Electronic Supplementary Information:

Stabilization of hypoxia-inducible factor 1α and regulation of specific gut microbes

by EGCG contribute to the alleviation of ileal barrier disorder and obesity

Hui Ma,*^a Yuanyifei Wang,^b JiaYu Wei,^a Xiaochi Wang,^a Hui Yang,^a and Shuo Wang*^b

^a College of Food Science, Shanxi Normal University, Taiyuan 030031, Shanxi, China

^b Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai

University, Tianjin 300071, China

^{*} Corresponding author. Email: huima@sxnu.edu.cn (H, Ma),

wangshuo@nankai.edu.cn (S. Wang)

Product #	D12450J		D12492	
	gm%	kcal%	gm%	kcal%
Protein	19.2	20	26	20
Carbohydrate	67.3	70	26	20
Fat	4.3	10	35	60
Total		100		100
kcal/gm	3.85		5.24	
Ingredient	gm	kcal	gm	kcal
Casein,80 Mesh	200	800	200	800
L-Cystine	3	12	3	12
Corn Starch	506.2	2024.8	0	0
Maltodextrin 10	125	500	125	500
Sucrose	68.8	275.2	68.8	275.2
Cellulose, BW200	50	0	50	0
Soybean Oil	25	225	25	225
Lard	20	180	245	2205
Mineral Mix S10026	10	0	10	0
DiCalcium Phosphate	13	0	13	0
Calcium Carbonate	5.5	0	5.5	0
Potassium Citrate,1H2O	16.5	0	16.5	0
Vitamin Mix V10001	10	40	10	40
Choline Bitartrate	2	0	2	0
FD&C Yellow Dye #5	0.04	0	0	0
FD&C Blue Dye #1	0.01	0	0.05	0
Total	1055.05	4057	773.85	4057

Table S1 The formulas of the low-fat control diet and high-fat diet

 Table S2 Primer sequences designed for mice

Gene	Forward primer $(5' \rightarrow 3')$	Reverse primer $(5' \rightarrow 3')$
HSL	GCTAGCCAGGCTCATCTCCT	GTTCTTGAGGTAGGGCTCGT
ACOX	CTATGGGATCAGCCAGAAAGG	AGTCAAAGGCATCCACCAAAG
Leptin	CCTGTGGCTTTGGTCCTATCTG	AGGCAAGCTGGTGAGGATCTG
ACC	GGCAGCAGTTACACCACATAC	TCATTACCTCAATCTCAGCATAGC
PGC1a	AGCCGTGACCACTGACAACGAG	GCTGCATGGTTCTGAGTGCTAAG
TNFα	AATGGCCTCCCTCTCATCAG	CCACTTGGTGGTTTGCTACG
IL-6	ACTTCCATCCAGTTGCCTTCTTG	TGTTGGGAGTGGTATCCTCTGTG
IL-1β	AAGGGCTG TTCCAAACCTTTGAC	TGCCTGAAGCT TTGTTGATGTGC
Reg3y	CCATCTTCACGTAGCAGC	CAAGATGTCCTGAGGGC
Angio4	TGGCCAGCTTTGGAATCACTG	GCTTGGCATCATAGTGCTGACG
α-defensin	GGTGATCATCAGACCCCAGCATCAGT	AAGAGACTAAAACTGAGGAGCAGC
ZO-1	GGGGCCTACACTGATCAAGA	TGGAGATGAGGCTTCTGCTT
Occludin	ACGGACCCTGACCACTATGA	TCAGCAGCAGCCATGTACTC
JAM-A	GCCAGATCACAGCTCCCTAT	ACTGATCGTCGGCTTGGATG
Mucin2	ACCTGGAAGGCCCAATCAAG	CTCAGCGTAGTTGGCACTCT
HIF1a	TTAAAGCCAACTCTTTGCTCCG	ATGGGGGCATTACCAGACAG
β-actin	ACAGCAGTTGGTTGGAGCAA	ACGCGACCATCCTCCTCTTA
Primer sequ	ences designed for Caco-2	
Gene	Forward primer $(5' \rightarrow 3')$	Reverse primer $(5' \rightarrow 3')$

oune		
ZO-1	GGGTAACGCCATCCTCTGAA	CTGGTCCTCCTTTCAGCACA
Occludin	TCAGGGAATATCCACCTATCACTTCAG	CATCAGCAGCAGCCATGTACTCTTCAC
Claudin	GCGCGATATTTCTTCTTGCAGG	TTCGTACCTGGCATTGACTGG
JAM-A	ATAGCCGAGGCCACTTTGAC	TTCTCCTTCACTTCGGGCAC
GAPDH	CAACGGATTTGGTCGTATTGGG	AAGGGGTCATTGATGGCAAC

А

Fig. S1 Immunoblot analysis of HIF1 α protein expression in cell monolayers. The Western blot was loaded with samples incubated with 0 or 10 μ M EGCG (four replicates each) in the following order: 0, 10, 0, 10, 10, 0, 10, 0.

Fig. S2 Assessment of the different concentrations of CoCl₂ on Caco-2 cell viability by the CCK-8 assay

Fig. S3 Stabilizing effect of different concentrations of CoCl₂ treatment on HIF-1 α protein expression. The Western blot was loaded with samples incubated with 0, 200, 300 and 400 μ M EGCG (two replicates for 0, 200 and 300 μ M) in the following order: 0, 200, 300, 400, 300, 200, 0 μ M. The band in the red box is not relevant to this experiment.