

Supplementary Tables and Figures

Fig.S1 Effect of different carbon sources on the growth curve of *C. sporogenes*

(A-E) Growth curves of *C. sporogenes* containing different concentrations of carbon source, 10 g/L (A), 20 g/L (B), 30 g/L (C), 40 g/L (D), and 50 g/L (E) (n = 3). (F) Body weight change trend across all 8 groups. (The groups included WT+Xyl, WT+*C.s.* and WT+Syn groups). (G) Body weight change across all 8

groups. (H) Food intake across all 8 groups (n = 8-10). (I) (D) Mouse trajectory of the new object recognition test across all 8 groups (n = 8-10). (J) The discrimination index of the new object recognition test across all 8 groups. (n = 8-10). (K) The spontaneous alternation of the Y-maze test across all 8 groups (n = 8-10). (L) Quantitative assessment of the number of times each mouse poked its head into each hole of the Barnes maze across all 8 groups (n = 8-10). (M) The total distance in target quadrant of the Barnes maze across all 8 groups (n = 8-10). (N) (H) The total distance traveled by mice in the open field test across all 8 groups (n = 8-10). (O) Center/peripheral area time in the open field test across all 8 groups (n = 8-10). Data are mean ± SEM. *p < 0.05, **p < 0.01. Significant differences among means were determined by two-way ANOVA with Tukey's multiple comparisons test.

Fig.S2 Effects of synbiotic on plasma metabolites in 5xFAD mice

(A) Relative abundance of different types of metabolites in serum. (B) Relative abundance of kynurenine in serum (n = 7). (C) Relative abundance of kyn/trp in serum (n = 7). Data are mean \pm SEM. *p < 0.05, **p < 0.01. Significant differences among means were determined by one-way ANOVA with Tukey's multiple comparisons test.

Fig.S3 Effects of synbiotic on gut microbiota in 5xFAD mice

(A-L) Relative abundance of Aquabacterium, Anaerovorax, Brachybacterium, Brevibacterium, Burkholderia, Clostridium_XIVa, Ethanoligenens, Facklamia, Hydrogenoanaerobacterium, Streptococcus, Turicibacter, and Paenalcaligenes at the genus level (n = 9-10). Data are mean \pm SEM. *p < 0.05, **p < 0.01. Data are mean \pm SEM. *p < 0.05, **p < 0.01. Significant differences between means were determined by t-test.

Classification	Content (g/kg)
Corn Starch	465.700
Maltodextrin	155.000
Casein	140.000
Sucrose	100.000
Cellulose	50.000
Soybean Oil	40.000
Mineral Mix, M1021	35.000
Vitamin Mix, V1010	10.000
L-Cystine	1.800
Choline chloride	2.500
Tert-Butylhydroquinone	0.036
Total (g)	1000.000

Table S1 Compositions of AIN-93M diet

Concentration (g/L)	5	10	20	30	40
GAM (mL)	5	5	5	5	5
MOS (Xi'an Yuen	0.025	0.050	0.100	0.150	0.200
sun Biological Technology Co., Ltd.) (g)					
Xylan(X820567, Macklin Bio-Technology	0.025	0.050	0.100	0.150	0.200
Co., Ltd, Shanghai, China) (g)					
Inulin(S11143, Yuanye Bio-Technology	0.025	0.050	0.100	0.150	0.200
Co., Ltd, Shanghai, China)					
β-Glu (β-Glu is from highland barley)	0.025	0.050	0.100	0.150	0.200

 Table S2 Formulation of carbon source added to the culture medium

	•	·
Name	Forward Primers (5'-3')	Reverse Primers (5'-3')
APP	GCTGCCCAGCTTGGCACTGC	GGCAACGGTAAGGAATCACGATGTGGGTG
PSD-95	TCTGTGCGAGAGGTAGCAGA	AAGCACTCCGTGAACTCCTG
TNF-α	CTCATGCACCACCATCAAGG	ACCTGACCACTCTCCCTTTG
IBA-1	TGATGAGGATCTGCCGTCCAAACT	TCTCCAGCATTCGCTTCAAGGACA
MUC2	GAAGCCAGATCCCGAAACCA	CCAGCTTGTGGGTGAGGTAG
ZO-1	TGGGAACAGCACACAGTGAC	GCTGGCCCTCCTTTTAACAC
Claudin-1	AGCTGCCTGTTCCATGTACT	CTCCCATTTGTCTGCTGCTC
COX-2	TGAGCAACTATTCCAAACCAGC	GCACGTAGTCTTCGATCACTATC
Mdr1b	TACATCTTGGCGGACCTTAC	CGCTGGTTTCTTTCTTTCTTC
Cyp3a11	TCTACCGATATGGGACTC	AAATGATGTGCTGGTGAT
16S rDNA	AGAGTTTGATCCTGGCTCAG	CTGCTGCCTCCCGTAGGAGT
GAPDH	TGGAGAAACCTGCCAAGTATGA	TGGAAGAATGGGAGTTGCTGT

 Table S3 Primer sequences used for rRT-qPCR

Subject class	EC number	Known Activities
CE4	EC 3.2.1.37	β-xylosidase
GH1	EC 3.1.1.72	Acetyl xylan esterase
GH55	EC 3.2.1.58	exo-β-1, 3-glucanase
GH1	EC 3.2.1.25	β-mannosidase

Table S4 Formulation of carbon source added to the culture medium