Electronic Supplementary Material (ESI) for Food & Function. This journal is © The Royal Society of Chemistry 2024

Supplementary materials

- 1 2
- 3 Supplementary Methods 1. Dietary assessment
- 4 Supplementary Methods 2. Outcome ascertainment
- 5 Supplementary Methods 3. Assessment of covariates
- 6 Supplementary Methods 4. Statistical analysis
- 7 Supplementary Table 1. Details of dietary patterns.
- 8 Supplementary Table 2. Associations between dietary patterns and gastrointestinal disorders risk
- 9 Supplementary Table 3. Associations between dietary patterns and gastrointestinal disorders in sensitivity
- 10 analyses
- 11 Supplementary Table 4. Baseline characteristics of participants excluded because of missing covariates data
- 12 and the population with complete 24-hour recall diet data and no certain disease or pregnant at baseline
- 13 Supplementary Table 5. Associations between dietary patterns and gastrointestinal disorders risk after
- 14 multiple imputation for missing values of covariates
- 15 Supplementary Table 6. Associations between food groups and gastrointestinal disorders
- 16 Supplementary Figure 1. Flowchart of participants included in the analyses
- 17 Supplementary Figure 2. Multivariable-adjusted cubic spline analysis of dietary pattern scores with the risk
- 18 of gastrointestinal disorders
- 19 Supplementary Figure 3. Multivariable-adjusted cubic spline analysis of dietary pattern scores with the risk
- 20 of inflammatory bowel disease
- Supplementary Figure 4. Multivariable-adjusted cubic spline analysis of dietary pattern scores with the risk
 of polyps
- Supplementary Figure 5. Multivariable-adjusted cubic spline analysis of dietary pattern scores with the risk
 of adenomas
- 25 **Supplementary Figure 6.** Multivariable-adjusted cubic spline analysis of dietary pattern scores with the risk 26 of irritable bowel syndrome
- 27 Supplementary Figure 7. Multivariable-adjusted cubic spline analysis of dietary pattern scores with the risk
- 28 of gastroesophageal reflux disease
- 29 Supplementary Figure 8. Multivariable-adjusted cubic spline analysis of dietary pattern scores with the risk
- 30 of peptic ulcer disease
- 31 Supplementary Figure 9. The associations between dietary patterns and gastrointestinal disorders in
- 32 subgroups
- 33 Supplementary Figure 10. Associations of AHEI-2010, AMED and DASH with gastrointestinal disorders
- 34 after removing food group components
- 35 **Reference**

36 Supplementary Methods 1. Dietary assessment

- 37 The 24-hour dietary assessments of UK Biobank collected the consumption of up to 206 types of foods and 32 types of drinks
- 38 during the previous 24 hours since recruitment¹. Participants recorded the intake for each food item with standard portion size. The
- 39 total intake of nutrients was computed by summing up the nutrient content of each contributing food item multiplied by its
- 40 consumption daily. The total energy intake was calculated by summing up the calorie contributed from each food item multiplied by
- 41 its consumption daily.

42 Supplementary Methods 2. Outcome ascertainment

- 43 ICD-10 codes of IBD were K500, K501, K508-K515, K518 and K519. ICD-10 codes of polyps were K621 and K635. ICD-10
- 44 codes of adenomas were D122-D126. ICD-10 codes of IBS were K580 and K589. ICD-10 codes of GORD were K210 and K219.
- 45 ICD-10 codes of PUD were K250-K257, K259-K267, K269-K277, K279-K287 and K289.

46 Supplementary Methods 3. Assessment of covariates

- 47 Age, sex and race were obtained at baseline. Body mass index (BMI) was calculated as weight divided by height squared (kg/m²)
- 48 during the initial Assessment Centre visit. Physical activity was assessed by the International Physical Activity Questionnaire (IPAQ)
- 49 and metabolic equivalent task (MET) score was calculated using the IPAQ guideline^{2,3}. Smoking status, alcohol intake, regular
- 50 multivitamin use, regular aspirin use, and regular nonsteroidal anti-inflammatory drugs (NSAID) use were obtained from the
- 51 Touchscreen questionnaire.
- 52 The race was classified as white, black, Asian, mixed, or others in UK Biobank. Body mass index (BMI) was classified as <18.5,
- 53 18.5-24.9, 25.0-29.9, or \geq 30.0 kg/m². Physical activity was grouped by trisecting the metabolic equivalent of task hours per week.
- 54 Smoking status was classified as never, current, or former smoker. Alcohol drinking status was classified as none drinking,
- 55 moderate drinking (<2 drinks/day for men, and <1 drink/day for women), or heavy drinking (≥ 2 drinks/day for men, and ≥ 1
- 56 drink/day for women). Regular multivitamin use, regular aspirin use, and regular nonsteroidal antiinflammatory drugs (NSAID) use
- 57 were classified as use and non-use.

58 Supplementary Methods 4. Statistical analysis

Subgroup analyses stratified by age (<55 years and \geq 55 years), sex (male and female), BMI (<25 kg/m2 and \geq 25 kg/m2), educational level (less than high school education, high school degree, college or university degree), physical activity (grouped by trisecting the metabolic equivalent of task hours per week), smoking status (never/former and current smoker), age at onset of GI disorders (<50 years and \geq 55 years), Townsend deprivation index (grouped according to trisections) were conducted to test the potential heterogeneity. Subgroup analyses compared the highest with the lowest quartile of dietary pattern scores.

64 To assess the robustness of the results, sensitivity analyses were further performed by removing alcohol component from dietary

65 patterns, removing participants with incidental GI disorders in the previous two years of follow-up to lessen the probability of reverse 66 causation, removing BMI from the covariate list because of its possible mediation effect, or further adjusting for the number of

- 67 completed dietary surveys.
- 68 In the analyses of examining the relationships between dietary patterns and incident risk of GI multi-morbidity, we defined the

69 outcomes as developing only one GI disorder, developing two GI disorders, and developing three or over GI disorders. Relative

70 risks (RRs) and 95% CIs were calculated by modified Poisson regression model⁴. The covariate adjustment was consistent with the

71 multivariable Cox regression model. P for trend was calculated by logistic regression models.

Dietary			
AHEI-2010	Higher points assigned to (1) greater intal chain omega-3 fatty acids, and polyunsatu sugar-sweetened beverages and fruit juice Scoring method of AHEI-2010 ⁵ : All comp the total score ranged from 0 (non-adhere	kes of fruits, vegetables, whole arated fatty acids; (2) lower intak- es, trans fat, sodium; and (3) mo onents were scored from 0 (un ence) to 100 (perfect adherence	grains, nuts and legumes, long es of red and processed meats, oderate intake of alcohol ^{5,6} . healthy) to 10 (healthiest), and c). The components and criteria
	for scoring of AHEI-2010 are listed in the participant ate 3 servings of vegetables pe by 5 (criteria for maximum score) and the	following table. Taking vegetal er day, his score on the entry for n multiplied by 10.	bles intake as an example, if a vegetables would be 3 divided
	Component	Criteria for minimum score (0)	Criteria for maximum score (10)
	Vegetables, servings/d	0	≥5
	Fruit, servings/d	0	≥4
	Whole grains, g/d		
	Women	0	75
	Men	0	90
	Sugar-sweetened beverages and fruit juice, servings/d	≥1	0
	Nuts and legumes, servings/d	0	≥1
	Red/processed meat, servings/d	≥1.5	0
	<i>trans</i> Fat, % of energy	≥4	≤0.5
	Long-chain (n-3) fats (EPA + DHA), mg/d	0	250
	PUFA, % of energy	≤2	≥10
	Sodium, mg/d	Highest decile	Lowest decile
	Alcohol, drinks/d		
	Women	≥2.5	0.5–1.5
	Men	≥3.5	0.5–2.0
AMED	Higher points assigned to (1) greater intal seafood, and ratio of monounsaturated to meats; and (3) moderate intake of alcohol	kes of fruits, vegetables, whole saturated fatty acids; (2) lowe ^{6,7} .	grains, nuts, legumes, fish and r intakes of red and processed
	Scoring method of AMED: For fruits, veget of monounsaturated to saturated fatty acid point; otherwise they received 0 points. received 1 point. Alcohol intake between 5	tables, whole grains, nuts, legun ds, participants with intake abov red and processed meats co 5 and 15 g/d received 1 point.	nes, fish and seafood, and ratio re the median intake received 1 onsumption below the median
DASH	Higher points assigned to (1) greater intal low-fat dairy; and (2) lower intakes of r sodium ^{6,8} .	kes of fruits, vegetables, whole ed and processed meats, sug	grains, nuts and legumes, and ar-sweetened beverages, and

72 Supplementary Table 1. Details of dietary patterns

	Scoring method of DASH: For each of the components, we classified participants into quintiles according
	to their intake ranking. Component score for fruits, vegetables, nuts and legumes, low-fat dairy products,
	and whole grains is the participants' quintile ranking. For example, quintile 1 was assigned 1 point and
	quintile 5, 5 points. For sodium, red and processed meats, and sweetened beverages, low intake was
	desired. Therefore, the lowest quintile was given a score of 5 points and the highest quintile, 1 point. We
	then summed up the component scores to obtain an overall ⁸ .
PDIs	Higher points assigned to (1) greater intakes of fruits, vegetables, whole grains, nuts, legumes, tea and
	coffee, and vegetable oils; (2) lower intakes of meats, eggs, fish and seafood, miscellaneous animal-
	based foods, dairy, and animal fat; and (3) higher intakes (PDI, unhealthful PDI) or lower intakes (healthful
	PDI) of potatoes, refined grains, sugar-sweetened beverages, fruit juices, sweets and desserts ^{6,9} . The
	detailed calculations are as follows:
	Scoring method of PDIs: For PDI, participants received a score of 5 for each plant food group for which
	they were above the highest quintile of consumption, a score of 4 for each plant food group for which
	they were above the second highest quintile but below the highest quintile, and so on, with a score of 1
	for consumption below the lowest quintile (positive scores). On the other hand, participants received a
	score of 1 for each animal food group for which they were above the highest quintile of consumption, a
	score of 2 for each animal food group for which they were between the highest and second highest
	quintiles, and so on, with a score of 5 for consumption below the lowest quintile (reverse scores). For
	hPDI, positive scores were given to healthy plant food groups, and reverse scores to less healthy plant
	food groups and animal food groups. Finally, for uPDI, positive scores were given to less healthy plant
	food groups, and reverse scores to healthy plant food groups and animal food groups. The 18 food
	group scores for an individual were summed to obtain the indices ⁹ .
LCDs	Higher points assigned to (1) greater intakes of protein (animal protein for Animal-rich LCD, plant protein
	for Plant-rich LCD), and fat (animal fat for Animal-rich LCD, plant fat for Plant-rich LCD); and (2) lower
	intakes of carbohydrate ^{6,10} .
	Scoring method of LCDs: We divided the study participants into 11 strata each of fat, protein, and
	carbohydrate intake, expressed as a percentage of energy. For fat and protein, participants in the highest
	stratum received 10 points for that macronutrient, participants in the next stratum received 9 points, and
	so on down to participants in the lowest stratum, who received 0 points. For carbohydrate, the order of
	the strata was reversed. The points for each of the three macronutrients were then summed to create the
	overall diet score. The animal-rich LCD was calculated according to the percentage of energy as
	carbohydrate, the percentage of energy as animal protein, and the percentage of energy as animal fat.
	The plant-rich LCD was calculated according to the percentage of energy as carbohydrate, the
	percentage of energy as vegetable protein, and the percentage of energy as vegetable fat ¹⁰ .

GDQSs	Higher points assigned	ed to (1) g	reater inta	kes of crucif	erous ve	getables,	deep orang	ge vegetab	oles, other
	vegetables, deep ora	nge tubers	s, citrus frui	ts, deep orai	nge fruits,	, other frui	ts, dark gre	en leafy ve	egetables,
	whole grains, legume	es, liquid o	ils, nuts ar	id seeds, po	ultry and	game me	at, fish and	shellfish,	eggs, and
	low-fat dairy; (2) mod	derate inta	kes of higl	n-fat dairy, a	nd red m	eat; and	(3) lower in	takes of d	eep- fried
	foods, refined grains	and baked	d goods, w	hite roots an	d tubers,	sweets a	nd ice crea	m, proces	sed meat,
	sugar-sweetened bev	/erages, a	nd juice ^{6,11}						
	The GDQS is obtained	ed by sum	iming poin	ts across all	of the 25	5 food gro	oups, range	s from 0 t	o 49. The
	GDQS+ submetric in	cludes the	16 health	y food group	s include	ed in the C	GDQS, is so	cored with	the same
	categories of consum	ned amour	nts used ir	the GDQS,	and rang	ges from	0 to 32. Th	e GDQS-	submetric
	includes the 9 GDQS	food grou	ups classifi	ed as unhea	lthy or ur	nhealthy ir	n excessive	amounts,	is scored
	with the same catego	ries of cor	nsumed an	nounts used	in the GD	QS, and	ranges from	n 0 to 17 ¹¹	
	Scoring method of G	DQSs ¹¹ :							
		Categori	es of cons	umed amour	nts (g/d)		Point	values	
	Food group	1	2	3	4	1	2	3	4
	Healthy								
	Citrus fruits	<24	24-69	>69		0	1	2	
	Deep orange fruits	<25	25-123	>123		0	1	2	
	Other fruits	<27	27-107	>107		0	1	2	
	Dark green leafy	<13	13-37	>37		0	2	4	
	vegetables								
	Cruciferous	<13	13-36	>36		0	0.25	0.5	
	vegetables								
	Deep orange	<9	9-45	>45		0	0.25	0.5	
	vegetables								
	Other vegetables	<23	23-114	>114		0	0.25	0.5	
	Legumes	<9	9-42	>42		0	2	4	
	Deep orange	<12	12-63	>63		0	0.25	0.5	
	tubers								
	Nuts and seeds	<7	7-13	>13		0	2	4	
	Whole grains	<8	8-13	>13		0	1	2	
	Liquid oils	<2	2-7.5	>7.5		0	1	2	
	Fish and shellfish	<14	14-71	>71		0	1	2	
	Poultry and game	<16	16-44	>44		0	1	2	
	meat								
	Low fat dairy	<33	33-132	>132		0	1	2	
	Eggs	<6	6-32	>32		0	1	2	
	Unhealthy in								
	excessive amounts								
	High fat dairy (in	<35	35-142	≥142-734	>734	0	1	2	0
	milk equivalents)								
	Red meat	<9	9-46	>46		2	1	0	
	Unhealthy								
	Processed meat	<9	9-30	>30		2	1	0	

	Pofined grains	-7	7 22	\ 22		2	1	0					
	and baked goods	~1	7-33	~33		2	1	0					
	Sweets and ice	<13	13-37	>37		2	1	0					
	cream	10	10 07			-							
	Sugar-sweetened	<57	57-180	>180		2	1	0					
	beverages												
	Juice	<36	36-144	>144		2	1	0					
	White roots and	<27	27-107	>107		2	1	0					
	tubers												
	Purchased deep	<9	9-45	>45		2	1	0					
	fried foods												
DII	We used the DII calcul	ation me	thod devel	oped by Sh	ivappa et	al ¹² . The D	II for this a	study was o	computed				
	using data on 31 ou	it of the	e 45 varia	bles inclue	ding pro-i	nflammato	ry compo	nents (vita	amin B ₁₂ ,				
	carbohydrate, choleste	erol, ene	ergy, fat, ii	ron, proteir	n, saturate	ed fat, tra	ns fat) ar	nd anti-infla	ammatory				
	components [alcohol, v	vitamin B	₆ , β-Carote	ene, fiber, f	olic acid, g	garlic, Mg,	monounsa	aturated fat	t (MUFA),				
	niacin, n-3 fatty acids,	niacin, n-3 fatty acids, n-6 fatty acids, onion, PUFA, riboflavin, Se, thiamin, vitamin A, vitamin C, vitamin											
	E, vitamin D, Zn, pepper].												
	Scoring method of DII: Calculation of the DII is based on dietary intake data that are then linked to the												
	regionally representative world database which provided a robust estimate of a mean and standard												
	deviation for each pa	rameter.	First, we	subtracted	d the 'glo	bal daily r	nean inta	ke' from t	he intake				
	participants reported a	nd divid	ed this val	ue by its s	tandard d	eviation. T	o minimiz	e the effec	t of 'right				
	skewing', this value wa	s conver	ted to a pe	rcentile sco	ore. Each p	percentile s	score was	doubled ar	nd then '1'				
	was subtracted. The	centred	percentile	value for	each food	d paramete	er was th	en multipli	ed by its				
	respective 'overall foo	d param	eter-specif	ic inflamma	atory effeo	ct score' to	o obtain tl	ne 'food pa	arameter-				
	specific DII score'. Fin	ally, all	of the 'foo	d paramete	er-specific	DII scores	s' were su	mmed to c	reate the				
	'overall DII score' for	an indiv	vidual ¹² . Fo	od parame	eters inclu	ided in th	e dietary	inflammato	ory index,				
	inflammatory effect sco	ores, and	intake valu	ues from the	e global co	omposite d	ata set are	e shown as	follows ¹² :				
		Ov	erall inflam	matory	Global	daily mean	ר ו						
	Food parameters		effect sco	ore	intake	e (units/d)	S	tandard de	eviation				
	Alcohol (g)		-0.278		,	13.98		3.72					
	Vitamin B12 (mg)		0.106			5.15		2.70					
	Vitamin B6 (mg)		-0.365			1.47		0.74					
	β-Carotene (mg)		-0.584		;	3718		1720					
	Caffeine (g)		-0.110			8.05		6.67					
	Carbohydrate (g)		0.097		2	272.2		40.0					
	Cholesterol (mg)		0.110		2	279.4		51.2					
	Energy (kcal)		0.180			2056		338					
	Eugenol (mg)		-0.140			0.01		0.08					
	Total fat (g)		0.298			71.4		19.4					
	Fibre (g)		-0.663			18.8		4.9					
	Folic acid (mg)		-0.190		2	273.0		70.7					
	Garlic (g)		-0.412			4.35		2.90					
	Ginger (g)		-0.453			59.0		63.2					

Fe (mg)	0.032	13.35	3.71
Mg (mg)	-0.484	310.1	139.4
MUFA (g)	-0.009	27.0	6.1
Niacin (mg)	-0.246	25.9	11.77
n-3 Fatty acids (g)	-0.436	1.06	1.06
n-6 Fatty acids (g)	-0.159	10.80	7.50
Onion (g)	-0.301	35.9	18.4
Protein (g)	0.021	79.4	13.9
PUFA (g)	-0.337	13.88	3.76
Ribo avin (mg)	-0.068	1.70	0.79
Saffron (g)	-0.140	0.37	1.78
Saturated fat (g)	0.373	28.6	8.0
Se (mg)	-0.191	67.0	25.1
Thiamin (mg)	-0.098	1.70	0.66
Trans fat (g)	0.229	3.15	3.75
Turmeric (mg)	-0.785	533.6	754.3
Vitamin A (RE)	-0.401	983.9	518.6
Vitamin C (mg)	-0.424	118.2	43.46
Vitamin D (mg)	-0.446	6.26	2.21
Vitamin E (mg)	-0.419	8.73	1.49
Zn (mg)	-0.313	9.84	2.19
Green/black tea (g)	-0.536	1.69	1.53
Flavan-3-ol (mg)	-0.415	95.8	85.9
Flavones (mg)	-0.616	1.55	0.07
Flavonols (mg)	-0.467	17.70	6.79
Flavonones (mg)	-0.250	11.70	3.82
Anthocyanidins (mg)	-0.131	18.05	21.14
Iso avones (mg)	-0.593	1.20	0.20
Pepper (g)	-0.131	10.00	7.07
Thyme/oregano (mg)	-0.102	0.33	0.99
Rosemary (mg)	-0.013	1.00	15.00

73 Abbreviations: AHEI-2010, Alternate Healthy Eating Index-2010; AMED, Alternate Mediterranean Diet; DASH, Dietary Approaches to Stop

74 Hypertension; DII, dietary inflammatory index; GDQS, Global Diet Quality Score; GDQS-, negative submetric of Global Diet Quality Score; GDQS+,

75 positive submetric of Global Diet Quality Score; hPDI, healthful plant-based diet index; LCD, low carbohydrate diet; PDI, plant-based diet index; uPDI,

76 unhealthful plant-based diet index.

77 Supplementary Table 2. Associations between dietary patterns and gastrointestinal disorders risk

Dietary		HR (95% CI) ^a							
patterns		Gastrointostinal	Inflammatory	Polyne	Adonomas	Irritable bowel	Gastroosonbagoal	Pontic ulcor	
		disorders	howel disease	r olyps	Adenomas	syndrome	reflux disease	disease	
		(n=20858)	(n=666)	(n=6910)	(n=4254)	(n=2232)	(n=9942)	(n=1713)	
AHEI-2010						()		(
Model 1 ^b	Quarter 1	1 (Ref)	1 (Ref)	1 (Ref)	1 (Ref)	1 (Ref)	1 (Ref)	1 (Ref)	
	Quarter 2	0.92 (0.89, 0.95)*	0.94 (0.77, 1.15)	0.90 (0.84, 0.96)*	0.94 (0.87, 1.02)	0.92 (0.81, 1.03)	0.89 (0.85, 0.94)*	0.87 (0.77, 0.99)*	
	Quarter 3	0.84 (0.81, 0.88)*	0.80 (0.64, 0.99)*	0.81 (0.76, 0.86)*	0.86 (0.79, 0.94)*	0.93 (0.82, 1.04)	0.84 (0.79, 0.88)*	0.80 (0.70, 0.91)*	
	Quarter 4	0.78 (0.75, 0.81)*	0.70 (0.56, 0.88)*	0.76 (0.71, 0.81)*	0.80 (0.73, 0.87)*	0.84 (0.75, 0.95)*	0.78 (0.73, 0.82)*	0.73 (0.63, 0.84)*	
Model 2 ^c	Quarter 1	1 (Ref)	1 (Ref)	1 (Ref)	1 (Ref)	1 (Ref)	1 (Ref)	1 (Ref)	
	Quarter 2	0.95 (0.92, 0.99) *	0.97 (0.79, 1.19)	0.95 (0.89, 1.01)	0.99 (0.91, 1.07)	0.92 (0.82, 1.04)	0.92 (0.87, 0.98)*	0.92 (0.80, 1.04)	
	Quarter 3	0.90 (0.86, 0.93)*	0.84 (0.68, 1.05)	0.88 (0.82, 0.94)*	0.93 (0.86, 1.02)	0.94 (0.84, 1.06)	0.89 (0.84, 0.94)*	0.86 (0.75, 0.98)*	
	Quarter 4	0.86 (0.82, 0.89)*	0.76 (0.60, 0.95)*	0.86 (0.80, 0.92)*	0.90 (0.82, 0.98)*	0.86 (0.77, 0.98)*	0.85 (0.81, 0.90)*	0.80 (0.70, 0.92)*	
AMED									
Model 1 ^b	Quarter 1	1 (Ref)	1 (Ref)	1 (Ref)	1 (Ref)	1 (Ref)	1 (Ref)	1 (Ref)	
	Quarter 2	0.93 (0.90, 0.96)*	0.96 (0.78, 1.17)	0.95 (0.89, 1.01)	0.97 (0.89, 1.05)	0.96 (0.86, 1.07)	0.90 (0.86, 0.95)*	0.81 (0.71, 0.91)*	
	Quarter 3	0.86 (0.82, 0.89)*	0.93 (0.73, 1.18)	0.86 (0.79, 0.92)*	0.90 (0.82, 0.99)*	0.87 (0.76, 1.00)*	0.83 (0.78, 0.89)*	0.74 (0.64, 0.86)*	
	Quarter 4	0.78 (0.75, 0.81)*	0.71 (0.56, 0.90)*	0.79 (0.73, 0.85)*	0.83 (0.76, 0.91)*	0.84 (0.74, 0.96)*	0.75 (0.71, 0.79)*	0.71 (0.61, 0.81)*	
Model 2 ^c	Quarter 1	1 (Ref)	1 (Ref)	1 (Ref)	1 (Ref)	1 (Ref)	1 (Ref)	1 (Ref)	
	Quarter 2	0.96 (0.92, 0.99)*	0.97 (0.80, 1.19)	0.98 (0.92, 1.05)	1.00 (0.92, 1.08)	0.97 (0.86, 1.08)	0.93 (0.88, 0.98)*	0.84 (0.74, 0.95)*	
	Quarter 3	0.90 (0.86, 0.94)*	0.95 (0.75, 1.21)	0.90 (0.84, 0.98)*	0.95 (0.86, 1.05)	0.88 (0.77, 1.01)	0.88 (0.82, 0.93)*	0.78 (0.67, 0.91)*	
	Quarter 4	0.85 (0.81, 0.88)*	0.74 (0.58, 0.94)*	0.87 (0.81, 0.93)*	0.92 (0.83, 1.01)	0.86 (0.76, 0.98)*	0.82 (0.77, 0.88)*	0.78 (0.67, 0.90)*	
DASH									
Model 1 ^b	Quarter 1	1 (Ref)	1 (Ref)	1 (Ref)	1 (Ref)	1 (Ref)	1 (Ref)	1 (Ref)	
	Quarter 2	0.91 (0.88, 0.95)*	0.82 (0.67, 1.02)	0.91 (0.85, 0.97)*	0.94 (0.87, 1.02)	1.01 (0.89, 1.14)	0.91 (0.86, 0.96)*	0.86 (0.75, 0.98)*	
	Quarter 3	0.83 (0.80, 0.86)*	0.74 (0.61, 0.91)*	0.80 (0.75, 0.85)*	0.82 (0.76, 0.89)*	0.90 (0.80, 1.01)	0.84 (0.80, 0.89)*	0.75 (0.66, 0.85)*	
	Quarter 4	0.76 (0.73, 0.80)*	0.72 (0.57, 0.90)*	0.74 (0.69, 0.80)*	0.75 (0.69, 0.82)*	0.81 (0.71, 0.92)*	0.77 (0.73, 0.82)*	0.67 (0.58, 0.77)*	
Model 3 ^d	Quarter 1	1 (Ref)	1 (Ref)	1 (Ref)	1 (Ref)	1 (Ref)	1 (Ref)	1 (Ref)	
	Quarter 2	0.95 (0.92, 0.99)*	0.86 (0.69, 1.06)	0.97 (0.91, 1.03)	1.00 (0.92, 1.09)	1.01 (0.89, 1.14)	0.94 (0.88, 0.99)*	0.90 (0.79, 1.03)	

Dietary patterns			HR (95% Cl) ^a							
		Gastrointestinal	Inflammatory	Polyps	Adenomas	Irritable bowel	Gastroesophageal	Peptic ulcer		
		disorders	bowel disease			syndrome	reflux disease	disease		
		(n=20858)	(n=666)	(n=6910)	(n=4254)	(n=2232)	(n=9942)	(n=1713)		
	Quarter 3	0.89 (0.86, 0.93)*	0.79 (0.64, 0.97)*	0.89 (0.83, 0.95)*	0.91 (0.84, 0.99)*	0.90 (0.80, 1.01)	0.89 (0.84, 0.94)*	0.82 (0.72, 0.93)*		
	Quarter 4	0.85 (0.81, 0.88)*	0.79 (0.62, 0.99)*	0.87 (0.80, 0.93)*	0.88 (0.80, 0.96)*	0.81 (0.72, 0.92)*	0.85 (0.80, 0.90)*	0.75 (0.65, 0.87)*		
PDI										
Model 1 ^b	Quarter 1	1 (Ref)	1 (Ref)	1 (Ref)	1 (Ref)	1 (Ref)	1 (Ref)	1 (Ref)		
	Quarter 2	0.96 (0.93, 1.00)	0.90 (0.73, 1.11)	0.97 (0.90, 1.03)	0.99 (0.91, 1.08)	0.89 (0.79, 1.01)	0.99 (0.94, 1.05)	0.84 (0.74, 0.96)*		
	Quarter 3	0.89 (0.86, 0.92)*	0.87 (0.71, 1.07)	0.88 (0.82, 0.93)*	0.88 (0.81, 0.95)*	0.91 (0.81, 1.02)	0.91 (0.86, 0.96)*	0.77 (0.68, 0.88)*		
	Quarter 4	0.86 (0.83, 0.90)*	0.79 (0.63, 0.98)*	0.83 (0.78, 0.89)*	0.79 (0.72, 0.86)*	0.96 (0.85, 1.08)	0.87 (0.83, 0.93)*	0.75 (0.66, 0.86)*		
Model 3 ^d	Quarter 1	1 (Ref)	1 (Ref)	1 (Ref)	1 (Ref)	1 (Ref)	1 (Ref)	1 (Ref)		
	Quarter 2	0.99 (0.96, 1.03)	0.92 (0.74, 1.13)	1.02 (0.95, 1.08)	1.05 (0.96, 1.14)	0.89 (0.79, 1.00)*	1.02 (0.96, 1.08)	0.87 (0.77, 1.00)*		
	Quarter 3	0.94 (0.90, 0.97)*	0.90 (0.73, 1.11)	0.95 (0.89, 1.01)	0.96 (0.89, 1.04)	0.90 (0.80, 1.01)	0.95 (0.90, 1.00)	0.83 (0.73, 0.95)*		
	Quarter 4	0.93 (0.89, 0.97)*	0.82 (0.65, 1.03)	0.94 (0.87, 1.01)	0.90 (0.82, 0.98)*	0.94 (0.84, 1.06)	0.93 (0.88, 0.99)*	0.83 (0.72, 0.95)*		
hPDI										
Model 1 ^b	Quarter 1	1 (Ref)	1 (Ref)	1 (Ref)	1 (Ref)	1 (Ref)	1 (Ref)	1 (Ref)		
	Quarter 2	0.93 (0.89, 0.96)*	0.86 (0.70, 1.05)	0.92 (0.86, 0.98)*	0.92 (0.85, 1.00)	1.00 (0.89, 1.12)	0.93 (0.88, 0.98)*	0.94 (0.83, 1.08)		
	Quarter 3	0.91 (0.87, 0.94)*	0.72 (0.58, 0.90)*	0.89 (0.83, 0.96)*	0.93 (0.85, 1.01)	0.88 (0.78, 0.99)*	0.92 (0.87, 0.97)*	0.94 (0.82, 1.08)		
	Quarter 4	0.87 (0.84, 0.91)*	0.77 (0.62, 0.96)*	0.84 (0.79, 0.90)*	0.88 (0.81, 0.96)*	0.90 (0.79, 1.01)	0.90 (0.85, 0.95)*	0.96 (0.84, 1.10)		
Model 3 ^d	Quarter 1	1 (Ref)	1 (Ref)	1 (Ref)	1 (Ref)	1 (Ref)	1 (Ref)	1 (Ref)		
	Quarter 2	0.94 (0.91, 0.98)*	0.87 (0.71, 1.07)	0.95 (0.89, 1.01)	0.94 (0.87, 1.02)	1.00 (0.89, 1.12)	0.94 (0.89, 1.00)*	0.95 (0.84, 1.09)		
	Quarter 3	0.93 (0.89, 0.97)*	0.74 (0.59, 0.93)*	0.93 (0.87, 1.00)	0.96 (0.88, 1.05)	0.87 (0.77, 0.99)*	0.94 (0.89, 1.00)	0.95 (0.83, 1.10)		
	Quarter 4	0.91 (0.87, 0.95)*	0.79 (0.63, 1.00)*	0.90 (0.84, 0.97)*	0.93 (0.85, 1.02)	0.89 (0.78, 1.01)	0.93 (0.88, 0.99)*	0.97 (0.84, 1.12)		
uPDI										
Model 1 ^b	Quarter 1	1 (Ref)	1 (Ref)	1 (Ref)	1 (Ref)	1 (Ref)	1 (Ref)	1 (Ref)		
	Quarter 2	1.03 (0.99, 1.07)	1.08 (0.87, 1.35)	1.01 (0.94, 1.08)	0.91 (0.84, 0.99)*	1.09 (0.97, 1.23)	1.08 (1.02, 1.14)*	0.97 (0.85, 1.11)		
	Quarter 3	1.13 (1.09, 1.17)*	1.16 (0.93, 1.46)	1.08 (1.01, 1.16)*	1.03 (0.94, 1.12)	1.16 (1.03, 1.31)*	1.19 (1.12, 1.26)*	1.16 (1.02, 1.34)*		
	Quarter 4	1.17 (1.13, 1.22)*	1.33 (1.07, 1.66)*	1.06 (0.99, 1.14)	1.00 (0.92, 1.09)	1.26 (1.12, 1.42)*	1.28 (1.20, 1.35)*	1.25 (1.09, 1.43)*		
Model 3 ^d	Quarter 1	1 (Ref)	1 (Ref)	1 (Ref)	1 (Ref)	1 (Ref)	1 (Ref)	1 (Ref)		

Dietary patterns			HR (95% CI)ª							
		Gastrointestinal	Inflammatory	Polyps	Adenomas	Irritable bowel	Gastroesophageal	Peptic ulcer		
		disorders	bowel disease			syndrome	reflux disease	disease		
		(n=20858)	(n=666)	(n=6910)	(n=4254)	(n=2232)	(n=9942)	(n=1713)		
	Quarter 2	1.03 (0.99, 1.07)	1.09 (0.87, 1.36)	1.01 (0.95, 1.08)	0.92 (0.84, 1.00)*	1.08 (0.96, 1.22)	1.06 (1.00, 1.12)*	0.96 (0.84, 1.10)		
	Quarter 3	1.11 (1.07, 1.15)*	1.16 (0.92, 1.46)	1.08 (1.01, 1.15)*	1.02 (0.93, 1.11)	1.14 (1.01, 1.29)*	1.15 (1.09, 1.22)*	1.13 (0.98, 1.30)		
	Quarter 4	1.14 (1.09, 1.18)*	1.33 (1.06, 1.67)*	1.05 (0.98, 1.13)	0.98 (0.90, 1.08)	1.22 (1.08, 1.38)*	1.21 (1.14, 1.29)*	1.18 (1.03, 1.36)*		
LCD										
Model 1 ^b	Quarter 1	1 (Ref)								
	Quarter 2	0.98 (0.94, 1.02)	0.96 (0.76, 1.20)	1.03 (0.96, 1.11)	1.03 (0.94, 1.13)	0.89 (0.79, 1.01)	0.95 (0.90, 1.01)	0.96 (0.84, 1.10)		
	Quarter 3	0.99 (0.95, 1.03)	1.09 (0.89, 1.35)	1.07 (1.00, 1.14)	1.12 (1.03, 1.22)*	0.88 (0.78, 0.98)*	0.93 (0.89, 0.99)*	0.91 (0.80, 1.04)		
	Quarter 4	0.99 (0.96, 1.03)	1.00 (0.80, 1.25)	1.13 (1.06, 1.21)*	1.22 (1.12, 1.33)*	0.90 (0.80, 1.01)	0.91 (0.86, 0.97)*	1.04 (0.91, 1.20)		
Model 3 ^d	Quarter 1	1 (Ref)								
	Quarter 2	0.98 (0.94, 1.02)	0.96 (0.77, 1.20)	1.01 (0.94, 1.08)	1.01 (0.92, 1.10)	0.91 (0.81, 1.03)	0.96 (0.90, 1.01)	0.98 (0.85, 1.12)		
	Quarter 3	0.97 (0.94, 1.01)	1.09 (0.88, 1.34)	1.02 (0.96, 1.09)	1.07 (0.98, 1.16)	0.90 (0.80, 1.01)	0.93 (0.88, 0.98)*	0.91 (0.80, 1.04)		
	Quarter 4	0.95 (0.91, 0.99)*	0.97 (0.78, 1.22)	1.04 (0.97, 1.12)	1.12 (1.02, 1.22)*	0.92 (0.82, 1.04)	0.89 (0.84, 0.94)*	0.99 (0.87, 1.14)		
Animal-rich										
Model 1b	Ouerter 1			1 (Dof)		1 (Dof)		1 (Dof)		
	Quarter 1									
	Quarter 2	0.96 (0.95, 1.02)	0.80 (0.70, 1.06)	1.03 (0.96, 1.10)	1.05(0.96, 1.14)	0.91(0.01, 1.01)	0.97 (0.92, 1.02)	0.92 (0.60, 1.04)		
	Quarter 3	0.99 (0.95, 1.03)	0.09 (0.72, 1.12)	1.09(1.02, 1.17)	1.10(1.00, 1.27)	0.01 (0.72, 0.92)	0.95 (0.00, 0.96)	0.09 (0.77, 1.02)		
Madal 2d	Quarter 4	1.01 (0.97, 1.04)	0.93 (0.76, 1.14)	1.11 (1.04, 1.10)	1.20 (1.10, 1.30)	0.69 (0.79, 0.99)	0.95 (0.90, 1.01)	1.01 (0.69, 1.15)		
	Quarter 1							1 (Rel)		
	Quarter 2	0.97 (0.93, 1.01)	0.90 (0.64, 1.25)	1.00 (0.93, 1.06)	1.02 (0.93, 1.11)	0.92 (0.83, 1.03)		0.92 (0.81, 1.05)		
	Quarter 3	0.97 (0.93, 1.01)	0.63 (0.42, 0.95)	1.03 (0.96, 1.11)	1.10 (1.00, 1.20)	0.83 (0.73, 0.94)	0.92 (0.87, 0.97)	0.89 (0.77, 1.02)		
Direct 11	Quarter 4	0.95 (0.92, 0.99)	0.63 (0.43, 0.91)	1.00 (0.94, 1.07)	1.08 (0.99, 1.17)	0.92 (0.82, 1.03)	0.92 (0.87, 0.97)	0.97 (0.85, 1.10)		
Plant-rich LCD										
Model 1 ^b	Quarter 1	1 (Ref)								
	Quarter 2	0.94 (0.91, 0.98)*	0.92 (0.62, 1.35)	0.95 (0.89, 1.01)	0.99 (0.91, 1.08)	0.91 (0.81, 1.03)	0.92 (0.87, 0.97)*	0.90 (0.79, 1.03)		

Dietary patterns		HR (95% CI) ^a							
		Gastrointestinal	Inflammatory	Polyps	Adenomas	Irritable bowel	Gastroesophageal	Peptic ulcer	
		disorders	bowel disease			syndrome	reflux disease	disease	
		(n=20858)	(n=666)	(n=6910)	(n=4254)	(n=2232)	(n=9942)	(n=1713)	
	Quarter 3	0.94 (0.90, 0.97)*	0.89 (0.61, 1.28)	0.95 (0.89, 1.01)	1.00 (0.92, 1.09)	0.92 (0.82, 1.03)	0.91 (0.86, 0.96)*	0.96 (0.84, 1.09)	
	Quarter 4	0.92 (0.89, 0.96)*	1.16 (0.81, 1.65)	1.00 (0.93, 1.07)	1.05 (0.97, 1.14)	0.90 (0.80, 1.01)	0.87 (0.82, 0.91)*	0.93 (0.82, 1.07)	
Model 3 ^d	Quarter 1	1 (Ref)	1 (Ref)	1 (Ref)	1 (Ref)	1 (Ref)	1 (Ref)	1 (Ref)	
	Quarter 2	0.95 (0.91, 0.99) *	1.05 (0.84, 1.30)	0.95 (0.89, 1.01)	0.99 (0.91, 1.08)	0.92 (0.82, 1.04)	0.93 (0.88, 0.98)*	0.92 (0.80, 1.06)	
	Quarter 3	0.95 (0.91, 0.98)*	0.96 (0.78, 1.19)	0.95 (0.89, 1.01)	1.00 (0.92, 1.09)	0.93 (0.83, 1.04)	0.92 (0.87, 0.97)*	0.97 (0.86, 1.11)	
	Quarter 4	0.93 (0.90, 0.97)*	1.03 (0.84, 1.28)	1.00 (0.93, 1.06)	1.05 (0.96, 1.14)	0.90 (0.80, 1.01)	0.89 (0.84, 0.94)*	0.94 (0.82, 1.07)	
GDQS									
Model 1 ^b	Quarter 1	1 (Ref)	1 (Ref)	1 (Ref)	1 (Ref)	1 (Ref)	1 (Ref)	1 (Ref)	
	Quarter 2	0.93 (0.89, 0.96)*	1.11 (0.90, 1.36)	0.89 (0.83, 0.95)*	0.97 (0.89, 1.06)	0.91 (0.81, 1.03)	0.91 (0.86, 0.97)*	0.87 (0.76, 0.99)*	
	Quarter 3	0.89 (0.86, 0.93)*	0.84 (0.67, 1.04)	0.87 (0.81, 0.93)*	0.95 (0.87, 1.03)	0.90 (0.80, 1.01)	0.90 (0.85, 0.95)*	0.77 (0.67, 0.88)*	
	Quarter 4	0.83 (0.80, 0.87)*	0.80 (0.64, 1.00)*	0.86 (0.80, 0.92)*	0.91 (0.84, 0.99)*	0.84 (0.75, 0.95)*	0.80 (0.76, 0.85)*	0.81 (0.71, 0.93)*	
Model 3 ^d	Quarter 1	1 (Ref)	1 (Ref)	1 (Ref)	1 (Ref)	1 (Ref)	1 (Ref)	1 (Ref)	
	Quarter 2	0.95 (0.92, 0.99)*	1.14 (0.93, 1.40)	0.92 (0.86, 0.98)*	1.00 (0.92, 1.09)	0.93 (0.82, 1.04)	0.94 (0.89, 0.99)*	0.90 (0.79, 1.03)	
	Quarter 3	0.93 (0.90, 0.97)*	0.87 (0.70, 1.08)	0.91 (0.85, 0.97)*	1.00 (0.91, 1.08)	0.92 (0.81, 1.03)	0.95 (0.89, 1.00)*	0.81 (0.71, 0.93)*	
	Quarter 4	0.89 (0.85, 0.92)*	0.83 (0.66, 1.04)	0.92 (0.86, 0.98)*	0.98 (0.89, 1.06)	0.86 (0.76, 0.97)*	0.86 (0.81, 0.91)*	0.87 (0.76, 0.99)*	
GDQS+									
Model 1 ^b	Quarter 1	1 (Ref)	1 (Ref)	1 (Ref)	1 (Ref)	1 (Ref)	1 (Ref)	1 (Ref)	
	Quarter 2	0.93 (0.89, 0.96)*	0.91 (0.74, 1.12)	0.94 (0.88, 1.00)	0.98 (0.91, 1.07)	0.86 (0.77, 0.97)*	0.92 (0.87, 0.97)*	0.84 (0.74, 0.96)*	
	Quarter 3	0.87 (0.84, 0.91)*	0.81 (0.65, 1.00)*	0.89 (0.83, 0.95)*	0.90 (0.82, 0.98)*	0.89 (0.80, 1.00)	0.85 (0.81, 0.90)*	0.72 (0.63, 0.82)*	
	Quarter 4	0.86 (0.83, 0.89)*	0.78 (0.63, 0.97)*	0.90 (0.84, 0.96)*	0.94 (0.87, 1.03)	0.85 (0.76, 0.96)*	0.82 (0.77, 0.87)*	0.83 (0.73, 0.94)*	
Model 3 ^d	Quarter 1	1 (Ref)	1 (Ref)	1 (Ref)	1 (Ref)	1 (Ref)	1 (Ref)	1 (Ref)	
	Quarter 2	0.95 (0.92, 0.99)*	0.93 (0.75, 1.14)	0.97 (0.91, 1.04)	1.02 (0.94, 1.11)	0.87 (0.78, 0.98)*	0.94 (0.89, 1.00)*	0.88 (0.78, 1.01)	
	Quarter 3	0.91 (0.88, 0.95)*	0.83 (0.67, 1.03)	0.93 (0.87, 1.00)*	0.95 (0.87, 1.04)	0.91 (0.81, 1.02)	0.89 (0.85, 0.95)*	0.77 (0.67, 0.88)*	
	Quarter 4	0.90 (0.87, 0.94)*	0.79 (0.64, 0.99)*	0.95 (0.88, 1.01)	1.00 (0.92, 1.10)	0.86 (0.76, 0.97)*	0.87 (0.82, 0.92)*	0.89 (0.78, 1.02)	
GDQS-									
Model 1 ^b	Quarter 1	1 (Ref)	1 (Ref)	1 (Ref)	1 (Ref)	1 (Ref)	1 (Ref)	1 (Ref)	

Dietary patterns		HR (95% CI)ª							
		Gastrointestinal disorders	Inflammatory bowel disease	Polyps	Adenomas	Irritable bowel syndrome	Gastroesophageal reflux disease	Peptic ulcer disease	
		(n=20858)	(n=666)	(n=6910)	(n=4254)	(n=2232)	(n=9942)	(n=1713)	
	Quarter 2	0.96 (0.92, 1.00)	1.04 (0.82, 1.31)	0.98 (0.92, 1.06)	0.96 (0.88, 1.06)	0.93 (0.82, 1.06)	0.98 (0.92, 1.04)	0.90 (0.78, 1.04)	
	Quarter 3	0.97 (0.93, 1.00)	0.91 (0.75, 1.11)	0.96 (0.91, 1.02)	0.99 (0.91, 1.07)	0.91 (0.82, 1.01)	1.00 (0.95, 1.05)	0.92 (0.82, 1.05)	
	Quarter 4	0.95 (0.92, 0.99)*	0.98 (0.80, 1.21)	0.94 (0.88, 1.01)	0.98 (0.91, 1.07)	0.91 (0.81, 1.02)	0.95 (0.90, 1.00)	1.02 (0.90, 1.16)	
Model 3 ^d	Quarter 1	1 (Ref)	1 (Ref)	1 (Ref)	1 (Ref)	1 (Ref)	1 (Ref)	1 (Ref)	
	Quarter 2	0.97 (0.93, 1.01)	1.05 (0.83, 1.32)	0.99 (0.92, 1.07)	0.97 (0.88, 1.07)	0.93 (0.82, 1.06)	0.98 (0.93, 1.05)	0.90 (0.77, 1.04)	
	Quarter 3	0.98 (0.94, 1.01)	0.93 (0.76, 1.13)	0.98 (0.92, 1.04)	1.00 (0.92, 1.08)	0.92 (0.82, 1.02)	1.01 (0.96, 1.06)	0.92 (0.81, 1.04)	
	Quarter 4	0.96 (0.92, 1.00)*	1.00 (0.81, 1.25)	0.96 (0.90, 1.03)	0.99 (0.91, 1.08)	0.92 (0.81, 1.03)	0.96 (0.91, 1.02)	1.00 (0.88, 1.14)	
DII									
Model 1 ^b	Quarter 1	1 (Ref)	1 (Ref)	1 (Ref)	1 (Ref)	1 (Ref)	1 (Ref)	1 (Ref)	
	Quarter 2	0.99 (0.95, 1.03)	0.87 (0.70, 1.09)	0.97 (0.90, 1.03)	0.94 (0.86, 1.02)	1.03 (0.92, 1.16)	1.01 (0.95, 1.07)	0.99 (0.87, 1.13)	
	Quarter 3	1.04 (1.00, 1.08)	1.01 (0.82, 1.25)	1.04 (0.97, 1.11)	0.97 (0.89, 1.06)	0.97 (0.86, 1.10)	1.09 (1.03, 1.15)*	1.01 (0.88, 1.15)	
	Quarter 4	1.11 (1.07, 1.16)*	1.02 (0.82, 1.26)	1.05 (0.99, 1.13)	1.02 (0.94, 1.11)	1.11 (0.99, 1.25)	1.19 (1.13, 1.26)*	1.15 (1.00, 1.31)	
Model 2 ^c	Quarter 1	1 (Ref)	1 (Ref)	1 (Ref)	1 (Ref)	1 (Ref)	1 (Ref)	1 (Ref)	
	Quarter 2	1.01 (0.97, 1.05)	0.91 (0.72, 1.13)	1.00 (0.93, 1.07)	0.95 (0.88, 1.04)	1.04 (0.92, 1.17)	1.02 (0.96, 1.08)	1.00 (0.87, 1.15)	
	Quarter 3	1.05 (1.01, 1.09)*	1.07 (0.85, 1.34)	1.07 (1.00, 1.15)*	0.98 (0.89, 1.07)	0.98 (0.86, 1.12)	1.09 (1.03, 1.16)*	1.00 (0.86, 1.15)	
	Quarter 4	1.12 (1.07, 1.17)*	1.09 (0.85, 1.40)	1.09 (1.01, 1.18) [*]	1.01 (0.91, 1.11)	1.13 (0.98, 1.29)	1.19 (1.11, 1.27)*	1.09 (0.93, 1.27)	

78 Abbreviations: AHEI-2010, Alternate Healthy Eating Index-2010; AMED, Alternate Mediterranean Diet; CI, confidence interval; DASH, Dietary Approaches to Stop Hypertension; DII, dietary

79 inflammatory index; GDQS, Global Diet Quality Score; GDQS-, negative submetric of Global Diet Quality Score; GDQS+, positive submetric of Global Diet Quality Score; hPDI, healthful plant-based

80 diet index; HR, hazard ratio; LCD, low carbohydrate diet; PDI, plant-based diet index; uPDI, unhealthful plant-based diet index.

81 ^aHRs (95% CI) are comparing the highest with the lowest quarter. *P* value <0.05 was noted with '*'.

82 ^bModel 1 was adjusted for age and sex.

83 °Model 2 was adjusted for age, sex, BMI, race, cardiovascular disease, diabetes, smoking status, physical activity, multivitamin use, regular aspirin use, regular NSAID use and total energy intake.

84 dModel 3 was adjusted for age, sex, BMI, race, cardiovascular disease, diabetes, smoking status, physical activity, multivitamin use, regular aspirin use, regular NSAID use, total energy intake and

85 alcohol drinking status [none drinking, moderate drinking (<2 drinks/day for men, and <1 drink/day for women), or heavy drinking (≥2 drinks/day for men, and ≥1 drink/day for women)].

86 Supplementary Table 3. Associations between dietary patterns and gastrointestinal disorders in sensitivity analyses

Dietary	Model	HR (95% CI) ^a						
patterns								
		Gastrointestinal	Inflammatory	Polyps	Adenoma	Irritable bowel	Gastroesophageal	Peptic ulcer
		disorders	bowel disease			syndrome	reflux disease	disease
		(n=20858)	(n=666)	(n=6910)	(n=4254)	(n=2232)	(n=9942)	(n=1713)
Removal of alcoh	ol compone	ent from dietary patte	rns					
AHEI-2010	Model 1 ^b	0.79 (0.76, 0.82) *	0.74 (0.59, 0.93) *	0.79 (0.73, 0.84) *	0.83 (0.76, 0.91) *	0.82 (0.73, 0.92) *	0.78 (0.74, 0.83) *	0.73 (0.64, 0.84) *
	Model 2 ^c	0.86 (0.83, 0.90) *	0.79 (0.63, 0.99) *	0.88 (0.82, 0.95) *	0.94 (0.86, 1.02)	0.83 (0.73, 0.93) *	0.85 (0.80, 0.90) *	0.80 (0.69, 0.92) *
AMED	Model 1 ^b	0.80 (0.76, 0.83) *	0.70 (0.55, 0.90) *	0.81 (0.76, 0.88) *	0.86 (0.78, 0.94) *	0.88 (0.78, 1.00)	0.76 (0.71, 0.81) *	0.74 (0.64, 0.85) *
	Model 2 ^c	0.86 (0.83, 0.90) *	0.74 (0.57, 0.94) *	0.90 (0.83, 0.97) *	0.96 (0.87, 1.05)	0.90 (0.79, 1.03)	0.83 (0.78, 0.89) *	0.81 (0.70, 0.94) *
DII	Model 1 ^b	1.10 (1.06, 1.15) *	1.02 (0.82, 1.26)	1.07 (1.00, 1.15) *	1.04 (0.96, 1.14)	1.08 (0.96, 1.21)	1.17 (1.11, 1.24) *	1.12 (0.98, 1.28)
	Model 3 ^d	1.10 (1.05, 1.15) *	1.07 (0.84, 1.38)	1.10 (1.01, 1.18) *	1.02 (0.92, 1.12)	1.10 (0.96, 1.25)	1.17 (1.09, 1.24) *	1.06 (0.91, 1.24)
Removal of partic	ipants with	incident gastrointest	inal disorders in the	previous two years				
AHEI-2010	Model 1 ^b	0.78 (0.75, 0.81) *	0.71 (0.56, 0.90) *	0.76 (0.71, 0.82) *	0.80 (0.73, 0.88) *	0.85 (0.74, 0.97) *	0.78 (0.74, 0.83) *	0.70 (0.60, 0.81) *
	Model 2 ^c	0.91 (0.87, 0.95) *	0.77 (0.61, 0.99) *	0.92 (0.85, 0.99) *	0.99 (0.90, 1.09)	0.87 (0.76, 0.99) *	0.93 (0.87, 0.99) *	0.85 (0.73, 0.99) *
AMED	Model 1 ^b	0.77 (0.74, 0.80) *	0.71 (0.55, 0.92) *	0.78 (0.72, 0.84) *	0.82 (0.75, 0.90) *	0.87 (0.75, 1.00) *	0.74 (0.70, 0.79) *	0.70 (0.60, 0.81) *
	Model 2 ^c	0.88 (0.84, 0.92) *	0.76 (0.59, 0.99) *	0.90 (0.83, 0.97) *	0.96 (0.87, 1.06)	0.89 (0.77, 1.02)	0.86 (0.81, 0.92) *	0.83 (0.71, 0.97) *
DASH	Model 1 ^b	0.77 (0.74, 0.81) *	0.75 (0.59, 0.96) *	0.75 (0.69, 0.80) *	0.75 (0.68, 0.82) *	0.85 (0.74, 0.97) *	0.78 (0.73, 0.83) *	0.66 (0.56, 0.77) *
	Model 3 ^d	0.93 (0.89, 0.97) *	0.84 (0.65, 1.07)	0.95 (0.88, 1.02)	0.99 (0.90, 1.09)	0.85 (0.74, 0.98) *	0.95 (0.89, 1.01)	0.85 (0.73, 0.99) *
PDI	Model 1 ^b	0.86 (0.82, 0.89) *	0.80 (0.63, 1.01)	0.83 (0.77, 0.89) *	0.77 (0.70, 0.85) *	0.96 (0.85, 1.10)	0.88 (0.83, 0.93) *	0.75 (0.65, 0.87) *
	Model 3 ^d	0.98 (0.94, 1.02)	0.85 (0.67, 1.08)	0.98 (0.91, 1.06)	0.95 (0.87, 1.05)	0.95 (0.83, 1.08)	1.00 (0.94, 1.06)	0.91 (0.78, 1.05)
hPDI	Model 1 ^b	0.86 (0.82, 0.90) *	0.80 (0.63, 1.02)	0.85 (0.79, 0.91) *	0.87 (0.80, 0.96) *	0.89 (0.78, 1.02)	0.87 (0.82, 0.93) *	0.91 (0.78, 1.05)
	Model 3 ^d	0.92 (0.88, 0.96) *	0.81 (0.64, 1.04)	0.92 (0.86, 1.00) *	0.96 (0.87, 1.06)	0.88 (0.76, 1.01)	0.94 (0.89, 1.01)	0.95 (0.81, 1.11)
uPDI	Model 1 ^b	1.15 (1.11, 1.20) *	1.24 (0.99, 1.54)	1.02 (0.96, 1.09)	0.97 (0.89, 1.05)	1.28 (1.13, 1.45) *	1.28 (1.21, 1.36) *	1.18 (1.03, 1.36) *
	Model 3 ^d	1.07 (1.02, 1.11) *	1.20 (0.96, 1.50)	0.96 (0.90, 1.03)	0.89 (0.82, 0.98) *	1.24 (1.10, 1.41) *	1.16 (1.09, 1.23) *	1.04 (0.90, 1.19)
LCD	Model 1 ^b	1.01 (0.97, 1.06)	0.99 (0.78, 1.26)	1.15 (1.07, 1.23) *	1.24 (1.13, 1.36) *	0.92 (0.81, 1.05)	0.92 (0.87, 0.98) *	1.09 (0.94, 1.26)
	Model 3 ^d	0.96 (0.92, 1.00)	0.96 (0.76, 1.23)	1.05 (0.98, 1.13)	1.13 (1.03, 1.24) *	0.95 (0.83, 1.08)	0.89 (0.83, 0.94) *	1.03 (0.89, 1.19)
Animal-rich	Model 1 ^b	1.02 (0.98, 1.06)	0.90 (0.73, 1.12)	1.11 (1.04, 1.19) *	1.22 (1.12, 1.33) *	0.90 (0.80, 1.02)	0.96 (0.91, 1.02)	1.04 (0.91, 1.20)
LCD								
	Model 3 ^d	0.97 (0.93, 1.01)	0.88 (0.70, 1.10)	1.02 (0.95, 1.09)	1.11 (1.01, 1.21) *	0.93 (0.82, 1.06)	0.93 (0.88, 0.98) *	1.00 (0.87, 1.15)

Dietary	Model	HR (95% CI) ^a							
patterns									
		Gastrointestinal	Inflammatory	Polyps	Adenoma	Irritable bowel	Gastroesophageal	Peptic ulcer	
		disorders	bowel disease			syndrome	reflux disease	disease	
		(n=20858)	(n=666)	(n=6910)	(n=4254)	(n=2232)	(n=9942)	(n=1713)	
Plant-rich LCD	Model 1 ^b	0.92 (0.88, 0.96) *	1.02 (0.82, 1.28)	0.99 (0.93, 1.07)	1.04 (0.95, 1.14)	0.88 (0.78, 1.00)	0.87 (0.82, 0.92) *	0.94 (0.82, 1.08)	
	Model 3 ^d	0.92 (0.88, 0.95) *	1.02 (0.82, 1.28)	0.98 (0.92, 1.05)	1.02 (0.94, 1.11)	0.89 (0.78, 1.01)	0.88 (0.83, 0.93) *	0.93 (0.80, 1.07)	
GDQS	Model 1 ^b	0.83 (0.80, 0.87) *	0.82 (0.65, 1.04)	0.86 (0.80, 0.92) *	0.92 (0.84, 1.01)	0.85 (0.75, 0.97) *	0.79 (0.75, 0.84) *	0.81 (0.70, 0.93) *	
	Model 3 ^d	0.95 (0.91, 0.99) *	0.87 (0.68, 1.10)	0.99 (0.92, 1.06)	1.09 (1.00, 1.19)	0.87 (0.76, 0.99) *	0.93 (0.87, 0.98) *	0.97 (0.84, 1.12)	
GDQS+	Model 1 ^b	0.85 (0.82, 0.89) *	0.77 (0.62, 0.97) *	0.89 (0.83, 0.95) *	0.95 (0.87, 1.03)	0.84 (0.74, 0.96) *	0.82 (0.77, 0.87) *	0.84 (0.73, 0.97) *	
	Model 3 ^d	0.96 (0.92, 1.00)	0.80 (0.64, 1.02)	1.01 (0.94, 1.08)	1.11 (1.02, 1.22) *	0.85 (0.75, 0.97) *	0.94 (0.89, 1.00) *	1.02 (0.88, 1.17)	
GDQS-	Model 1 ^b	0.95 (0.91, 0.99) *	1.01 (0.80, 1.27)	0.96 (0.90, 1.03)	0.98 (0.90, 1.07)	0.91 (0.80, 1.03)	0.95 (0.89, 1.00)	0.98 (0.85, 1.12)	
	Model 3 ^d	0.97 (0.93, 1.01)	1.01 (0.80, 1.28)	0.98 (0.91, 1.05)	1.00 (0.91, 1.09)	0.91 (0.80, 1.04)	0.97 (0.91, 1.03)	0.96 (0.83, 1.11)	
DII	Model 1 ^b	1.12 (1.07, 1.16) *	1.03 (0.82, 1.29)	1.07 (0.99, 1.14)	1.02 (0.94, 1.12)	1.14 (1.01, 1.30) *	1.18 (1.11, 1.25) *	1.18 (1.02, 1.36) *	
	Model 2 ^c	1.04 (1.00, 1.10)	1.03 (0.79, 1.35)	1.03 (0.94, 1.11)	0.92 (0.83, 1.02)	1.16 (1.00, 1.35) *	1.08 (1.01, 1.16) *	1.00 (0.85, 1.18)	
Removal of body	mass index	from the covariate li	st						
AHEI-2010	Model 2 ^c	0.88 (0.85, 0.92) *	0.75 (0.60, 0.94) *	0.88 (0.83, 0.95) *	0.95 (0.86, 1.03)	0.86 (0.76, 0.97) *	0.88 (0.83, 0.93) *	0.86 (0.74, 0.98) *	
AMED	Model 2 ^c	0.85 (0.82, 0.89) *	0.73 (0.57, 0.93) *	0.88 (0.81, 0.94) *	0.94 (0.85, 1.03)	0.86 (0.76, 0.98) *	0.83 (0.78, 0.88) *	0.80 (0.70, 0.93) *	
DASH	Model 3 ^d	0.89 (0.85, 0.93) *	0.78 (0.62, 0.98) *	0.91 (0.85, 0.98) *	0.95 (0.87, 1.04)	0.81 (0.71, 0.92) *	0.89 (0.84, 0.94) *	0.83 (0.72, 0.96) *	
PDI	Model 3 ^d	0.95 (0.91, 0.99) *	0.81 (0.64, 1.01)	0.96 (0.89, 1.03)	0.93 (0.85, 1.02)	0.94 (0.83, 1.06)	0.95 (0.89, 1.00)	0.87 (0.76, 1.00) *	
hPDI	Model 3 ^d	0.91 (0.87, 0.95) *	0.78 (0.62, 0.99) *	0.90 (0.84, 0.97) *	0.94 (0.86, 1.03)	0.88 (0.78, 1.00)	0.93 (0.88, 0.99) *	0.98 (0.85, 1.13)	
uPDI	Model 3 ^d	1.08 (1.04, 1.12) *	1.20 (0.97, 1.48)	0.97 (0.91, 1.03)	0.91 (0.83, 0.98) *	1.26 (1.12, 1.41) *	1.19 (1.13, 1.26) *	1.05 (0.92, 1.20)	
LCD	Model 3 ^d	0.97 (0.93, 1.00)	0.97 (0.93, 1.00)	1.06 (0.99, 1.14)	1.13 (1.04, 1.24) *	0.92 (0.82, 1.04)	0.91 (0.85, 0.96) *	1.01 (0.88, 1.16)	
Animal-rich	Model 3 ^d	0.99 (0.95, 1.03)	0.93 (0.75, 1.14)	1.04 (0.98, 1.11)	1.12 (1.03, 1.22) *	0.91 (0.82, 1.02)	0.96 (0.91, 1.01)	1.01 (0.89, 1.15)	
LCD									
Plant-rich LCD	Model 3 ^d	0.90 (0.87, 0.94) *	1.02 (0.83, 1.26)	0.96 (0.90, 1.03)	1.01 (0.93, 1.10)	0.91 (0.81, 1.02)	0.86 (0.81, 0.90) *	0.90 (0.79, 1.03)	
GDQS	Model 3 ^d	0.93 (0.89, 0.97) *	0.83 (0.66, 1.04)	0.96 (0.90, 1.03)	1.05 (0.97, 1.15)	0.86 (0.76, 0.96) *	0.90 (0.85, 0.96) *	0.95 (0.83, 1.08)	
GDQS+	Model 3 ^d	0.95 (0.91, 0.99) *	0.79 (0.64, 0.99) *	1.00 (0.93, 1.07)	1.09 (1.00, 1.19) *	0.86 (0.76, 0.96) *	0.92 (0.87, 0.97) *	0.98 (0.85, 1.11)	
GDQS-	Model 3 ^d	0.95 (0.92, 0.99) *	1.00 (0.81, 1.24)	0.95 (0.89, 1.02)	0.98 (0.90, 1.07)	0.92 (0.81, 1.03)	0.95 (0.90, 1.01)	1.00 (0.87, 1.14)	
DII	Model 2 ^c	1.06 (1.01, 1.10) *	1.09 (0.85, 1.39)	1.03 (0.95, 1.11)	0.93 (0.84, 1.02)	1.13 (0.99, 1.30)	1.12 (1.05, 1.19) *	0.99 (0.85, 1.15)	
Further adjusting	for the num	ber of completed die	etary surveys						

Dietary patterns	Model		HR (95% CI)ª								
P		Gastrointestinal	Inflammatory	Polyps	Adenoma	Irritable bowel	Gastroesophageal	Peptic ulcer			
		disorders	bowel disease			syndrome	reflux disease	disease			
		(n=20858)	(n=666)	(n=6910)	(n=4254)	(n=2232)	(n=9942)	(n=1713)			
AHEI-2010	Model 4 ^e	0.87 (0.83, 0.90) *	0.78 (0.62, 0.98) *	0.86 (0.80, 0.92) *	0.90 (0.82, 0.98) *	0.88 (0.78, 1.00) *	0.87 (0.82, 0.92) *	0.83 (0.72, 0.96) *			
AMED	Model 4 ^e	0.86 (0.82, 0.90) *	0.78 (0.60, 1.01)	0.86 (0.79, 0.93) *	0.91 (0.82, 1.01)	0.89 (0.78, 1.03)	0.85 (0.80, 0.91) *	0.83 (0.71, 0.97) *			
DASH	Model 5 ^f	0.86 (0.82, 0.90) *	0.82 (0.64, 1.05)	0.86 (0.80, 0.93) *	0.87 (0.79, 0.96) *	0.83 (0.73, 0.95) *	0.87 (0.82, 0.93) *	0.79 (0.68, 0.93) *			
PDI	Model 5 ^f	0.96 (0.92, 1.01)	0.88 (0.67, 1.14)	0.94 (0.86, 1.01)	0.88 (0.79, 0.97) *	1.01 (0.88, 1.17)	0.99 (0.93, 1.06)	0.90 (0.77, 1.06)			
hPDI	Model 5 ^f	0.87 (0.83, 0.91) *	0.73 (0.57, 0.92) *	0.88 (0.82, 0.95) *	0.92 (0.83, 1.01)	0.84 (0.74, 0.96) *	0.89 (0.83, 0.95) *	0.90 (0.77, 1.04)			
uPDI	Model 5 ^f	1.11 (1.06, 1.16) *	1.28 (1.00, 1.65)	1.05 (0.97, 1.13)	0.97 (0.88, 1.07)	1.20 (1.04, 1.37) *	1.19 (1.11, 1.27) *	1.09 (0.93, 1.27)			
LCD	Model 5 ^f	0.96 (0.92, 0.99) *	0.99 (0.79, 1.24)	1.04 (0.97, 1.12)	1.12 (1.02, 1.22) *	0.93 (0.82, 1.05)	0.89 (0.84, 0.95) *	1.01 (0.88, 1.16)			
Animal-rich	Model 5 ^f	0.96 (0.92, 1.00) *	0.64 (0.44, 0.92) *	1.01 (0.94, 1.08)	1.08 (0.99, 1.17)	0.92 (0.82, 1.03)	0.93 (0.88, 0.98) *	0.98 (0.86, 1.12)			
LCD											
Plant-rich LCD	Model 5 ^f	0.94 (0.90, 0.97) *	1.05 (0.85, 1.30)	1.00 (0.93, 1.06)	1.05 (0.96, 1.14)	0.91 (0.81, 1.02)	0.90 (0.85, 0.95) *	0.95 (0.83, 1.09)			
GDQS	Model 5 ^f	0.90 (0.86, 0.93) *	0.85 (0.68, 1.07)	0.92 (0.86, 0.98) *	0.98 (0.90, 1.07)	0.88 (0.78, 0.99) *	0.87 (0.83, 0.93) *	0.90 (0.78, 1.03)			
GDQS+	Model 5 ^f	0.92 (0.89, 0.97) *	0.83 (0.65, 1.06)	0.95 (0.88, 1.03)	1.02 (0.92, 1.12)	0.89 (0.78, 1.01)	0.90 (0.84, 0.95) *	0.96 (0.83, 1.11)			
GDQS-	Model 5 ^f	0.91 (0.87, 0.95) *	0.92 (0.72, 1.16)	0.94 (0.87, 1.01)	0.97 (0.89, 1.07)	0.85 (0.75, 0.97) *	0.90 (0.85, 0.96) *	0.90 (0.78, 1.04)			
DII	Model 4 ^e	1.10 (1.05, 1.15) *	1.06 (0.82, 1.36)	1.09 (1.00, 1.17)	1.00 (0.91, 1.11)	1.11 (0.96, 1.27)	1.17 (1.09, 1.24) *	1.05 (0.90, 1.23)			

87 Abbreviations: AHEI-2010, Alternate Healthy Eating Index-2010; AMED, Alternate Mediterranean Diet; CI, confidence interval; DASH, Dietary Approaches to Stop Hypertension; DII, dietary

88 inflammatory index; GDQS, Global Diet Quality Score; GDQS-, negative submetric of Global Diet Quality Score; GDQS+, positive submetric of Global Diet Quality Score; hPDI, healthful plant-based

89 diet index; HR, hazard ratio; LCD, low carbohydrate diet; PDI, plant-based diet index; uPDI, unhealthful plant-based diet index.

90 ^aHRs (95% CI) are comparing the highest quarter with the lowest quarter. *P* value <0.05 was noted with '*'.

91 ^bModel 1 was adjusted for age and sex.

92 cModel 2 was adjusted for age, sex, BMI, race, cardiovascular disease, diabetes, smoking status, physical activity, multivitamin use, regular aspirin use, regular NSAID use and total energy intake.

93 dModel 3 was adjusted for age, sex, BMI, race, cardiovascular disease, diabetes, smoking status, physical activity, multivitamin use, regular aspirin use, regular NSAID use, total energy intake and

94 alcohol drinking status [none drinking, moderate drinking (<2 drinks/day for men, and <1 drink/day for women), or heavy drinking (≥2 drinks/day for men, and ≥1 drink/day for women)].

95 •Model 4 was adjusted for number of dietary surveys, age, sex, BMI, race, cardiovascular disease, diabetes, smoking status, physical activity, multivitamin use, regular aspirin use, regular NSAID use

96 and total energy intake.

97 Model 5 was adjusted for number of dietary surveys, age, sex, BMI, race, cardiovascular disease, diabetes, smoking status, physical activity, multivitamin use, regular aspirin use, regular NSAID use,

98 total energy intake and alcohol drinking status [none drinking, moderate drinking (<2 drinks/day for men, and <1 drink/day for women), or heavy drinking (≥2 drinks/day for men, and ≥1 drink/day for

99 women)].

- 100 Supplementary Table 4. Baseline characteristics of participants excluded because of missing
- 101 covariates data and the population with complete 24-hour recall diet data and no certain
- 102 disease or pregnant at baseline^a

Characteristics	Total population	Participants excluded	P value	
	(n=152 538)	(n=11 088)		
Age, y, median (IQR)	56 (13)	56 (13)	0.23	
Sex, No. (%)			0.06	
Female	82278 (53.9)	6084 (54.9)		
Male	70260 (46.1)	5004 (45.1)		
Race, No. (%)			<.001	
White	138221 (91.0)	9143 (86.8)		
Multiple	4873 (3.2)	530 (5.0)		
Asian or Asian British	6481 (4.3)	475 (4.5)		
Black	781 (0.5)	118 (1.1)		
Chinese	477 (0.3)	70 (0.7)		
Other ethnic group	1145 (0.8)	192 (1.8)		
BMI, kg/m², median (IQR)	26.2 (5.5)	27.5 (6.8)	<.001	
Physical activity, METs-h per week, median (IQR)	7.0 (13.5)	6.2 (12.9)	<.001	
Alcohol drinking status ^c , No. (%)			<.001	
None drinking	12562 (8.3)	1631 (16.0)		
Moderate drinking	84025 (55.4)	5463 (53.5)		
Heavy drinking	55079 (36.3)	3122 (30.6)		
Smoking status, No. (%)			<.001	
Never smoker	87898 (57.8)	5698 (53.2)		
Former smoker	52366 (34.4)	3646 (34.1)		
Current smoker	11894 (7.8)	1364 (12.7)		
Regular aspirin use, No. (%)			<.001	
No	139389 (92.1)	8991 (90.5)		
Yes	11999 (7.9)	947 (9.5)		
Regular NSAID use, No. (%)			<.001	
No	102129 (67.5)	6232 (62.7)		
Yes	49259 (32.5)	3706 (37.3)		
Multivitamin use, No. (%)			<.001	
No	103752 (68.2)	7431 (69.8)		
Yes	48349 (31.8)	3220 (30.2)		

103 Abbreviations: BMI, body mass index; IQR, interquartile range; METs, metabolic equivalent for task score; NSAID, nonsteroidal anti-inflammatory drug;

104 pdi.

105 aThe total population in this context refers to people with complete 24-hour recall diet data and excluded those with gastrointestinal disorders, cancer

106 or pregnancy at baseline.

107 bAlcohol drinking status was classified as none drinking, moderate drinking (<2 drinks/day for men, and <1 drink/day for women), or heavy drinking (≥2

108 drinks/day for men, and \geq 1 drink/day for women).

109 Supplementary Table 5. Associations between dietary patterns and gastrointestinal disorders risk after multiple

110 imputation for missing values of covariates (n=152 538)

Dietary	Model				HR (95% CI) ª			
patterns								
		Gastrointestinal	Inflammatory	Polyps	Adenoma	Irritable bowel	Gastroesophageal	Peptic ulcer
		disorders	bowel disease			syndrome	reflux disease	disease
		(n=22 936)	(n=722)	(n=7 592)	(n=4 642)	(n=2 478)	(n=10 979)	(n=1 936)
AHEI-2010	Model 1 ^b	0.77 (0.74, 0.80) *	0.71 (0.57, 0.88) *	0.75 (0.70, 0.80) *	0.78 (0.71, 0.84)*	0.82 (0.74, 0.92)*	0.77 (0.73, 0.81)*	0.68 (0.60, 0.77)*
	Model 2 ^c	0.84 (0.81, 0.87) *	0.77 (0.62, 0.96) *	0.85 (0.79, 0.90) *	0.88 (0.80, 0.95)*	0.85 (0.75, 0.95)*	0.84 (0.80, 0.89)*	0.75 (0.66, 0.85)*
AMED	Model 1 ^b	0.77 (0.74, 0.80) *	0.72 (0.57, 0.90) *	0.78 (0.73, 0.83) *	0.81 (0.74, 0.88)*	0.82 (0.73, 0.93)*	0.74 (0.70, 0.79)*	0.66 (0.57, 0.75)*
	Model 2 ^c	0.84 (0.80, 0.87) *	0.75 (0.60, 0.95) *	0.86 (0.80, 0.92) *	0.90 (0.82, 0.98)*	0.84 (0.75, 0.95)*	0.82 (0.77, 0.87)*	0.73 (0.64, 0.84)*
DASH	Model 1 ^b	0.76 (0.73, 0.79) *	0.71 (0.57, 0.88) *	0.74 (0.69, 0.79) *	0.75 (0.69, 0.82)*	0.77 (0.68, 0.87)*	0.78 (0.73, 0.82)*	0.64 (0.56, 0.73)*
	Model 3 ^d	0.84 (0.81, 0.88) *	0.77 (0.62, 0.96) *	0.87 (0.81, 0.93) *	0.88 (0.81, 0.96)*	0.77 (0.69, 0.87)*	0.85 (0.80, 0.90)*	0.73 (0.63, 0.83)*
PDI	Model 1 ^b	0.85 (0.82, 0.88) *	0.87 (0.71, 1.06)	0.81 (0.76, 0.87) *	0.80 (0.74, 0.86)*	0.93 (0.84, 1.03)	0.87 (0.82, 0.91)*	0.71 (0.63, 0.81)*
	Model 3 ^d	0.92 (0.88, 0.95) *	0.91 (0.74, 1.11)	0.92 (0.86, 0.98) *	0.91 (0.84, 0.99)*	0.92 (0.82, 1.02)	0.93 (0.88, 0.98)*	0.79 (0.70, 0.90)*
hPDI	Model 1 ^b	0.88 (0.85, 0.91) *	0.78 (0.63, 0.96) *	0.86 (0.80, 0.92) *	0.89 (0.82, 0.97)*	0.88 (0.79, 0.99)*	0.90 (0.85, 0.95)*	0.95 (0.83, 1.08)
	Model 3 ^d	0.91 (0.88, 0.95) *	0.80 (0.64, 1.00)	0.92 (0.86, 0.98) *	0.94 (0.86, 1.02)	0.87 (0.77, 0.98)*	0.93 (0.88, 0.99)*	0.95 (0.83, 1.09)
uPDI	Model 1 ^b	1.19 (1.15, 1.24) *	1.33 (1.08, 1.65) *	1.07 (1.00, 1.14) *	1.03 (0.95, 1.12)	1.30 (1.16, 1.45) [*]	1.29 (1.22, 1.36)*	1.32 (1.16, 1.50) [*]
	Model 3 ^d	1.15 (1.11, 1.19) *	1.33 (1.07, 1.66) *	1.06 (0.99, 1.13)	1.01 (0.92, 1.10)	1.26 (1.12, 1.42)*	1.22 (1.16, 1.29)*	1.24 (1.08, 1.41)*
LCD	Model 1 ^b	0.99 (0.96, 1.03)	1.06 (0.86, 1.31)	1.14 (1.07, 1.22) *	1.21 (1.11, 1.32)*	0.92 (0.82, 1.03)	0.91 (0.86, 0.96)*	1.03 (0.91, 1.17)
	Model 3 ^d	0.95 (0.91, 0.99) *	1.03 (0.83, 1.28)	1.04 (0.98, 1.11)	1.11 (1.02, 1.21) [*]	0.94 (0.84, 1.05)	0.88 (0.84, 0.93)*	0.98 (0.86, 1.11)
Animal-rich LCD	Model 1 ^b	1.01 (0.98, 1.05)	0.96 (0.79, 1.16)	1.13 (1.06, 1.20) *	1.21 (1.11, 1.31)*	0.89 (0.80, 0.99)*	0.95 (0.91, 1.00)	1.02 (0.91, 1.15)
	Model 3 ^d	0.96 (0.93, 1.00) *	0.64 (0.45, 0.91) *	1.02 (0.96, 1.09)	1.09 (1.00, 1.18)*	0.92 (0.83, 1.03)	0.92 (0.87, 0.97)*	0.98 (0.87, 1.10)
Plant-rich LCD	Model 1 ^b	0.92 (0.89, 0.96) *	1.06 (0.87, 1.29)	1.00 (0.94, 1.06)	1.02 (0.94, 1.10)	0.91 (0.82, 1.02)	0.87 (0.82, 0.91)*	0.92 (0.81, 1.04)
	Model 3 ^d	0.93 (0.90, 0.97) *	1.05 (0.86, 1.29)	1.00 (0.94, 1.06)	1.02 (0.94, 1.11)	0.92 (0.82, 1.02)	0.89 (0.84, 0.94)*	0.92 (0.82, 1.05)
GDQS	Model 1 ^b	0.83 (0.80, 0.86) *	0.82 (0.66, 1.02)	0.86 (0.80, 0.91) *	0.90 (0.83, 0.97)*	0.80 (0.72, 0.90)*	0.80 (0.76, 0.84)*	0.77 (0.68, 0.87)*
	Model 3 ^d	0.88 (0.85, 0.91) *	0.85 (0.69, 1.06)	0.92 (0.86, 0.98) *	0.96 (0.89, 1.05)	0.82 (0.74, 0.92)*	0.86 (0.82, 0.91)*	0.83 (0.73, 0.94)*
GDQS+	Model 1 ^b	0.85 (0.82, 0.88) *	0.82 (0.66, 1.01)	0.90 (0.85, 0.96) *	0.92 (0.85, 1.00)*	0.81 (0.73, 0.91)*	0.81 (0.77, 0.86)*	0.79 (0.70, 0.90)*
	Model 3 ^d	0.90 (0.86, 0.93) *	0.83 (0.67, 1.03)	0.96 (0.90, 1.02)	0.99 (0.91, 1.07)	0.82 (0.73, 0.92)*	0.87 (0.82, 0.92)*	0.86 (0.75, 0.97)*
GDQS-	Model 1 ^b	0.97 (0.93, 1.00)	0.98 (0.80, 1.19)	0.96 (0.90, 1.02)	0.99 (0.92, 1.08)	0.94 (0.84, 1.04)	0.97 (0.92, 1.02)	1.04 (0.92, 1.17)

Dietary	Model	HR (95% CI) ^a									
patterns											
		Gastrointestinal	Inflammatory	Polyps	Adenoma	Irritable bowel	Gastroesophageal	Peptic ulcer			
		disorders	bowel disease			syndrome	reflux disease	disease			
		(n=22 936)	(n=722)	(n=7 592)	(n=4 642)	(n=2 478)	(n=10 979)	(n=1 936)			
	Model 3 ^d	0.97 (0.94, 1.01)	1.00 (0.82, 1.23)	0.97 (0.91, 1.04)	1.00 (0.92, 1.08)	0.94 (0.84, 1.06)	0.98 (0.93, 1.03)	1.00 (0.89, 1.14)			
DII	Model 1 ^b	1.13 (1.09, 1.18) *	1.01 (0.83, 1.24)	1.06 (1.00, 1.13)	1.04 (0.96, 1.12)	1.17 (1.05, 1.31)*	1.22 (1.15, 1.28)*	1.17 (1.03, 1.32)*			
	Model 2 ^c	1.13 (1.08, 1.18) *	1.09 (0.85, 1.38)	1.08 (1.01, 1.17) *	1.01 (0.91, 1.11)	1.21 (1.07, 1.38)*	1.20 (1.13, 1.28)*	1.09 (0.94, 1.27)			

111 Abbreviations: AHEI-2010, Alternate Healthy Eating Index-2010; AMED, Alternate Mediterranean Diet; CI, confidence interval; DASH, Dietary Approaches to Stop Hypertension; DII, dietary

112 inflammatory index; GDQS, Global Diet Quality Score; GDQS-, negative submetric of Global Diet Quality Score; GDQS+, positive submetric of Global Diet Quality Score; HPDI, healthful plant-based

113 diet index; HR, hazard ratio; LCD, low carbohydrate diet; PDI, plant-based diet index; uPDI, unhealthful plant-based diet index.

114 ^aHRs (95% CI) are comparing the highest quarter with the lowest quarter. *P* value <0.05 was noted with '*'.

115 bModel 1 was adjusted for age and sex.

116 •Model 2 was adjusted for age, sex, BMI, race, cardiovascular disease, diabetes, smoking status, physical activity, multivitamin use, regular aspirin use, regular NSAID use and total energy intake.

117 dModel 3 was adjusted for age, sex, BMI, race, cardiovascular disease, diabetes, smoking status, physical activity, multivitamin use, regular aspirin use, regular NSAID use, total energy intake and

118 alcohol drinking status [none drinking, moderate drinking (<2 drinks/day for men, and <1 drink/day for women)], or heavy drinking (>2 drinks/day for men, and >1 drink/day for women)].

119 Supplementary Table 6. Associations between food groups and gastrointestinal disorders

Food groups		HR (95% CI) ^a						
		Gastrointestinal	Inflammatory	Polyps	Adenoma	Irritable bowel	Gastroesophag-	Peptic ulcer
		disorders	bowel disease			syndrome	eal reflux	disease
							disease	
		(n=20858)	(n=666)	(n=6910)	(n=4254)	(n=2232)	(n=9942)	(n=1713)
Vegetables	Tertile 1	1 (Ref)	1 (Ref)	1 (Ref)	1 (Ref)	1 (Ref)	1 (Ref)	1 (Ref)
	Tertile 2	0.96 (0.93, 1.00)*	0.93 (0.77, 1.13)	1.00 (0.94, 1.07)	0.98 (0.91, 1.06)	0.96 (0.86, 1.07)	0.93 (0.88, 0.98)*	0.91 (0.81, 1.03)
	Tertile 3	0.97 (0.93, 1.01)	0.96 (0.77, 1.20)	1.02 (0.95, 1.09)	1.04 (0.96, 1.14)	0.93 (0.83, 1.05)	0.92 (0.87, 0.97)*	0.95 (0.83, 1.09)
Fruits	Tertile 1	1 (Ref)	1 (Ref)	1 (Ref)	1 (Ref)	1 (Ref)	1 (Ref)	1 (Ref)
	Tertile 2	0.95 (0.92, 0.99)*	0.92 (0.76, 1.12)	0.97 (0.91, 1.03)	0.92 (0.86, 1.00)*	1.00 (0.90, 1.11)	0.94 (0.90, 0.99)*	0.98 (0.87, 1.11)
	Tertile 3	0.92 (0.88, 0.95)*	0.83 (0.67, 1.02)	0.94 (0.88, 1.00)	0.92 (0.85, 1.00)*	0.88 (0.79, 0.99)*	0.89 (0.85, 0.94)*	1.06 (0.93, 1.21)
Whole grains	Tertile 1	1 (Ref)	1 (Ref)	1 (Ref)	1 (Ref)	1 (Ref)	1 (Ref)	1 (Ref)
	Tertile 2	0.97 (0.93, 1.00)	0.79 (0.65, 0.96)*	0.96 (0.90, 1.02)	0.91 (0.85, 0.99)*	1.04 (0.93, 1.15)	1.00 (0.95, 1.05)	0.99 (0.88, 1.12)
	Tertile 3	0.95 (0.92, 0.99)*	0.89 (0.72, 1.10)	0.90 (0.84, 0.97)*	0.90 (0.82, 0.98)*	1.07 (0.95, 1.21)	0.97 (0.92, 1.03)	0.95 (0.83, 1.09)
Refined grains	Tertile 1	1 (Ref)	1 (Ref)	1 (Ref)	1 (Ref)	1 (Ref)	1 (Ref)	1 (Ref)
	Tertile 2	0.99 (0.95, 1.02)	0.90 (0.74, 1.10)	0.97 (0.92, 1.03)	0.93 (0.86, 1.00)	1.05 (0.94, 1.16)	1.02 (0.97, 1.07)	0.95 (0.84, 1.07)
	Tertile 3	1.02 (0.98, 1.05)	1.10 (0.90, 1.34)	0.99 (0.93, 1.05)	0.96 (0.89, 1.04)	1.05 (0.94, 1.17)	1.06 (1.01, 1.12)*	0.97 (0.86, 1.11)
Nuts and	Tertile	1 (Ref)	1 (Ref)	1 (Ref)	1 (Ref)	1 (Ref)	1 (Ref)	1 (Ref)

Food groups					HR (95% CI) ^a			
		Gastrointestinal disorders	Inflammatory bowel disease	Polyps	Adenoma	Irritable bowel syndrome	Gastroesophag- eal reflux disease	Peptic ulcer disease
		(n=20858)	(n=666)	(n=6910)	(n=4254)	(n=2232)	(n=9942)	(n=1713)
legumes	1							
	Tertile 2	0.99 (0.96, 1.02)	0.94 (0.78, 1.13)	0.96 (0.91, 1.02)	1.08 (1.00, 1.17)*	0.94 (0.85, 1.04)	1.00 (0.95, 1.05)	0.99 (0.88, 1.11)
	Tertile 3	0.97 (0.93, 1.00)	0.88 (0.71, 1.09)	1.01 (0.94, 1.07)	1.07 (0.98, 1.16)	0.93 (0.83, 1.04)	0.96 (0.91, 1.01)	0.91 (0.80, 1.04)
Red meat	Tertile 1	1 (Ref)	1 (Ref)	1 (Ref)	1 (Ref)	1 (Ref)	1 (Ref)	1 (Ref)
	Tertile 2	1.00 (0.94, 1.06)	1.01 (0.72, 1.42)	1.01 (0.91, 1.12)	1.02 (0.89, 1.17)	0.77 (0.63, 0.94)*	1.00 (0.92, 1.09)	1.15 (0.94, 1.41)
	Tertile 3	0.99 (0.96, 1.02)	1.02 (0.86, 1.20)	1.02 (0.97, 1.08)	1.05 (0.99, 1.12)	0.92 (0.84, 1.00)	0.98 (0.94, 1.02)	0.93 (0.84, 1.03)
Processed meat	Tertile 1	1 (Ref)	1 (Ref)	1 (Ref)	1 (Ref)	1 (Ref)	1 (Ref)	1 (Ref)
	Tertile 2	0.98 (0.94, 1.02)	0.80 (0.63, 1.00)	1.01 (0.94, 1.08)	1.04 (0.96, 1.14)	0.96 (0.85, 1.08)	0.98 (0.92, 1.03)	0.96 (0.84, 1.11)
	Tertile 3	1.02 (0.98, 1.05)	0.93 (0.77, 1.11)	1.06 (1.00, 1.12)*	1.03 (0.96, 1.11)	1.06 (0.96, 1.18)	0.97 (0.92, 1.02)	1.12 (1.00, 1.26)*
Poultry	Tertile 1	1 (Ref)	1 (Ref)	1 (Ref)	1 (Ref)	1 (Ref)	1 (Ref)	1 (Ref)
	Tertile 2	1.02 (0.97, 1.08)	0.97 (0.72, 1.31)	1.09 (1.00, 1.20)*	1.02 (0.91, 1.15)	0.91 (0.78, 1.08)	1.10 (1.02, 1.18)*	0.92 (0.76, 1.11)
	Tertile 3	1.01 (0.98, 1.04)	1.03 (0.87, 1.22)	1.03 (0.97, 1.08)	1.05 (0.99, 1.13)	1.04 (0.95, 1.14)	1.01 (0.97, 1.06)	0.95 (0.85, 1.06)
Fish and seafood	Tertile 1	1 (Ref)	1 (Ref)	1 (Ref)	1 (Ref)	1 (Ref)	1 (Ref)	1 (Ref)
	Tertile	0.95 (0.89, 1.01)	1.08 (0.77, 1.50)	0.93 (0.83, 1.04)	1.10 (0.96, 1.26)	0.79 (0.64, 0.96)*	0.90 (0.82, 0.99)*	0.91 (0.72, 1.14)

Food groups					HR (95% CI)ª			
		Gastrointestinal disorders	Inflammatory bowel disease	Polyps	Adenoma	Irritable bowel syndrome	Gastroesophag- eal reflux disease	Peptic ulcer disease
		(n=20858)	(n=666)	(n=6910)	(n=4254)	(n=2232)	(n=9942)	(n=1713)
	2							
	Tertile 3	0.96 (0.93, 0.99)*	0.93 (0.79, 1.10)	0.96 (0.92, 1.01)	1.03 (0.96, 1.10)	0.93 (0.85, 1.02)	0.93 (0.89, 0.97)*	0.91 (0.82, 1.01)
Eggs	Tertile 1	1 (Ref)	1 (Ref)	1 (Ref)	1 (Ref)	1 (Ref)	1 (Ref)	1 (Ref)
	Tertile 2	0.97 (0.88, 1.06)	1.15 (0.71, 1.88)	0.87 (0.73, 1.03)	0.91 (0.74, 1.13)	1.07 (0.83, 1.38)	1.01 (0.88, 1.15)	0.83 (0.58, 1.17)
	Tertile 3	1.02 (0.99, 1.05)	1.15 (0.98, 1.36)	1.00 (0.95, 1.06)	1.05 (0.98, 1.12)	1.00 (0.91, 1.10)	1.01 (0.96, 1.05)	0.96 (0.86, 1.06)
Low-fat dairy	Tertile 1	1 (Ref)	1 (Ref)	1 (Ref)	1 (Ref)	1 (Ref)	1 (Ref)	1 (Ref)
	Tertile 2	1.02 (0.99, 1.06)	1.10 (0.91, 1.34)	1.02 (0.96, 1.09)	0.93 (0.87, 1.01)	0.89 (0.80, 0.99)*	1.06 (1.01, 1.12)*	0.93 (0.82, 1.05)
	Tertile 3	1.01 (0.98, 1.05)	1.10 (0.90, 1.35)	0.99 (0.93, 1.05)	0.93 (0.86, 1.01)	0.87 (0.78, 0.97)*	1.08 (1.02, 1.13)*	0.93 (0.82, 1.06)
High-fat dairy	Tertile 1	1 (Ref)	1 (Ref)	1 (Ref)	1 (Ref)	1 (Ref)	1 (Ref)	1 (Ref)
	Tertile 2	0.95 (0.91, 0.98)*	1.12 (0.91, 1.38)	1.01 (0.94, 1.07)	0.91 (0.84, 0.99)*	0.94 (0.84, 1.05)	0.92 (0.87, 0.97)*	0.90 (0.79, 1.02)
	Tertile 3	0.92 (0.89, 0.95)*	1.11 (0.93, 1.34)	0.99 (0.93, 1.04)	0.92 (0.86, 0.99)*	0.81 (0.73, 0.90)*	0.88 (0.84, 0.92)*	0.89 (0.80, 1.00)*
Potatoes	Tertile 1	1 (Ref)	1 (Ref)	1 (Ref)	1 (Ref)	1 (Ref)	1 (Ref)	1 (Ref)
	Tertile 2	1.02 (0.99, 1.06)	1.01 (0.83, 1.22)	0.99 (0.93, 1.05)	0.98 (0.91, 1.06)	1.12 (1.00, 1.24)*	1.01 (0.96, 1.07)	0.98 (0.86, 1.11)
	Tertile	1.06 (1.01, 1.11)*	1.01 (0.78, 1.31)	0.97 (0.89, 1.05)	1.06 (0.96, 1.17)	1.21 (1.05, 1.39)*	1.05 (0.99, 1.13)	1.12 (0.96, 1.32)

Food groups					HR (95% CI) ^a			
		Gastrointestinal disorders	Inflammatory bowel disease	Polyps	Adenoma	Irritable bowel syndrome	Gastroesophag- eal reflux disease (n=9942)	Peptic ulcer disease
	3	(11-20030)		(11-0310)	(11-4234)	(11-2252)	(11-3342)	
Purchased deep fried foods	Tertile	1 (Ref)	1 (Ref)	1 (Ref)	1 (Ref)	1 (Ref)	1 (Ref)	1 (Ref)
	Tertile 2	1.00 (0.91, 1.10)	0.74 (0.39, 1.38)	0.97 (0.81, 1.15)	1.06 (0.86, 1.31)	1.15 (0.88, 1.49)	1.01 (0.88, 1.16)	1.04 (0.74, 1.45)
	Tertile 3	1.03 (0.99, 1.06)	1.03 (0.85, 1.24)	1.06 (1.00, 1.13)*	1.01 (0.93, 1.08)	0.90 (0.81, 1.00)*	1.05 (1.00, 1.10)	0.98 (0.87, 1.10)
Sweets and desserts	Tertile 1	1 (Ref)	1 (Ref)	1 (Ref)	1 (Ref)	1 (Ref)	1 (Ref)	1 (Ref)
	Tertile 2	1.02 (0.98, 1.05)	1.05 (0.87, 1.27)	1.01 (0.95, 1.07)	0.94 (0.87, 1.01)	1.07 (0.96, 1.19)	1.03 (0.98, 1.09)	0.92 (0.82, 1.03)
	Tertile 3	1.02 (0.98, 1.06)	1.01 (0.82, 1.24)	1.01 (0.94, 1.07)	0.89 (0.82, 0.96)*	1.15 (1.03, 1.29)*	1.06 (1.01, 1.12)*	0.94 (0.82, 1.06)
Sugar-sweetened beverages	Tertile 1	1 (Ref)	1 (Ref)	1 (Ref)	1 (Ref)	1 (Ref)	1 (Ref)	1 (Ref)
	Tertile 2	1.07 (1.01, 1.13)*	1.12 (0.82, 1.53)	1.08 (0.98, 1.19)	1.08 (0.96, 1.22)	1.09 (0.91, 1.30)	1.07 (0.98, 1.16)	0.96 (0.78, 1.18)
	Tertile 3	1.07 (1.04, 1.10)*	1.13 (0.96, 1.33)	1.03 (0.98, 1.08)	1.00 (0.93, 1.06)	1.11 (1.02, 1.22)*	1.09 (1.05, 1.14)*	1.08 (0.97, 1.19)
Juice	Tertile 1	1 (Ref)	1 (Ref)	1 (Ref)	1 (Ref)	1 (Ref)	1 (Ref)	1 (Ref)
	Tertile 2	0.97 (0.94, 1.01)	1.15 (0.93, 1.42)	0.97 (0.90, 1.04)	0.97 (0.89, 1.06)	0.97 (0.86, 1.09)	0.91 (0.86, 0.97)*	0.98 (0.85, 1.12)
	Tertile 3	0.96 (0.93, 0.99)*	1.00 (0.84, 1.20)	1.00 (0.95, 1.05)	0.94 (0.87, 1.00)	0.98 (0.89, 1.08)	0.94 (0.90, 0.98)*	0.95 (0.85, 1.06)
Tea and coffee	Tertile	1 (Ref)	1 (Ref)	1 (Ref)	1 (Ref)	1 (Ref)	1 (Ref)	1 (Ref)

Food groups					HR (95% CI) ^a			
		Gastrointestinal	Inflammatory	Polyps	Adenoma	Irritable bowel	Gastroesophag-	Peptic ulcer
		disorders	bowel disease			syndrome	eal reflux	disease
							disease	
		(n=20858)	(n=666)	(n=6910)	(n=4254)	(n=2232)	(n=9942)	(n=1713)
	1							
	Tertile	1.00 (0.96, 1.03)	0.85 (0.69, 1.04)	1.00 (0.94, 1.06)	1.01 (0.93, 1.09)	1.00 (0.90, 1.12)	1.04 (0.99, 1.09)	0.88 (0.78, 0.99)*
	2							
	Tertile	0.98 (0.95, 1.02)	0.89 (0.73, 1.07)	0.98 (0.92, 1.04)	0.98 (0.91, 1.06)	1.01 (0.91, 1.12)	1.02 (0.97, 1.08)	0.89 (0.79, 1.01)
	3							
Fruits and whole	Tertile	1 (Ref)	1 (Ref)	1 (Ref)	1 (Ref)	1 (Ref)	1 (Ref)	1 (Ref)
grains	1							
	Tertile	0.95 (0.92, 0.99)*	0.86 (0.71, 1.04)	0.95 (0.89, 1.01)	0.91 (0.85, 0.98)*	0.97 (0.87, 1.07)	0.96 (0.92, 1.01)	1.02 (0.90, 1.15)
	2							
	Tertile	0.89 (0.86, 0.93)*	0.81 (0.65, 1.00)	0.87 (0.81, 0.93)*	0.85 (0.78, 0.93)*	0.91 (0.81, 1.03)	0.89 (0.84, 0.94)*	1.01 (0.88, 1.16)
	3							

120 Abbreviations: CI, confidence interval; HR, hazard ratio.

121 ^aHRs (95% CI) are comparing the highest with the lowest tertiles. *P* value <0.05 was noted with '*'.

122 The model for food group was adjusted for age, sex, BMI, race, cardiovascular disease, diabetes, smoking status, physical activity, multivitamin use, regular aspirin use, regular NSAID use, total

123 energy intake, alcohol drinking status [none drinking, moderate drinking (<2 drinks/day for men, and <1 drink/day for women), or heavy drinking (≥2 drinks/day for men, and ≥1 drink/day for women)]

124 and intakes of other food groups.

 $126\quad$ Supplementary Figure 1. Flowchart of participants included in the analyses.

Supplementary Figure 2. Multivariable-adjusted cubic spline analysis of dietary pattern scores with the risk of gastrointestinal disorders. Models for AHEI-2010, AMED and DII were adjusted for age, sex, BMI, race, cardiovascular disease, diabetes, smoking status, physical activity, multivitamin use, regular aspirin use, regular NSAID use and total energy intake. Models for DASH, PDI, hPDI, uPDI, LCD, animal-rich LCD, gDQS, GDQS+ and GDQS- were adjusted for age, sex, BMI, race, cardiovascular disease, diabetes, smoking status, physical activity, multivitamin use, regular aspirin use, regular NSAID use, total energy intake and alcohol drinking status [none drinking, moderate drinking (<2 drinks/day for men, and <1 drink/day for women), or heavy drinking (≥2 drinks/day for men, and ≥1 drink/day for women)].

133 Abbreviations: AHEI-2010, Alternate Healthy Eating Index-2010; AMED, Alternate Mediterranean Diet; CI, confidence interval; DASH, Dietary Approaches to Stop Hypertension; DII, dietary

134 inflammatory index; GDQS, Global Diet Quality Score; GDQS-, negative submetric of Global Diet Quality Score; GDQS+, positive submetric of Global Diet Quality Score; hPDI, healthful plant-based

135 diet index; HR, hazard ratio; LCD, low carbohydrate diet; PDI, plant-based diet index; uPDI, unhealthful plant-based diet index.

127

Supplementary Figure 3. Multivariable-adjusted cubic spline analysis of dietary pattern scores with the risk of inflammatory bowel disease. Models for AHEI-2010, AMED and DII were adjusted for age, sex, BMI, race, cardiovascular disease, diabetes, smoking status, physical activity, multivitamin use, regular aspirin use, regular NSAID use and total energy intake. Models for DASH, PDI, hPDI, uPDI, LCD, animal-rich LCD, plant-rich LCD, GDQS, GDQS+ and GDQS- were adjusted for age, sex, BMI, race, cardiovascular disease, diabetes, smoking status, physical activity, multivitamin use, regular aspirin use, regular NSAID use, total energy intake and alcohol drinking status [none drinking, moderate drinking (<2 drinks/day for men, and <1 drink/day for women), or heavy drinking ($\geq 2 drinks/day$ for men, and $\geq 1 drink/day$ for women)].

142 Abbreviations: AHEI-2010, Alternate Healthy Eating Index-2010; AMED, Alternate Mediterranean Diet; CI, confidence interval; DASH, Dietary Approaches to Stop Hypertension; DII, dietary

143 inflammatory index; GDQS, Global Diet Quality Score; GDQS-, negative submetric of Global Diet Quality Score; GDQS+, positive submetric of Global Diet Quality Score; hPDI, healthful plant-based

146 Supplementary Figure 4. Multivariable-adjusted cubic spline analysis of dietary pattern scores with the risk of polyps. Models for AHEI-2010, AMED and DII were adjusted for age, sex,

147 BMI, race, cardiovascular disease, diabetes, smoking status, physical activity, multivitamin use, regular aspirin use, regular NSAID use and total energy intake. Models for DASH, PDI, hPDI, uPDI,

148 LCD, animal-rich LCD, plant-rich LCD, GDQS, GDQS+ and GDQS- were adjusted for age, sex, BMI, race, cardiovascular disease, diabetes, smoking status, physical activity, multivitamin use,

149 regular aspirin use, regular NSAID use, total energy intake and alcohol drinking status [none drinking, moderate drinking (<2 drinks/day for men, and <1 drink/day for women), or heavy drinking (>2

- 150 drinks/day for men, and ≥ 1 drink/day for women)].
- 151 Abbreviations: AHEI-2010, Alternate Healthy Eating Index-2010; AMED, Alternate Mediterranean Diet; CI, confidence interval; DASH, Dietary Approaches to Stop Hypertension; DII, dietary
- 152 inflammatory index; GDQS, Global Diet Quality Score; GDQS-, negative submetric of Global Diet Quality Score; GDQS+, positive submetric of Global Diet Quality Score; hPDI, healthful plant-based
- 153 diet index; HR, hazard ratio; LCD, low carbohydrate diet; PDI, plant-based diet index; uPDI, unhealthful plant-based diet index.

154

155 Supplementary Figure 5. Multivariable-adjusted cubic spline analysis of dietary pattern scores with the risk of adenomas. Models for AHEI-2010, AMED and DII were adjusted for age, sex,

156 BMI, race, cardiovascular disease, diabetes, smoking status, physical activity, multivitamin use, regular aspirin use, regular NSAID use and total energy intake. Models for DASH, PDI, hPDI, uPDI,

157 LCD, animal-rich LCD, plant-rich LCD, GDQS, GDQS+ and GDQS- were adjusted for age, sex, BMI, race, cardiovascular disease, diabetes, smoking status, physical activity, multivitamin use,

158 regular aspirin use, regular NSAID use, total energy intake and alcohol drinking status [none drinking, moderate drinking (<2 drinks/day for men, and <1 drink/day for women), or heavy drinking (>2

159 drinks/day for men, and ≥ 1 drink/day for women)].

160 Abbreviations: AHEI-2010, Alternate Healthy Eating Index-2010; AMED, Alternate Mediterranean Diet; CI, confidence interval; DASH, Dietary Approaches to Stop Hypertension; DII, dietary

161 inflammatory index; GDQS, Global Diet Quality Score; GDQS-, negative submetric of Global Diet Quality Score; GDQS+, positive submetric of Global Diet Quality Score; hPDI, healthful plant-based

Supplementary Figure 6. Multivariable-adjusted cubic spline analysis of dietary pattern scores with the risk of irritable bowel syndrome. Models for AHEI-2010, AMED and DII were adjusted for age, sex, BMI, race, cardiovascular disease, diabetes, smoking status, physical activity, multivitamin use, regular aspirin use, regular NSAID use and total energy intake. Models for DASH, PDI, hPDI, uPDI, LCD, animal-rich LCD, plant-rich LCD, GDQS, GDQS+ and GDQS- were adjusted for age, sex, BMI, race, cardiovascular disease, diabetes, smoking status, physical activity, multivitamin use, regular aspirin use, regular NSAID use, total energy intake and alcohol drinking status [none drinking, moderate drinking (<2 drinks/day for men, and <1 drink/day for women), or heavy drinking ($\geq 2 drinks/day$ for men, and $\geq 1 drink/day$ for women)].

169 Abbreviations: AHEI-2010, Alternate Healthy Eating Index-2010; AMED, Alternate Mediterranean Diet; CI, confidence interval; DASH, Dietary Approaches to Stop Hypertension; DII, dietary

170 inflammatory index; GDQS, Global Diet Quality Score; GDQS-, negative submetric of Global Diet Quality Score; GDQS+, positive submetric of Global Diet Quality Score; hPDI, healthful plant-based

Supplementary Figure 7. Multivariable-adjusted cubic spline analysis of dietary pattern scores with the risk of gastroesophageal reflux disease. Models for AHEI-2010, AMED and DII were adjusted for age, sex, BMI, race, cardiovascular disease, diabetes, smoking status, physical activity, multivitamin use, regular aspirin use, regular NSAID use and total energy intake. Models for DASH, PDI, hPDI, uPDI, LCD, animal-rich LCD, gDQS, GDQS+ and GDQS- were adjusted for age, sex, BMI, race, cardiovascular disease, diabetes, smoking status, physical activity, multivitamin use, regular aspirin use,

177 women), or heavy drinking (≥2 drinks/day for men, and ≥1 drink/day for women)].

172

178 Abbreviations: AHEI-2010, Alternate Healthy Eating Index-2010; AMED, Alternate Mediterranean Diet; CI, confidence interval; DASH, Dietary Approaches to Stop Hypertension; DII, dietary

179 inflammatory index; GDQS, Global Diet Quality Score; GDQS-, negative submetric of Global Diet Quality Score; GDQS+, positive submetric of Global Diet Quality Score; hPDI, healthful plant-based

182 Supplementary Figure 8. Multivariable-adjusted cubic spline analysis of dietary pattern scores with the risk of peptic ulcer disease. Models for AHEI-2010, AMED and DII were adjusted

183 for age, sex, BMI, race, cardiovascular disease, diabetes, smoking status, physical activity, multivitamin use, regular aspirin use, regular NSAID use and total energy intake. Models for DASH, PDI,

184 hPDI, uPDI, LCD, animal-rich LCD, plant-rich LCD, GDQS, GDQS+ and GDQS- were adjusted for age, sex, BMI, race, cardiovascular disease, diabetes, smoking status, physical activity,

185 multivitamin use, regular aspirin use, regular NSAID use, total energy intake and alcohol drinking status [none drinking, moderate drinking (<2 drinks/day for men, and <1 drink/day for women), or

186 heavy drinking (≥ 2 drinks/day for men, and ≥ 1 drink/day for women)].

187 Abbreviations: AHEI-2010, Alternate Healthy Eating Index-2010; AMED, Alternate Mediterranean Diet; CI, confidence interval; DASH, Dietary Approaches to Stop Hypertension; DII, dietary

188 inflammatory index; GDQS, Global Diet Quality Score; GDQS-, negative submetric of Global Diet Quality Score; GDQS+, positive submetric of Global Diet Quality Score; hPDI, healthful plant-based

190

191 Supplementary Figure 9. The associations between dietary patterns and gastrointestinal disorders in subgroups. The HRs (95% CIs) were calculated by comparing the highest with the 192 lowest guarter. The HRs are indicated by the circles and the 95% CIs are reflected by the error bars. The models for AHEI-2010, AMED and DII were adjusted for age, sex, BMI, race, cardiovascular 193 disease, diabetes, smoking status, physical activity, multivitamin use, regular aspirin use, regular NSAID use and total energy intake. Models for DASH, PDI, hPDI, uPDI, LCD, animal-rich LCD, 194 plant-rich LCD, GDQS, GDQS+ and GDQS- were adjusted for age, sex, BMI, race, cardiovascular disease, diabetes, smoking status, physical activity, multivitamin use, regular aspirin use, regular 195 NSAID use, total energy intake and alcohol drinking status [none drinking, moderate drinking (<2 drinks/day for men, and <1 drink/day for women), or heavy drinking (≥2 drinks/day for men, and ≥1 196 drink/day for women)]. P for trend <0.05 was noted with '*'. Low MET: lowest tertile of MET; medium MET: medium tertile of MET; high MET: highest tertile of MET. Low Townsend deprivation index: 197 lowest tertile of Townsend deprivation index; medium Townsend deprivation index; medium tertile of Townsend deprivation index; high Education index; high 198 deprivation index. 199 Abbreviations: AHEI-2010, Alternate Healthy Eating Index-2010; AMED, Alternate Mediterranean Diet; BMI, body mass index; CI, confidence interval; DASH, Dietary Approaches to Stop 200 Hypertension; DII, dietary inflammatory index; GDQS, Global Diet Quality Score; GDQS-, negative submetric of Global Diet Quality Score; GDQS+, positive submetric of Global Diet Quality Score;

201 hPDI, healthful plant-based diet index; HR, hazard ratio; LCD, low carbohydrate diet; MET, metabolic equivalent; PDI, plant-based diet index; uPDI, unhealthful plant-based diet index.

202

203 Supplementary Figure 10. Associations of AHEI-2010, AMED and DASH with gastrointestinal disorders after removing food group

components. The HRs (95% CIs) were calculated by comparing the highest quarter with the lowest quarter. The HRs are indicated by rectangles, circles or triangles. The 95% CIs are reflected by the error bars. The model for AHEI-2010 and AMED of complete components was adjusted for age, sex, BMI, race, cardiovascular disease, diabetes, smoking status, physical activity, multivitamin use, regular aspirin use, regular NSAID use and total

207 energy intake. The models for AHEI-2010 and AMED of removing components were further adjusted for the intake of the removing component. The 208 model for DASH of complete components was adjusted for age, sex, BMI, race, cardiovascular disease, diabetes, smoking status, physical activity,

- 209 multivitamin use, regular aspirin use, regular NSAID use, total energy intake and alcohol drinking status [none drinking, moderate drinking (<2
- 210 drinks/day for men, and <1 drink/day for women), or heavy drinking (≥2 drinks/day for men, and ≥1 drink/day for women)]. The models for DASH of

211 removing components were further adjusted for the intake of the removing component.

212 Abbreviations: AHEI-2010, Alternate Healthy Eating Index-2010; AMED, Alternate Mediterranean Diet; CI, confidence interval; HR, hazard ratio.

213 Reference

- B. Liu, H. Young, F. L. Crowe, V. S. Benson, E. A. Spencer, T. J. Key, P. N. Appleby and V. Beral, Development and
 evaluation of the Oxford WebQ, a low-cost, web-based method for assessment of previous 24 h dietary intakes in large-scale
 prospective studies, *Public Health Nutr.*, 2011, 14, 1998–2005.
- 217 2 C. L. Craig, A. L. Marshall, M. Sjöström, A. E. Bauman, M. L. Booth, B. E. Ainsworth, M. Pratt, U. Ekelund, A. Yngve, J. F.
 218 Sallis and P. Oja, International physical activity questionnaire: 12-country reliability and validity, *Med. Sci. Sports Exerc.*, 2003,
 219 35, 1381–1395.
- M. Sjostrom, B. Ainsworth, A. Bauman, F. Bull, C. Hamilton-Craig and J. Sallis, Guidelines for data processing analysis of the
 International Physical Activity Questionnaire (IPAQ) Short and long forms, 2005.
- 4 G. Zou, A modified poisson regression approach to prospective studies with binary data, Am. J. Epidemiol., 2004, 159, 702-706.
- S. E. Chiuve, T. T. Fung, E. B. Rimm, F. B. Hu, M. L. McCullough, M. Wang, M. J. Stampfer and W. C. Willett, Alternative
 Dietary Indices Both Strongly Predict Risk of Chronic Disease, *J. Nutr.*, 2012, 142, 1009–1018.
- P. Wang, M. Song, A. H. Eliassen, M. Wang and E. L. Giovannucci, Dietary patterns and risk of colorectal cancer: a
 comparative analysis, *Int. J. Epidemiol.*, 2023, 52, 96–106.
- 7 T. T. Fung, F. B. Hu, M. L. McCullough, P. K. Newby, W. C. Willett and M. D. Holmes, Diet quality is associated with the risk
 of estrogen receptor-negative breast cancer in postmenopausal women, *J. Nutr.*, 2006, 136, 466–472.
- 8 T. T. Fung, S. E. Chiuve, M. L. McCullough, K. M. Rexrode, G. Logroscino and F. B. Hu, Adherence to a DASH-style diet and
 risk of coronary heart disease and stroke in women, *Arch. Intern. Med.*, 2008, 168, 713–720.
- 9 A. Satija, S. N. Bhupathiraju, E. B. Rimm, D. Spiegelman, S. E. Chiuve, L. Borgi, W. C. Willett, J. E. Manson, Q. Sun and F. B.
 Hu, Plant-Based Dietary Patterns and Incidence of Type 2 Diabetes in US Men and Women: Results from Three Prospective
 Cohort Studies, *PLoS Med.*, 2016, 13, e1002039.
- 10 T. L. Halton, W. C. Willett, S. Liu, J. E. Manson, C. M. Albert, K. Rexrode and F. B. Hu, Low-Carbohydrate-Diet Score and the
 Risk of Coronary Heart Disease in Women, *N. Engl. J. Med.*, 2006, 355, 1991–2002.
- 11 S. Bromage, C. Batis, S. N. Bhupathiraju, W. W. Fawzi, T. T. Fung, Y. Li, M. Deitchler, E. Angulo, N. Birk, A. CastellanosGutiérrez, Y. He, Y. Fang, M. Matsuzaki, Y. Zhang, M. Moursi, S. Gicevic, M. D. Holmes, S. Isanaka, S. Kinra, S. E. Sachs, M.
- J. Stampfer, D. Stern and W. C. Willett, Development and Validation of a Novel Food-Based Global Diet Quality Score (GDQS),
- 239 J. Nutr., 2021, 151, 75S-92S.
- 12 N. Shivappa, S. E. Steck, T. G. Hurley, J. R. Hussey and J. R. Hébert, Designing and developing a literature-derived, population based dietary inflammatory index, *Public Health Nutr.*, 2014, 17, 1689–1696.
- 242