Electronic Supplementary Material (ESI) for Food & Function. This journal is © The Royal Society of Chemistry 2024

Association of vitamin D intake during pregnancy with small

vulnerable newborns: a population-based cohort study

Shanshan Wang ¹, Gabriela Maria Villagrán Escobar ¹, Ziyu Chen ¹, Xiu Li ²,

Guoping Xiong ³, Xuefeng Yang ¹, Jian Shen ^{3*}, Liping Hao ^{1*}

¹ Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food

Nutrition and Safety, MOE Key Laboratory of Environment and Health, School of

Public Health, Tongji Medical College, Huazhong University of Science and

Technology

² Hospital of Tongji Medical College, Huazhong University of Science and

Technology

³ Department of Obstetrics and Gynecology, The Central Hospital of Wuhan

*Corresponding authors: Liping Hao, E-mail: haolp@mails.tjmu.edu.cn

Jian Shen, E-mail: Bwsj1116@163.com

Contents

Supplementary Table 1 Basic characteristics of participants included in the analysis and those excluded

Supplementary Table 2 Dietary food and nutrient intake according to the quartiles of total vitamin D intake in the first and second trimesters

Supplementary Table 3 Association between dietary vitamin D intake (per SD increase) from different food sources and risk of small vulnerable newborns in the first and second trimesters

Supplementary Figure 1 Flow chart for the selection of participants included in the analysis

Supplementary Figure 2 Distribution of dietary vitamin D intake from different food sources in the first and second trimesters

Supplementary Figure 3 Stratified analyses for association of total vitamin D intake in the first trimester with the risk of small vulnerable newborns

Supplementary Figure 4 Stratified analyses for association of total vitamin D intake in the second trimester with the risk of small vulnerable newborns

Supplementary Figure 5 Association of vitamin D intake in the first and second trimesters with the risk of small vulnerable newborns when additionally adjusted for aMed score

Supplementary Figure 6 Restricted cubic spline analyses for association of vitamin D supplementation in the first and second trimesters with the risk of small vulnerable newborns

Supplementary Figure 7 Restricted cubic spline analyses for association of dietary vitamin D intake in the first and second trimesters with the risk of small vulnerable newborns

Supplementary Table 1 Basic characteristics of participants included in the analysis and those excluded¹

Characteristic	Overall	Included	Excluded	P value
	- Clair	participants	participants	
N	3566	2980	586	
Age (years)	29.0 ± 3.6	29.0 ± 3.5	29.2 ± 3.7	0.245
Pre-pregnancy BMI (kg/m²)	21.1 ± 2.9	21.2 ± 3.0	21.0 ± 2.7	0.113
Gestational weight gain (kg)	15.1 ± 5.3	15.1 ± 5.3	15.2 ± 5.3	0.895
Ethnicity (Han Chinese)	3486 (97.8)	2916 (97.9)	570 (97.3)	0.473
Education levels (years)				0.084
≤ 9	274 (7.7)	215 (7.2)	59 (10.1)	
10–12	531 (14.9)	440 (14.8)	91 (15.5)	
13–15	1113 (31.2)	931 (31.2)	182 (31.1)	
≥ 16	1648 (46.2)	1394 (46.8)	254 (43.3)	
Monthly incomes (CNY)				0.446
≤ 3000	61 (1.7)	53 (1.8)	8 (1.4)	
3000–4999	509 (14.3)	414 (13.9)	95 (16.2)	
5000–9999	1956 (54.9)	1644 (55.2)	312 (53.2)	
≥ 10000	1040 (29.2)	869 (29.2)	171 (29.2)	
Season				< 0.001
Winter	998 (28.0)	888 (29.8)	110 (18.8)	
Spring	883 (24.8)	696 (23.4)	187 (31.9)	
Summer	971 (27.2)	800 (26.8)	171 (29.2)	
Fall	714 (20.0)	596 (20.0)	118 (20.1)	
Primiparity (yes)	2721 (76.3)	2292 (76.9)	429 (73.2)	0.061
Smoking (yes)	92 (2.6)	79 (2.7)	13 (2.2)	0.645
Alcohol drinking (yes)	233 (6.5)	183 (6.1)	50 (8.5)	0.040
Regular exercise (yes)	1424 (39.9)	1208 (40.5)	216 (36.9)	0.106
Outdoor activities (yes)	1882 (52.8)	1597 (53.6)	285 (48.6)	0.031
Sun protection (yes)	651 (18.3)	567 (19.0)	84 (14.3)	0.009

¹Continuous variables were presented as means \pm SDs for normally distributed variables and medians (interquartile ranges) for non-normally distributed variables; categorical variables were presented as n (%).

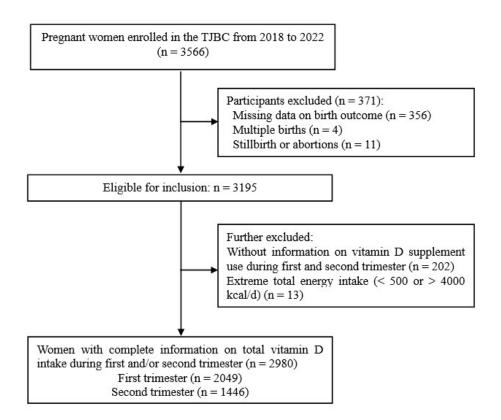
BMI, body mass index; CNY, Chinese Yuan.

Supplementary Table 2 Dietary food and nutrient intake according to the quartiles of total vitamin D intake in the first and second trimesters 1

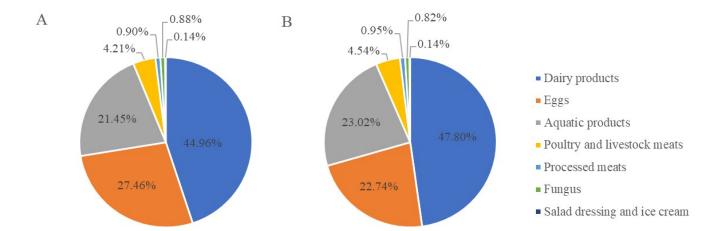
	First trimester			Second trimester				
	Overall	Q1	Q4	P value	Overall	Q1	Q4	P value
N	2049	513	512		1446	362	362	
Foods and total								
energy intake								
Grains (g/d)	220.00 (172.46, 275.00)	226.57 (177.50, 284.00)	204.30 (165.62, 254.29)	< 0.001	271.49 (216.33, 314.24)	279.36 (227.28, 324.64)	260.36 (213.26, 302.14)	0.005
Vegetables (g/d)	268.21 (180.36, 382.14)	275.93 (184.46, 417.86)	254.76 (180.00, 372.36)	0.014	309.83 (227.15, 408.69)	307.57 (230.23, 407.83)	319.02 (222.26, 429.58)	0.589
Fruits (g/d)	396.07 (271.07, 546.25)	382.14 (263.21, 531.61)	390.00 (272.94, 548.04)	0.501	410.20 (290.78, 566.07)	403.30 (279.82, 573.04)	433.40 (307.95, 564.64)	0.443
Meats (g/d)	32.86 (15.00, 56.43)	33.39 (13.57, 54.50)	36.43 (17.14, 60.09)	0.003	51.07 (32.14, 75.00)	47.50 (30.09, 70.98)	53.21 (33.66, 75.67)	0.009
Aquatic products								
(g/d)	17.86 (7.50, 34.29)	16.04 (6.43, 31.43)	22.05 (10.71, 42.86)	< 0.001	27.18 (14.29, 48.57)	22.86 (10.71, 40.00)	33.18 (18.59, 56.07)	< 0.001
Eggs (g/d)	28.57 (12.50, 50.00)	25.00 (11.43, 50.00)	40.00 (17.86, 50.00)	< 0.001	40.00 (20.00, 50.00)	31.79 (14.29, 50.00)	40.00 (25.00, 50.00)	< 0.001
Legumes (g/d)	6.00 (2.57, 11.43)	6.00 (2.29, 12.00)	6.00 (2.57, 10.89)	0.859	6.00 (2.86, 10.71)	6.07 (2.86, 10.96)	6.43 (2.89, 11.30)	0.623
Nuts (g/d)	8.43 (2.68, 16.86)	7.14 (1.79, 15.00)	8.57 (2.86, 18.21)	0.002	11.79 (4.71, 20.71)	10.12 (2.95, 20.22)	12.14 (5.65, 20.86)	0.070
Dairy products (g/d)	132.14 (50.00, 250.00)	107.14 (40.00, 200.00)	225.71 (123.58, 292.86)	< 0.001	208.21 (100.00, 285.71)	139.29 (55.53, 250.00)	231.07 (139.46, 321.43)	< 0.001
T-4-1 (11/4)	1808.00 (1495.03,	1820.62 (1479.78,	1780.87 (1537.06,		2134.10 (1847.80,	2121.91 (1821.72,	2122.82 (1857.81,	
Total energy (kcal/d)	2124.39)	2167.15)	2099.42)	0.054	2449.56)	2399.98)	2417.47)	0.606
Energy-adjusted								
nutrient intake								
Protein (g/d)	51.23 (46.99, 55.95)	49.72 (45.77, 54.27)	53.97 (50.31, 59.11)	< 0.001	60.77 (56.13, 66.59)	58.72 (54.79, 63.34)	63.75 (58.24, 69.46)	< 0.001
Fat (g/d)	61.96 (52.63, 71.82)	61.56 (51.39, 70.57)	65.52 (55.61, 75.70)	< 0.001	76.01 (65.81, 86.07)	73.25 (62.75, 82.24)	76.92 (67.29, 87.81)	< 0.001
Carbohydrates (g/d)	265.23 (242.19, 287.53)	267.43 (246.55, 291.33)	256.41 (229.40, 277.61)	< 0.001	299.61 (275.90, 323.58)	308.09 (287.06, 334.71)	294.95 (269.84, 317.19)	< 0.001
Cholesterol (mg/d)	270.75 (167.05, 368.44)	250.61 (156.81, 337.54)	338.61 (222.98, 432.17)	< 0.001	331.26 (234.71, 422.27)	290.94 (201.92, 384.49)	374.19 (284.94, 445.85)	< 0.001
V:4 A (/-1)							837.56 (638.11,	
Vitamin A (ug/d)	671.20 (510.08, 872.36)	662.08 (485.07, 845.63)	711.65 (544.81, 902.41)	0.002	806.08 (623.29, 1057.44)	764.01 (603.43, 1002.97)	1142.67)	0.008
Vitamin C (mg/d)	159.74 (125.70, 202.44)	159.88 (120.02, 200.53)	157.50 (124.82, 194.82)	0.301	170.93 (134.69, 215.75)	166.30 (133.34, 217.94)	178.41 (141.82, 222.78)	0.305

Vitamin E (mg/d)	35.54 (28.65, 43.88)	36.04 (29.49, 44.07)	35.16 (28.11, 42.91)	0.124	40.20 (32.72, 49.47)	40.14 (32.41, 50.00)	40.24 (32.35, 49.66)	0.602
Folic acid (ug/d)	242.41 (201.21, 296.66)	229.06 (190.88, 283.06)	255.97 (210.26, 307.62)	< 0.001	277.88 (236.82, 333.33)	270.11 (228.43, 324.46)	287.59 (247.02, 343.19)	0.001
Calcium (mg/d)	479.37 (385.07, 586.66)	455.56 (364.60, 555.07)	549.43 (462.94, 647.11)	< 0.001	573.25 (474.01, 692.75)	518.23 (411.96, 629.06)	626.79 (515.62, 742.31)	< 0.001
Iron (mg/d)	16.71 (15.52, 18.22)	16.64 (15.44, 18.07)	16.70 (15.50, 18.12)	0.404	19.21 (17.87, 20.71)	19.00 (17.68, 20.46)	19.51 (18.13, 21.01)	0.004
Zinc (mg/d)	8.95 (8.38, 9.60)	8.79 (8.28, 9.36)	9.25 (8.69, 9.92)	< 0.001	10.69 (10.07, 11.52)	10.43 (9.95, 11.19)	10.98 (10.28, 11.71)	< 0.001
Selenium (ug/d)	31.24 (26.55, 36.58)	30.34 (25.78, 34.91)	34.89 (29.78, 39.58)	< 0.001	37.50 (32.27, 44.04)	35.60 (30.85, 41.75)	39.78 (34.92, 47.27)	< 0.001
PUFA (g/d)	20.45 (15.24, 26.37)	20.53 (15.02, 26.79)	20.28 (14.92, 26.07)	0.369	24.73 (18.32, 30.76)	24.70 (17.39, 30.31)	24.60 (19.04, 30.34)	0.075

¹medians (interquartile ranges) were given for non-normally distributed variables and *P* values were from the Kruskal-Wallis rank test. The daily intake of dietary nutrients was adjusted for total energy intake using the nutrient residual method.


Q, quartile; PUFA, polyunsaturated fatty acids.

Supplementary Table 3 Association between dietary vitamin D intake (per SD increase) from different food sources and risk of small vulnerable newborns in the first and second trimesters¹


Food groups	LBW	PTB	SGA	SVN
First trimester				
Poultry and livestock meats	1.07 (0.85, 1.35)	0.96 (0.78, 1.18)	0.84 (0.68, 1.03)	0.90 (0.77, 1.05)
Processed meats	1.06 (0.84, 1.34)	1.01 (0.83, 1.23)	0.81 (0.60, 1.08)	0.92 (0.78, 1.09)
Aquatic products	1.06 (0.85, 1.33)	1.05 (0.87, 1.27)	1.09 (0.93, 1.28)	1.07 (0.95, 1.22)
Eggs	0.88 (0.68, 1.14)	0.84 (0.68, 1.04)	1.02 (0.85, 1.22)	0.94 (0.82, 1.09)
Dairy products	1.23 (0.99, 1.53)	1.19 (0.99, 1.43)	0.88 (0.72, 1.08)	1.00 (0.86, 1.15)
Fungus	0.96 (0.71, 1.30)	1.02 (0.84, 1.24)	0.96 (0.79, 1.17)	0.99 (0.86, 1.14)
Salad dressing and ice cream	0.96 (0.75, 1.24)	1.09 (0.94, 1.26)	1.13 (0.99, 1.29)	1.13 (1.02, 1.26)
Second trimester				
Poultry and livestock meats	0.85 (0.57, 1.28)	1.02 (0.75, 1.37)	1.14 (0.91, 1.44)	1.08 (0.89, 1.30)
Processed meats	0.82 (0.41, 1.65)	0.53 (0.23, 1.24)	0.99 (0.78, 1.26)	0.90 (0.69, 1.17)
Aquatic products	1.24 (0.90, 1.70)	1.27 (0.98, 1.63)	0.80 (0.60, 1.06)	0.99 (0.82, 1.20)
Eggs	0.87 (0.59, 1.28)	1.07 (0.80, 1.42)	0.96 (0.76, 1.22)	1.01 (0.84, 1.22)
Dairy products	1.03 (0.79, 1.35)	1.02 (0.86, 1.22)	0.92 (0.60, 1.42)	0.99 (0.84, 1.16)
Fungus	0.64 (0.37, 1.12)	1.17 (0.93, 1.48)	0.89 (0.66, 1.18)	1.03 (0.85, 1.24)
Salad dressing and ice cream	0.82 (0.43, 1.56)	1.14 (0.88, 1.48)	0.82 (0.53, 1.27)	0.99 (0.78, 1.27)

¹Values were represented as ORs (95% CIs) from logistic regression models and were adjusted for age, prepregnancy BMI, gestational weight gain, nation, education levels, monthly incomes, primiparity, smoking, drinking, season, regular exercise, outdoor activities, sun protection, iron supplement use, neonatal sex, labor way, total energy intake, and dietary vitamin D intake from other food groups.

LBW, low birth weight; PTB, preterm birth; SGA, small for gestational age; SVN, small vulnerable newborns.

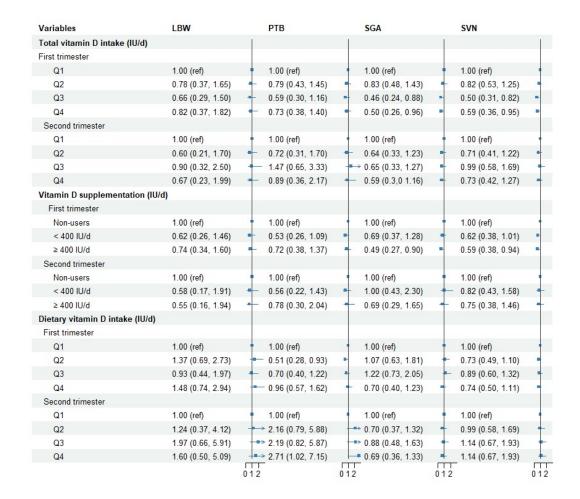
Supplementary Figure 1 Flow chart for the selection of participants included in the analysis

Supplementary Figure 2 Distribution of dietary vitamin D intake from different food sources in the first (A) and second trimester (B)

Supplementary Figure 3 Stratified analyses for association of total vitamin D intake in the first trimester with the risk of small vulnerable newborns

Values were represented as ORs (95% CIs) from logistic regression models and were adjusted for age, prepregnancy BMI, gestational weight gain, nation, education levels, monthly incomes, primiparity, smoking, drinking, season, regular exercise, outdoor activities, sun protection, iron supplement use, neonatal sex, labor way, and total energy intake. The lowest quartile (Q1) was applied as a reference.

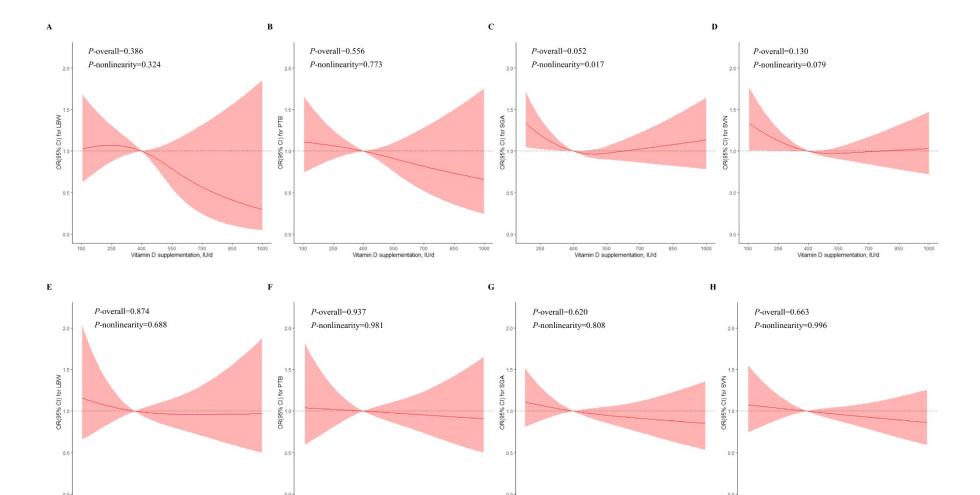
"—" indicates that the sample size of this group is small and the model can not fit effectively. LBW, low birth weight; PTB, preterm birth; Q, quartile; SGA, small for gestational age; SVN, small vulnerable newborns.


Variables	LBW	PTB	SGA	SVN
Age				
< 30 years				
Q2	0.37 (0.10, 1.36)	0.64 (0.21, 2.00)	0.49 (0.21, 1.14)	0.54 (0.27, 1.08)
Q3	0.45 (0.12, 1.70)	1.34 (0.44, 4.14)	→ 0.72 (0.33, 1.58)	0.90 (0.46, 1.73)
Q4	0.28 (0.06, 1.26)	0.59 (0.16, 2.19)	0.64 (0.29, 1.43)	0.64 (0.32, 1.28)
≥ 30 years				
Q2	3.12 (0.32, 30.38)	1.21 (0.26, 5.60)	1.16 (0.36, 3.75)	1.14 (0.44, 2.91)
Q3	6.39 (0.76, 53.84)	2.45 (0.59, 10.19)	0.56 (0.15, 2.17)	1.19 (0.46, 3.09)
Q4	5.20 (0.60, 45.12)	→ 1.78 (0.40, 8.00)	> 0.49 (0.13, 1.86)	0.86 (0.32, 2.32)
Neonatal sex		7,0	1000	
Males				
Q2	0.53 (0.11, 2.61)	0.77 (0.28, 2.18)	0.66 (0.27, 1.60)	0.78 (0.39, 1.59)
Q3	1.33 (0.34, 5.29)	1.24 (0.46, 3.38)	0.63 (0.25, 1.58)	1.03 (0.51, 2.09)
Q4	0.99 (0.23, 4.28)	0.85 (0.29, 2.53)	0.64 (0.26, 1.57)	0.87 (0.42, 1.80)
Females				
Q2	0.70 (0.16, 3.11)	0.54 (0.09, 3.22)	■ → 0.62 (0.23, 1.70)	0.64 (0.27, 1.50)
Q3	0.51 (0.10, 2.72)	3.00 (0.53, 16.96)	0.63 (0.23, 1.74)	1.02 (0.43, 2.38)
Q4	0.27 (0.04, 1.91)	0.60 (0.09, 4.13)	0.48 (0.17, 1.40)	- 0.53 (0.21, 1.33) -
Excessive weight gain	,	(,		(,
No				
Q2	0.86 (0.27, 2.77)	0.93 (0.34, 2.55)	0.50 (0.23, 1.09)	0.91 (0.25, 3.39)
Q3	1.45 (0.44, 4.77)	2.04 (0.74, 5.60)	-> 0.54 (0.23, 1.23)	0.88 (0.26, 3.06)
Q4	0.62 (0.16, 2.38)	0.77 (0.25, 2.42)	0.43 (0.19, 0.98)	1.00 (0.29, 3.46)
Yes	(****, =****)	(1.12, 1.12)	(,)	(0.23)
Q2	0.45 (0.07, 2.85)	0.22 (0.02, 2.13)	0.91 (0.25, 3.39)	0.65 (0.21, 1.99)
Q3	0.10 (0.01, 2.38)	0.86 (0.16, 4.61)	0.88 (0.26, 3.06)	0.96 (0.35, 2.66)
Q4	0.50 (0.03, 7.51)	1.33 (0.25, 7.12)	1.00 (0.29, 3.46)	1.15 (0.42, 3.15)
Season	0.50 (0.00, 7.51)	1.00 (0.20, 1.12)	1.00 (0.25, 0.40)	1.10 (0.42, 0.10)
Winter and spring				
Q2	0.62 (0.18, 2.13)	0.63 (0.23, 1.74)	0.47 (0.17, 1.31)	0.55 (0.26, 1.17)
Q3	0.86 (0.26, 2.85)	1.40 (0.54, 3.62)	→ 0.77 (0.30, 1.98)	1.13 (0.56, 2.28)
Q4	0.70 (0.20, 2.46)	0.83 (0.29, 2.32)	0.61 (0.24, 1.57)	0.73 (0.35, 1.52)
Summer and autumn	0.70 (0.20, 2.40)	0.03 (0.23, 2.32)	0.01 (0.24, 1.31)	0.75 (0.55, 1.52)
Q2	0.78 (0.08, 8.08)	1.37 (0.23, 8.37)	→ 0.71 (0.29, 1.78)	0.87 (0.38, 1.97)
Q3	1.83 (0.19, 18.11)	2.14 (0.37, 12.46)	0.48 (0.18, 1.29)	0.72 (0.31, 1.70)
Q4	1.49 (0.12, 19.00)	1.06 (0.15, 7.31)	0.52 (0.19, 1.39)	0.65 (0.27, 1.58)
Iron supplement use	1.43 (0.12, 13.00)	1.00 (0.15, 7.51)	0.52 (0.15, 1.55)	0.05 (0.27, 1.50)
No No				
	0.45 (0.40, 4.63)	0.00 (0.05 4.70)	0.40 (0.40.4.04)	0.50 (0.00 4.40)
Q2	0.45 (0.12, 1.63)	0.66 (0.25, 1.76)	0.48 (0.19, 1.24)	0.58 (0.29, 1.16)
Q3	0.87 (0.23, 3.27)	0.99 (0.34, 2.86)	0.76 (0.28, 2.07)	0.93 (0.44, 1.97)
Q4	0.40 (0.08, 2.10)	1.12 (0.39, 3.21)	0.83 (0.33, 2.09)	1.02 (0.50, 2.10)
Yes		0.07 (0.47.05.00)	0.75 (0.04.0.00)	0.04 (0.00, 0.50)
Q2	_	2.07 (0.17, 25.38)	0.75 (0.24, 2.29)	0.91 (0.33, 2.52)
Q3	-	4.57 (0.47, 44.87)	0.55 (0.19, 1.61)	0.98 (0.38, 2.54)
Q4	-	1.29 (0.12, 14.51)	0.46 (0.16, 1.37)	0.59 (0.22, 1.59)
		012	012	012 01:

Supplementary Figure 4 Stratified analyses for association of total vitamin D intake in the second trimester with the risk of small vulnerable newborns

Values were represented as ORs (95% CIs) from logistic regression models and were adjusted for age, prepregnancy BMI, gestational weight gain, nation, education levels, monthly incomes, primiparity, smoking, drinking, season, regular exercise, outdoor activities, sun protection, iron supplement use, neonatal sex, labor way, and total energy intake. The lowest quartile (Q1) was applied as a reference.

"—" indicates that the sample size of this group is small and the model can not fit effectively.

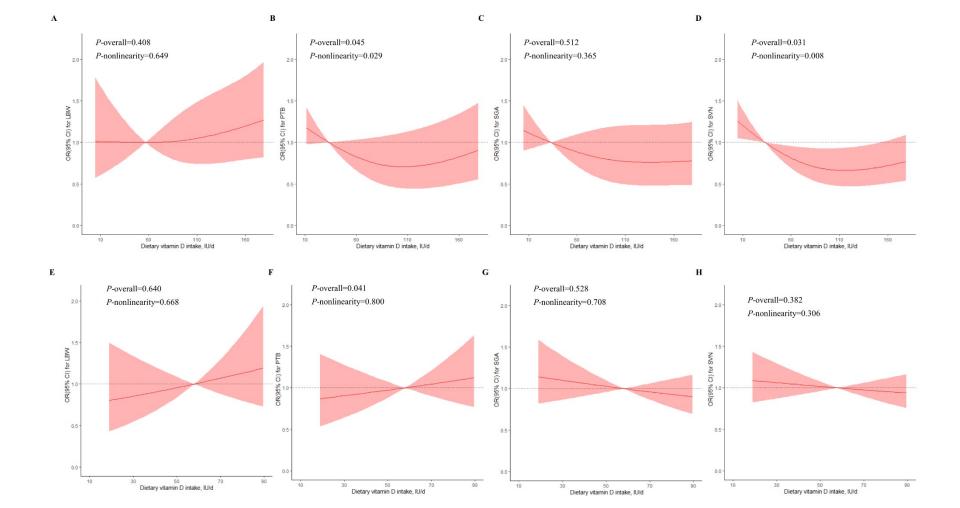

LBW, low birth weight; PTB, preterm birth; Q, quartile; SGA, small for gestational age; SVN, small vulnerable newborns.

Supplementary Figure 5 Association of vitamin D intake in the first and second trimesters with the risk of small vulnerable newborns when additionally adjusted for aMed score

Values were represented as ORs (95% CIs) from logistic regression models and were adjusted for aMed, age, prepregnancy BMI, gestational weight gain, nation, education levels, monthly incomes, primiparity, smoking, drinking, season, regular exercise, outdoor activities, sun protection, iron supplement use, neonatal sex, labor way, and total energy intake. The lowest quartile (Q1) was applied as a reference.

aMed, alternate Mediterranean diet score; LBW, low birth weight; PTB, preterm birth; Q, quartile; SGA, small for gestational age; SVN, small vulnerable newborns.

400 550 700 Vitamin D supplementation, IU/d 400 550 700 Vitamin D supplementation, IU/d


400 550 700 Vitamin D supplementation, IU/d

400 500 600 700 Vitamin D supplementation, IU/d

Supplementary Figure 6 Restricted cubic spline analyses for association of vitamin D supplementation in the first and second trimesters with the risk of small vulnerable newborns

Figures 5A-5D show the correlation between vitamin D supplementation in the first trimester and the risk of LBW, PTB, SGA and SVN, respectively. Figures 5E-5H show the correlation between vitamin D supplementation in the second trimester and the risk of LBW, PTB, SGA and SVN, respectively. In the Odd ratios (solid lines) and 95% CIs (shaded areas) were adjusted for age, prepregnancy BMI, gestational weight gain, nation, education levels, monthly incomes, primiparity, smoking, drinking, season, regular exercise, outdoor activities, sun protection, iron supplement use, neonatal sex, labor way, total energy intake, and dietary vitamin D intake. Knots were placed at the 10th, 50th, and 90th percentiles, and the reference value was set at the intake of 400 IU/d.

LBW, low birth weight; PTB, preterm birth; SGA, small for gestational age; SVN, small vulnerable newborns.

Supplementary Figure 7 Restricted cubic spline analyses for association of dietary vitamin D intake in the first and second trimesters with the risk of small vulnerable newborns

Figures 6A-6D show the correlation between dietary vitamin D intake in the first trimester and the risk of LBW, PTB, SGA and SVN, respectively. Figures 6E-6H show the correlation between dietary vitamin D intake in the second trimester and the risk of LBW, PTB, SGA and SVN, respectively. In the Odd ratios (solid lines) and 95% CIs (shaded areas) were adjusted for age, prepregnancy BMI, gestational weight gain, nation, education levels, monthly incomes, primiparity, smoking, drinking, season, regular exercise, outdoor activities, sun protection, iron supplement use, neonatal sex, labor way, total energy intake, and dietary vitamin D intake. Knots were placed at the 10th, 50th, and 90th percentiles, and the reference value was set at the 10th percentiles.

LBW, low birth weight; PTB, preterm birth; SGA, small for gestational age; SVN, small vulnerable newborns.