 ± 0.00^{b}	2.12 ± 1.86 ^{ab}	3.60 ± 0.94^{ab}	3.11 ± 3.68 ^{ab}			
	Unclassified	9.13 ± 3.08 ^b	20.98 ± 1.16 ^a	22.49 ± 4.27 ^a	16.08 ± 3.59 ^{ab}	19.24 ± 7.30 ^{ab}			

Others	7.30 ± 3.20 ^b	21.88 ± 3.68 ^a	16.70 ± 5.00 ^a	9.10 ± 5.37 ^{ab}	9.79 ± 4.10^{ab}	

The relative taxonomy abundance ratio is expressed as a percentage and shown as the mean \pm standard deviation (n = 3). Different letters in a row indicate significant differences (*P* < 0.05) using a one-way analysis of variance followed by Tukey's test or Kruskal–Wallis test followed by Dunn's test and Bonferroni correction. **CON**, control (treated with sterilized saline after providing autoclaved tap water); **DSS**, DSS-induced model (treated with sterilized saline after providing 3% DSS); **S**, sulfasalazine [treated with sulfasalazine (50 mg/kg/day) after providing 3% DSS]; **A4+S**, *K. marxianus* A4 plus sulfasalazine [treated with 1 × 10⁸ CFU/mL of *K. marxianus* A4 plus sulfasalazine (50 mg/kg/day) after providing 3% DSS]; **Sb+S**, *S. boulardii* ATCC MYA-796 plus sulfasalazine [treated with 1 × 10⁸ CFU/mL of *S. boulardii* ATCC MYA-796 plus sulfasalazine [treated with 1 × 10⁸ CFU/mL of *S. boulardii* ATCC MYA-796 plus sulfasalazine [treated with 1 × 10⁸ CFU/mL of *S. boulardii* ATCC MYA-796 plus sulfasalazine [treated with 1 × 10⁸ CFU/mL of *S. boulardii* ATCC MYA-796 plus sulfasalazine [treated with 1 × 10⁸ CFU/mL of *S. boulardii* ATCC MYA-796 plus sulfasalazine [treated with 1 × 10⁸ CFU/mL of *S. boulardii* ATCC MYA-796 plus sulfasalazine [treated with 1 × 10⁸ CFU/mL of *S. boulardii* ATCC MYA-796 plus sulfasalazine [treated with 1 × 10⁸ CFU/mL of *S. boulardii* ATCC MYA-796 plus sulfasalazine [treated with 1 × 10⁸ CFU/mL of *S. boulardii* ATCC MYA-796 plus sulfasalazine [treated with 1 × 10⁸ CFU/mL of *S. boulardii* ATCC MYA-796 plus sulfasalazine [treated with 1 × 10⁸ CFU/mL of *S. boulardii* ATCC MYA-796 plus sulfasalazine [treated with 1 × 10⁸ CFU/mL of *S. boulardii* ATCC MYA-796 plus sulfasalazine [treated with 1 × 10⁸ CFU/mL of *S. boulardii* ATCC MYA-796 plus sulfasalazine [treated with 1 × 10⁸ CFU/mL of *S. boulardii* ATCC MYA-796 plus sulfasalazine [treated with 1 × 10⁸ CFU/mL of *S. boulardii* ATCC MYA-796 plus sulfasalazine [treated with 1 × 10⁸ CFU/mL of

References

1. F. I. Kostadinova, T. Baba, Y. Ishida, T. Kondo, B. K. Popivanova and N. Mukaida, *J. Leukoc. Biol.*, 2010, **88**, 133–143.