Specific vegetable types are associated with lower long-term risk for late-life dementia: the Perth Longitudinal Study of Aging Women

Supplementary materials

Tables

Supplementary Table 1. Hazard ratios (95% CI) for any late-life dementia events after truncation of follow-up to 13 years by quartiles of cruciferous and legume vegetables.

Supplementary Table 2. Hazard ratios (95% CI) for any late-life dementia events, hospitalisations, and deaths over 14.5 years by quartiles of vegetable intake including the additional adjustment for diet quality.

Supplementary Table 3. Hazard ratios (95% CI) for any late-life dementia events, hospitalisations, and deaths over 14.5 years by quartiles of yellow/orange/red vegetables intake further adjusted for non-yellow/orange/red vegetables intake.

Supplementary Table 4. Hazard ratios (95% CI) for any late-life dementia events, hospitalisations, and deaths over 14.5 years by categories of vegetable diversity.

Supplementary Table 5. Hazard ratios (95% CI) for any late-life dementia events, hospitalisations, and deaths over 14.5 years by quartiles of vegetable type intake including the additional adjustments for individual variables of the Framingham Risk Score.

Figures

Supplementary Figure 1. Hazard ratios (95% CI) for the relationship of the intake of (a) total vegetable, (b) yellow/orange/red vegetables, (c) cruciferous vegetables, (d) allium vegetables, (e) green leafy vegetables, and (f) legume vegetables with any late-life dementia hospitalisations over 14.5 years.

Supplementary Figure 2. Hazard ratios (95% CI) for the relationship of the intake of (a) total vegetable, (b) yellow/orange/red vegetables, (c) cruciferous vegetables, (d) allium vegetables, (e) green leafy vegetables, and (f) legume vegetables with any late-life dementia death over 14.5 years.

cruciferous and legume veget	ables.			
		Quartiles for inta	ke of cruciferous vegetables	
	Q1	Q2	Q3	Q4
	≤16 g/d	>16-28 g/d	>28-44 g/d	>44 g/d
Events	Ref.	0.94 (0.67,1.31)	0.99 (0.70,1.42)	0.94 (0.62,1.42)

Q2

>15 - 24 g/d

0.97(0.71, 1.32)

Q1

 $\leq 15 \text{ g/d}$

Ref.

Events

Quartiles for intake of legume vegetables

O3

>24 - 36 g/d

0.92 (0.66,1.29)

Q4 >36 g/d

0.98 (0.64,1.51)

Supplementary Table 1: Hazard ratios (95% CI) for any late-life dementia events after truncation of follow-up to 13 years by quartiles of cruciferous and legume vegetables.

Estimated hazard ratios and 95% CIs from Cox proportional hazards analysis, comparing the median intake of cruciferous and legume vegetables from each quartile compared to Q1. Multivariable-adjusted model for treatment code (calcium or placebo), Framingham Risk Score, apolipoprotein E genotype, energy intake, prescription of statin medications, use of low-dose aspirin, prevalent atherosclerotic vascular disease, physical activity, alcohol intake, socio-economic status.

	Quartiles for intake of total vegetables					
I ato life domentia	Q1	Q2	Q3	Q4		
Late-tije dementid	≤143 g/d	>143 – 190 g/d	>190-243 g/d	>243 g/d		
Deaths	Ref.	0.84 (0.60,1.17)	0.67 (0.41,1.09)	0.61 (0.32,1.15)		
		Quartiles for intake	of yellow/orange/red vegetable	es		
	Q1	Q2	Q3	Q4		
	≤33 g/d	>33-48 g/d	>48-68 g/d	>68 g/d		
Events	Ref.	0.93 (0.74,1.16)	0.70 (0.52,0.95)	0.63 (0.42,0.94)		
Hospitalisations	Ref.	1.01 (0.79,1.30)	0.75 (0.54,1.05)	0.64 (0.42,0.98)		
Deaths	Ref.	0.87 (0.62,1.24)	0.60 (0.37,0.95)	0.56 (0.30,1.06)		
	Quartiles for intake of allium vegetables					
	Q1	Q2	Q3	Q4		
	$\leq 3 \text{ g/d}$	>3-6 g/d	>6 – 11 g/d	>11 g/d		
Events	Ref.	0.84 (0.63,1.11)	0.76 (0.57,1.02)	0.75 (0.51,1.09)		
Deaths	Ref.	0.82 (0.53,1.26)	0.66 (0.41,1.04)	0.56 (0.30,1.03)		
	Quartiles for intake of green leafy vegetables					
	Q1	Q2	Q3	Q4		
	≤10 g/d	>10-17 g/d	>17 - 25.5 g/d	>25.5 g/d		
Deaths	Ref.	0.87 (0.57,1.33)	0.59 (0.36,0.97)	0.61 (0.34,1.10)		

Supplementary Table 2: Hazard ratios (95% CI) for any late-life dementia events, hospitalisations, and deaths over 14.5 years by quartiles of vegetable intake including the additional adjustment for diet quality.

Estimated hazard ratios and 95% CIs from Cox proportional hazards analysis, comparing the median intake of total vegetable intake and vegetable types in quartiles (Q) 2, 3 and 4, with Q1. Bolded indicates p<0.05 compared to Q1. Multivariable-adjusted for treatment code (calcium or placebo), apolipoprotein E genotype, general Framingham Risk Score, energy intake, prescription of statin medications, use of low-dose aspirin, prevalent atherosclerotic vascular disease, physical activity, alcohol intake, socio-economic status), plus Dietary Guideline Index (DGI). Excludes energy and alcohol intake as these are included in the DGI score.

Supplementary Table 3: Hazard ratios (95% CI) for any late-life dementia events, hospitalisations, and deaths over 14.5 years by quartiles of yellow/orange/red vegetables intake further adjusted for non-yellow/orange/red vegetables intake.

Late-life dementia	Quartiles for intake of yellow/orange/red vegetables					
	Q1 Q2 Q3 (
	≤33 g/d	>33 – 48 g/d	>48-68 g/d	>68 g/d		
Events	Ref.	0.88 (0.70,1.12)	0.64 (0.46,0.88)	0.55 (0.36,0.84)		
Hospitalisations	Ref.	0.95 (0.74,1.24)	0.67 (0.48,0.95)	0.53 (0.34,0.84)		
Deaths	Ref.	0.88 (0.61,1.27)	0.60 (0.36,1.00)	0.59 (0.29,1.17)		

Estimated hazard ratios and 95% CIs from Cox proportional hazards analysis, comparing the median intake of yellow/orange/red vegetable intake in quartiles (Q) 2, 3 and 4, with Q1. Bolded indicates p<0.05 compared to Q1. Multivariable-adjusted for treatment code (calcium or placebo), apolipoprotein E genotype, general Framingham Risk Score, energy intake, prescription of statin medications, use of low-dose aspirin, prevalent atherosclerotic vascular disease, physical activity, alcohol intake, socio-economic status plus non-yellow/orange/red vegetable intake.

Supplementary Table 4: Hazard ratios (95% CI) for any late-life dementia events, hospitalisations, and deaths over 14.5 years by

	Vegetable diversity (number of different vegetables consumed each day)					
Late-life dementia		<u>≤</u> 3	4	\geq 5		
	Events, n (%)	75 (19.3)	61 (16.2)	71 (16.1)		
Events	Model 1	Ref.	0.76(0.54 - 1.06)	0.82 (0.59 – 1.13)		
Evenis	Model 2	Ref.	0.73(0.52 - 1.04)	$0.78 \ (0.56 - 1.10)$		
Ucapitalizations	Model 1	Ref.	0.76(0.52 - 1.09)	0.87(0.61 - 1.23)		
Hospitalisations	Model 2	Ref.	0.74(0.51 - 1.07)	0.85(0.59 - 1.21)		
Desthe	Model 1	Ref.	0.66(0.38 - 1.12)	0.68(0.41 - 1.14)		
Deains	Model 2	Ref.	0.65(0.38 - 1.13)	0.67(0.40 - 1.14)		

categories of vegetable diversity.

Estimated hazard ratios and 95% CIs from Cox proportional hazards analysis for late-life dementia events, hospitalisation, and deaths by vegetable diversity intakes. Model 1: Multivariable adjusted for treatment code (calcium or placebo), Framingham Risk Score and apolipoprotein E genotype. Model 2: Model 1 plus energy intake, prescription of statin medications, use of low-dose aspirin, prevalent atherosclerotic vascular disease, physical activity, alcohol intake, and socio-economic status.

Supplementary Table 5: Hazard ratios (95% CI) for any late-life dementia events, hospitalisations, and deaths over 14.5 years by quartiles of

6 71	6	Quartiles for intake of total vegetables					
		Q1	Q2	Q3	Q4		
Late-life dementia		≤143 g/d	>143 - 190 g/d	>190-243 g/d	>243 g/d		
	Events, n (%)	61 (20.1)	50 (16.6)	49 (16.3)	47 (15.7)		
F actoria	Model 1	Ref.	0.90 (0.72,1.11)	0.78 (0.58,1.05)	0.74 (0.51,1.08)		
Events	Model 2	Ref.	0.88 (0.70,1.10)	0.77 (0.56,1.06)	0.71 (0.48,1.06)		
Hognitaligations	Model 1	Ref.	0.98 (0.76,1.25)	0.82 (0.59,1.13)	0.74 (0.50,1.10)		
поѕрнанзанойѕ	Model 2	Ref.	0.97 (0.76,1.25)	0.83 (0.59,1.17)	0.75 (0.48,1.15)		
Deaths	Model 1	Ref.	0.83 (0.60,1.15)	0.62 (0.39,0.99)	0.53 (0.29,0.97)		
Dealns	Model 2	Ref.	0.82 (0.59,1.14)	0.60 (0.37,0.99)	0.52 (0.28,1.00)		
			Quartiles for intake of yellow/orange/red vegetables				
		Q1	Q2	Q3	Q4		
		≤33 g/d	>33 - 48 g/d	>48 - 68 g/d	>68 g/d		
	Events, n (%)	58 (19.2)	61 (20.1)	47 (15.6)	41 (13.7)		
E	Model 1	Ref.	0.94 (0.75,1.18)	0.66 (0.49,0.88)	0.57 (0.39,0.82)		
Lvenis	Model 2	Ref.	0.93 (0.74,1.18)	0.64 (0.47,0.87)	0.54 (0.36,0.80)		
Hognitaligations	Model 1	Ref.	1.01 (0.79,1.30)	0.70 (0.51,0.96)	0.56 (0.37,0.84)		
nospitalisations	Model 2	Ref.	1.02 (0.79,1.31)	0.69 (0.50,0.97)	0.54 (0.35,0.83)		
Deaths	Model 1	Ref.	0.88 (0.63,1.25)	0.55 (0.35,0.88)	0.50 (0.27,0.91)		
Deaths	Model 2	Ref.	0.90 (0.63,1.29)	0.55 (0.34,0.89)	0.49 (0.26,0.93)		
			Quartiles for intal	ce of cruciferous vegetables	3		
		Q1	Q2	Q3	Q4		
		≤16 g/d	>16 – 28 g/d	>28 – 44 g/d	>44 g/d		
	Events, n (%)	56 (18.5)	56 (18.5)	51 (17)	43 (14.4)		
Events	Model 1	Ref.	0.90 (0.67,1.21)	0.84 (0.62,1.14)	0.76 (0.53,1.09)		
	Model 2	Ref.	0.93 (0.69,1.24)	0.88 (0.65,1.20)	0.79 (0.54,1.15)		
Hospitalisations	Model 1	Ref.	0.90 (0.66,1.24)	0.89 (0.64,1.23)	0.83 (0.57,1.23)		
nospitalisations	Model 2	Ref.	0.94 (0.69,1.29)	0.96 (0.68,1.33)	0.90 (0.61,1.34)		
Deaths	Model 1	Ref.	0.75 (0.49,1.15)	0.67 (0.42,1.06)	0.56 (0.32,1.00)		
Deuins	Model 2	Ref.	0.78 (0.51,1.19)	0.69 (0.43,1.11)	0.59 (0.33,1.06)		
		Quartiles for intake of allium vegetables					

vegetable type intake including the additional adjustments for individual variables of the Framingham Risk Score.

		Q1	Q2	Q3	Q4
		≤3 g/d	>3 - 6 g/d	>6-11 g/d	>11 g/d
	Events, n (%)	65 (20.7)	50 (17.2)	44 (14.6)	48 (16.1)
	Model 1	Ref.	0.87 (0.66,1.15)	0.80 (0.60,1.06)	0.77 (0.54,1.12)
Evenis	Model 2	Ref.	0.86 (0.65,1.13)	0.75 (0.56,1.01)	0.69 (0.47,1.03)
Hognitaligations	Model 1	Ref.	0.84 (0.62,1.12)	0.83 (0.61,1.13)	0.85 (0.57,1.25)
поѕрнанзанойѕ	Model 2	Ref.	0.82 (0.61,1.11)	0.78 (0.57,1.07)	0.77 (0.51,1.17)
Dogtha	Model 1	Ref.	0.89 (0.58,1.37)	0.70 (0.44,1.11)	0.57 (0.31,1.04)
Dealns	Model 2	Ref.	0.87 (0.56,1.34)	0.70 (0.43,1.12)	0.57 (0.30,1.09)
			Quartiles for intak	e of green leafy vegetables	
		Q1	Q2	Q3	Q4
		≤10 g/d	>10-17 g/d	>17 - 25.5 g/d	>25.5 g/d
	Events, n (%)	58 (19.1)	54 (18.1)	44 (14.5)	51 (17)
Events	Model 1	Ref.	0.99 (0.75,1.30)	0.84 (0.62,1.15)	0.81 (0.56,1.15)
Evenis	Model 2	Ref.	0.97 (0.74,1.27)	0.82 (0.60,1.12)	0.80 (0.56,1.16)
Hognitaligations	Model 1	Ref.	1.06 (0.78,1.42)	0.87 (0.63,1.22)	0.80 (0.55,1.17)
поѕрнанзанойѕ	Model 2	Ref.	1.02 (0.76,1.37)	0.84 (0.60,1.18)	0.80 (0.54,1.17)
Deaths	Model 1	Ref.	0.89 (0.59,1.35)	0.55 (0.34,0.90)	0.52 (0.29,0.93)
Deuins	Model 2	Ref.	0.89 (0.59,1.35)	0.54 (0.33,0.88)	0.52 (0.29,0.94)
			Quartiles for int	ake of legume vegetables	
		Q1	Q2	Q3	Q4
		≤15 g/d	>15 – 24 g/d	>24 - 36 g/d	>36 g/d
	Events, n (%)	51 (16.8)	49 (16.2)	59 (19.5)	28 (16.1)
	Model 1	Ref.	1.01 (0.78,1.32)	0.97 (0.73,1.28)	0.96 (0.67,1.39)
Events	Model 2	Ref.	1.01 (0.77,1.32)	0.92 (0.68,1.23)	0.86 (0.58,1.27)
Hognitaligations	Model 1	Ref.	1.01 (0.76,1.34)	1.00 (0.73,1.35)	1.04 (0.70,1.53)
nospitalisations	Model 2	Ref.	1.00 (0.75,1.34)	0.95 (0.70,1.31)	0.95 (0.63,1.43)
Deaths	Model 1	Ref.	1.28 (0.83,1.98)	0.93 (0.58,1.50)	0.68 (0.37,1.26)
Deaths	Model 2	Ref.	1.35 (0.86,2.11)	0.91 (0.56,1.50)	0.62 (0.33,1.18)

Estimated hazard ratios and 95% CIs from Cox proportional hazards analysis, comparing the median intake of total vegetable and vegetable types from each quartile with Q1. Median intake of vegetables (in g/day) for Quartiles 1- 4 was: total vegetables (112.3, 168.2, 213.9, 284.3), yellow/orange/red (23.55, 40.70, 56.80, 86.05), cruciferous (9.20, 22.80, 35, 57.65), allium (1.60, 4.80, 8.45, 14.60), green leafy vegetables

(5.80, 13.40, 20.90, 32.35), and legumes (10.20, 19.40, 28.90, 47.28) respectively. Bolded indicates p<0.05 compared to Q1. Model 1: treatment code (calcium or placebo), age, BMI, and apolipoprotein E genotype. Model 2: Model 1 plus energy intake, prescription of statin medications, use of low-dose aspirin, previous diabetes, systolic blood pressure, prevalent atherosclerotic vascular disease, physical activity, alcohol intake, smoking status, socio-economic status.

Suppleme

ntary Figure 1. Hazard ratios (95% CI) for the relationship of the intake of (a) total vegetable, (b) yellow/orange/red vegetables, (c) cruciferous vegetables, (d) allium vegetables, (e) green leafy vegetables, and (f) legume vegetables with any late-life dementia hospitalisations over 14.5 years, multivariable-adjusted for treatment code (calcium or placebo), apolipoprotein E genotype, general Framingham Risk Score, energy intake, prescription of statin medications, use of low-dose aspirin, prevalent atherosclerotic vascular disease, physical activity, alcohol intake, and socio-economic status. Solid lines are the estimated hazard ratio and shaded areas represent the 95% CI (confidence intervals).

mentary Figure 2. Hazard ratios (95% CI) for the relationship of the intake of (a) total vegetable, (b) yellow/orange/red vegetables, (c) cruciferous vegetables, (d) allium vegetables, (e) green leafy vegetables, and (f) legume vegetables with any late-life dementia death over 14.5 years, multivariable-adjusted for treatment code (calcium or placebo), apolipoprotein E genotype, Framingham Risk Score, energy intake, prescription of statin medications, use of low-dose aspirin, prevalent atherosclerotic vascular disease, physical activity, alcohol intake, and socio-economic status. Solid lines are the estimated hazard ratio and shaded areas represent the 95% CI (confidence intervals).