Supplementary Methods
Table S1. Summary information for studies about the associations of tea intake with anemia (from Mar
1995 to Aug 2023)
Table S2. The characteristics relevant to tea intake on the questionnaire of GBCS at baseline (2003-
2008)
Table S3. The details of data source in Mendelian randomization
Table S4. Baseline characteristics by participants who with $(N = 17,898)$ and without re-assessments
(12,187) during the first follow-up (2008–2012)12
Table S5. Baseline characteristics by participants who with $(N = 10,241)$ and without re-assessments
(7,657) during the second follow-up (2013–2019)14
Table S6. Baseline characteristics by participants who with ($N = 5,303$) and without re-assessments
(5,132) during the third follow-up (2016–2019)16
Table S7. The detailed information on the tea intake instrumental variables used in the two-sample
Mendelian randomization
Table S8. Detailed information on the instrumental variables for green tea intake and herbal tea intake
used in the two-sample Mendelian randomization20
Table S9. Detailed information on the instrumental variables for tea consumption in East Asians used
in the two-sample Mendelian randomization
Table S10. Mendelian randomization associations of tea intake with anemia, hemoglobin, and
hematocrit after excluding potential pleiotropic SNPs
Table S11. Mendelian randomization associations of green tea intake and herbal tea intake with anemia,
hemoglobin, and hematocrit
Table S12. Mendelian randomization associations of tea intake with iron deficiency anemia,
hemoglobin, and hematocrit in East Asians27
Figure S1. Flow chart of GBCS participants
Figure S2. Flow chart about how to select instrumental variables associated with tea intake in main
analysis
Figure S3. Flow chart about how to select instrumental variables associated with tea intake in sensitive
analysis
Figure S4: Meta-analysis of inverse-variance weighted results for hemoglobin and hematocrit as
outcomes in the main analysis (A) and sensitive analysis after excluding potential pleiotropic SNPs (B).

Supplementary Methods

Assessment of assumptions

Mendelian randomization (MR) analysis requires meeting restrict assumptions: strong relevance, independence, and exclusivity.¹ We set genome-wide significance at $P < 5*10^{-8}$, and we calculated individual instrument F-statistic to avoid a violation of strong relevance. Our samples were sourced from individuals of European ancestry, which largely satisfied the independence assumption to avoid population stratification. Concerning the exclusivity assumption, we used MR-Egger to detect directional pleiotropy. Sensitive analysis was also conducted to exclude SNPs with potential pleiotropy.

Sensitivity analysis of Mendelian randomization

In order to obtain reliable assessment of association, we also utilized different methods: 1) The weighted median method (WM) can provide robust assessment, as long as a minimum of 50% of the information is from valid instruments.² 2) The MR-Egger can provide unbiased results, even in the presence of pleiotropy.³ The intercept of MR-Egger helps to detect pleiotropy, with significance at P < 0.05 indicates its existence. 3) MR pleiotropy residual sum and outlier (MRPRESSO) can identify pleiotropy and outliers. We calculated the empirical P for the MRPRESSO global test via 5,000 simulations, and corrected estimates were used if outliers were identified.⁴ Additional searches were performed on Phenoscanner to exclude SNPs displaying pleiotropy ⁵. Subsequent reanalysis was conducted to assess the reliability of results as another sensitivity analysis.

	Author (year)	Study type	Including papers	Tea intake assessment	Anemia assessment	Main results	Factors controlled for in the analysis
1	Jing Zhang ⁶	Meta-analysis	9 studies reviewed	Tea/coffee after meals	$Hemoglobin~(Hgb) \leq$	The results showed that tea/coffee after meals was a risk factor	1
	(2022)		(inception to June		11 g/dL	for anemia in pregnancy.	
			27, 2022)				
2	M. Nelson ⁷	Review	35 studies	/	Iron absorption and	From the available evidence there is no need to advise any	1
	(2004)		(published 1980–		iron status	restriction on tea drinking in healthy people with no risk of iron	
			2002)			deficiency.	
3	EHM Temme ⁸		16 studies	Tea consumption was	Iron status	This overview shows that tea consumption does not influence	1
	(2002)		reviewed	calculated as mL/day,		iron status in Western populations in which most people have	
			(published 1980–	cups/day, times/week,		adequate iron stores as determined by serum ferritin	
			2001)	g/day		concentrations.	
4	EJ Gardner 9		Combined	Black tea consumption	Iron status	There was no evidence that iron status could be harmed by tea	1
	(2007)		previous two			drinking unless populations were already at risk from anemia.	
			reviews 2 and 3				
			Populations				
5	Kenneth J	Randomized	Israel, 31 adults	Participants were	Hemoglobin was	They did not find major changes in hemoglobin levels through	/
	Mukamal ¹⁰	controlled trial	aged 55 years and	randomized to drink 3	measured at the	the trial $(P = 0.59)$.	
	(2007)		older	glasses daily of either a	beginning and		
				standardized black tea	conclusion of the		
				preparation or water for	study		
				6 months			
6	Salma F Ahmad	Controlled trial	UK, 12	The test meal (TM) was	The effect of tea	There were also no changes observed in subjects' hemoglobin	/
	Fuzi 11 (2017)		premenopausal	administered with water	consumption on	between baseline and postintervention. Despite the lower	
			women aged 19-	(TM-1), with tea	nonheme iron	plasma ferritin concentration postintervention, it was within the	
			40 years	administered	absorption with the	range of	
				simultaneously (TM-2),	use of 57Fe as a	replete iron stores (15 mg/L).	
				• • • •			

Table S1. Summary information for studies about the associations of tea intake with anemia (from Mar 1995 to Aug 2023).

7	E. TYMPA- PSIRROPOUL OU ¹² (2005)	Case-control study	Greece, 938 children aged 12–24 months	administered 1 h postmeal (TM-3) A specific questionnaire concerning tea drinking frequency: every day every 2–3 weeks every week rarely	World Health Organization (WHO) as a diagnostic limit of anemia	The cases were breastfed less, were drinking fresh cow's milk and tea, were eating meat, vegetables and fruit less often, had a bad appetite and were more likely to get sick.	1
8	Melese Sinaga		Ethiopia, 344	Tea/coffee consumption	WHO cut off point	The probabilities of developing anemia among pregnant	Age of mother, residence, menstrual
	Teshome ¹³		pregnant women	(yes/no)		women's who were drinking tea/coffee instantly after food were	blood flow rate, food taboo, tea/coffee
	(2020)					3.6 times more likely to develop anemia as compared to than	consumption, Dietary Diversity Score
						those mothers who did not drink tea/coffee (AOR = 3.6 ; 95%	(DDS), stool examination
						CI: 1.72–7.42).	
9	K Imai ¹⁴ (1995)	Cross-sectional	Yoshimi, Japan,	Information on	Hemoglobin (g/L)	The proportion of subjects with abnormally low hemoglobin	Age, cigarette smoking, and alcohol
		study	1371 men aged	consumption of green tea		concentrations (< 120 g/L) was not related, however, to	consumption
			over 40 years	(categorized as		consumption of green tea.	
				\leq 3, 4–9, or \geq 10 cups a			
				day) from the			
				questionnaire			
10	L Mennen 15		French, 954 men	Three 1-day food records	Serum-ferritin was	The mean serum-ferritin concentration was not related to black,	Age, smoking and intakes of coffee,
	(2007)		aged 52-68 years,	were used to estimate the	measured, and iron	green and herbal tea consumption in men, pre- or	iron, calcium, animal protein and
			and 1639 women	intake of other dietary	depletion was	postmenopausal women. Also the risk of iron depletion was in	vitamin C
			aged 42-68 years	enhancing or inhibiting	defined as a serum	the multivariate model not related to any kind of tea drinking or	
				factors of iron absorption	ferritin concentration	to the strength of tea, the infusion time or the time of tea	
					$< 16 \ \mu g/L$	drinking.	
11	P S Hogenkamp		South Africa,	FFQ was used to collect	Hgb and serum	Logistic regression showed that tea consumption did not	Age, BMI, smoking status, and alcohol
	¹⁶ (2008)		1,605 adults aged	information on dietary	ferritin	significantly increase risk for iron deficiency (men: OR: 1.36;	and iron intake

		15–65 years	intake	concentrations	95% CI: 0.99, 1.87; women: OR: 0.98; 95% CI: 0.84, 1.13) nor for iron deficiency anemia (men: OR: 1.28; 95% CI: 0.84, 1.96; women: OR: 0.93; 95% CI: 0.78, 1.11).	
12	Naila Baig-	Pakistan, 1,369	A 24-hour dietary recall	Anemia was	Tea consumption before pregnancy (adjusted prevalence odds	Education, pregnancy history, and
	Ansari 17 (2008)	pregnant women		classified according	ratio (APOR) = 3.2, 95% CI: 1.3 to 8.0) was associated with	height
				to the WHO	anemia.	
				classification for		
				pregnant women.		
13	Ilse Pynaert ¹⁸	Belgium,	Nutritional variables	Fe status parameters	The tea intake was negatively associated with serum ferritin (P	Contraceptive use, time since last blood
	(2009)	788 women aged	were assessed using a 2d	were determined on	= 0.007).	donation, time since last pregnancy
		18-39 years	food record and non-	a fasting venous		
			nutritional variables by a	blood sample.		
			general questionnaire			
14	Eun Suk Sung 19	Korean, 27,071	Food frequency	Serum ferritin level	Green tea intake was not related to serum ferritin levels.	Age, body mass index (BMI), education
	(2018)	adults aged 19	questionnaire (FFQ) or	(by an		level, smoking status, alcohol
		years and over	24-hour dietary	immunoradiometric		consumption, physical activity,
				assay using a 1,470		hypertension, diabetes mellitus, and
				Wizard Gamma		calorie-adjusted daily iron intake
				Counter)		
15	Dyness Kejo 20	Arusha, Tanzania,	Standard questionnaire at	Anemia cut-off	Ultivariable logistic regression identified the following	Gender, age
	(2018)	436 children aged	baseline during face-to-	points were defined	predictors of anemia: drinking tea (AOR: 4.5, 95% CI: 1.5-	
		6–59 months	face interviews with the	according to WHO	13.7).	
			parents/guardians (tea	standards for		
			with sugar: drink/not	children aged 6-59		
			drink)	months.		
16	Nyasiro S	Tanzania, 338	consuming excess tea	WHO cut off point	Pregnant women who were not drinking tea or coffee with meals	Parity, gravidity, birth interval, higher
	Gibore ²¹ (2021)	pregnant women	(yes/no)		were less likely to be anemic than those who consumed tea or	education level and multigravida
					coffee with meals (AOR = 0.06; 95% CI = 0.03–0.13, P $<$	

					0.001).	
17	Kashish Grover	Haryana, India,	A semi-structured,	Anemia was defined	The association of tea consumption was statistically significant	/
	²² (2020)	408 pregnant	predesigned, pretested,	as a hemoglobin	with the severity of anemia ($P < 0.05$).	
		women	interviewer-administered	concentration < 11		
			questionnaire	g/dL.		
18	MAHA	Hailcity, Saudi	FFQ format with four	The hemoglobin	The habit of drinking tea just after meals was found to be	Sociodemographic factors; dietary and
	AWADH	Arabia	options in the category	level of $< 11 \text{ g/dL}$	significantly associated with anemia (AOR = 1.91, 95% CI: 1.2–	nutrition factors; obstetric and menstrual
	ALRESHIDI 23	390 pregnant	for frequency of intake	was considered as	13.03, $P = 0.019$).	factors; and medical factors
	(2021)	women		anemia.		
19	Dagyeong Lee	Korea, 4322	11 consumption	Serum hemoglobin	No significant association was observed between green tea	Adjusted for BMI, education, alcohol
	²⁴ (2023)	premenopausal	frequency categories in	level (g/dL) and	intake and the biochemical markers of iron status.	consumption, current smoking,
		women who were	the FFQ of the fifth	ferritin levels		hypertension, diabetes mellitus, physical
		not pregnant or	KNHANES (2010–	(ng/mL)		activity, total energy intake, and daily
		nursing a baby	2011)			iron intake
20	Hinako Nanri ²⁵	Saga, Japan,	Validated Japanese FFQ,	Serum ferritin	They observed that higher green tea and coffee consumption	Adjusted for age, BMI, total energy
	(2023)	4,263 men and	the frequencies of green	concentrations, and	was associated with lower ferritin levels in men and	intake, alcohol consumption, smoking,
		6,172 women	tea consumption were as	iron deficiency was	postmenopausal women, even	physical activity level, iron intake,
		aged 40-69 years	follows: almost none, 1-	defined as a serum	after adjusting for covariates (all P for trends < 0.05). Among	vitamin C intake, and coffee or green tea
			3 times/month, 1–2	ferritin concentration	premenopausal women, they found an inverse association	consumption, dietary iron intake,
			times/week, 3-4	< 12 µg/L.	between green tea consumption and serum ferritin levels, while	vitamin C intake
			times/week, 5-6		no significant association was observed for coffee	
			times/week, 1 time/day,		consumption after adjusting for covariates (green tea, P for trend	
			2 times/day, and \geq 3		< 0.05; coffee, P for trend = 0.08).	
			times/day.			

References

- V. W. Skrivankova, R. C. Richmond, B. A. R. Woolf, J. Yarmolinsky, N. M. Davies, S. A. Swanson, T. J. VanderWeele, J. P. T. Higgins, N. J. Timpson, N. Dimou, C. Langenberg, R. M. Golub, E. W. Loder, V. Gallo, A. Tybjaerg-Hansen, G. Davey Smith, M. Egger and J. B. Richards, Strengthening the Reporting of Observational Studies in Epidemiology Using Mendelian Randomization: The STROBE-MR Statement, *JAMA*, 2021, **326**, 1614.
- J. Bowden, G. Davey Smith, P. C. Haycock and S. Burgess, Consistent Estimation in Mendelian Randomization with Some Invalid Instruments Using a Weighted Median Estimator, *Genet. Epidemiol.*, 2016, 40, 304-314.
- S. Burgess, J. Bowden, T. Fall, E. Ingelsson and S. G. Thompson, Sensitivity Analyses for Robust Causal Inference from Mendelian Randomization Analyses with Multiple Genetic Variants, *Epidemiology (Cambridge, Mass.)*, 2017, 28, 30-42.
- 4. M. Verbanck, C.-Y. Chen, B. Neale and R. Do, Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases, *Nat. Genet.*, 2018, **50**, 693-698.
- M. A. Kamat, J. A. Blackshaw, R. Young, P. Surendran, S. Burgess, J. Danesh, A. S. Butterworth and J. R. Staley, PhenoScanner V2: an expanded tool for searching human genotype-phenotype associations, *Bioinformatics (Oxford, England)*, 2019, 35, 4851-4853.
- J. Zhang, Q. Li, Y. Song, L. Fang, L. Huang and Y. Sun, Nutritional factors for anemia in pregnancy: A systematic review with meta-analysis, *Front. Public Health*, 2022, 10, 1041136.
- M. Nelson and J. Poulter, Impact of tea drinking on iron status in the UK: a review, *J. Hum. Nutr. Diet.*, 2004, 17, 43-54.
- E. H. M. Temme and P. G. A. Van Hoydonck, Tea consumption and iron status, *Eur. J. Clin. Nutr.*, 2002, 56, 379-386.
- 9. E. J. Gardner, C. H. S. Ruxton and A. R. Leeds, Black tea--helpful or harmful? A review of the evidence, *Eur. J. Clin. Nutr.*, 2007, **61**, 3-18.
- K. J. Mukamal, K. MacDermott, J. A. Vinson, N. Oyama, W. J. Manning and M. A. Mittleman, A 6-month randomized pilot study of black tea and cardiovascular risk factors, *Am. Heart J.*, 2007, **154**, 724.e721-726.
- 11. S. F. Ahmad Fuzi, D. Koller, S. Bruggraber, D. I. Pereira, J. R. Dainty and S. Mushtaq, A 1-h time interval between a meal containing iron and consumption of tea attenuates the inhibitory effects on iron absorption: a controlled trial in a cohort of healthy UK women using a stable iron isotope, *Am J Clin Nutr*, 2017, **106**, 1413-1421.
- E. Tympa-Psirropoulou, C. Vagenas, D. Psirropoulos, O. Dafni, A. Matala and F. Skopouli, Nutritional risk factors for iron-deficiency anaemia in children 12-24 months old in the area of Thessalia in Greece, *Int. J. Food Sci. Nutr.*, 2005, 56, 1-12.
- M. S. Teshome, D. H. Meskel and B. Wondafrash, Determinants of Anemia Among Pregnant Women Attending Antenatal Care Clinic at Public Health Facilities in Kacha Birra District, Southern Ethiopia, *J Multidiscip Healthc*, 2020, 13, 1007-1015.
- 14. K. Imai and K. Nakachi, Cross sectional study of effects of drinking green tea on cardiovascular and liver diseases, *BMJ (Clinical research ed.)*, 1995, **310**, 693-696.
- L. Mennen, T. Hirvonen, N. Arnault, S. Bertrais, P. Galan and S. Hercberg, Consumption of black, green and herbal tea and iron status in French adults, *Eur. J. Clin. Nutr.*, 2007, 61, 1174-1179.

- P. S. Hogenkamp, J. C. Jerling, T. Hoekstra, A. Melse-Boonstra and U. E. MacIntyre, Association between consumption of black tea and iron status in adult Africans in the North West Province: the THUSA study, *Br J Nutr*, 2008, **100**, 430-437.
- N. Baig-Ansari, S. H. Badruddin, R. Karmaliani, H. Harris, I. Jehan, O. Pasha, N. Moss, E. M. McClure and R. L. Goldenberg, Anemia prevalence and risk factors in pregnant women in an urban area of Pakistan, *Food Nutr. Bull.*, 2008, **29**, 132-139.
- I. Pynaert, D. De Bacquer, C. Matthys, J. Delanghe, M. Temmerman, G. De Backer and S. De Henauw, Determinants of ferritin and soluble transferrin receptors as iron status parameters in young adult women, *Public Health Nutr*, 2009, **12**, 1775-1782.
- E. S. Sung, C. K. Choi, N. R. Kim, S. A. Kim and M.-H. Shin, Association of Coffee and Tea with Ferritin: Data from the Korean National Health and Nutrition Examination Survey (IV and V), *Chonnam Med. J.*, 2018, 54, 178-183.
- D. Kejo, P. M. Petrucka, H. Martin, M. E. Kimanya and T. C. Mosha, Prevalence and predictors of anemia among children under 5 years of age in Arusha District, Tanzania, *Pediatric Health Med Ther*, 2018, 9, 9-15.
- N. S. Gibore, A. F. Ngowi, M. J. Munyogwa and M. M. Ali, Dietary Habits Associated with Anemia in Pregnant Women Attending Antenatal Care Services, *Curr. Dev. Nutr.*, 2021, 5, nzaa178.
- 22. K. Grover, T. Kumar, A. Doda, R. Bhutani, S. Yadav, P. Kaushal, R. Kapoor and S. Sharma, Prevalence of anaemia and its association with dietary habits among pregnant women in the urban area of Haryana, *Journal of Family Medicine and Primary Care*, 2020, **9**, 783-787.
- M. A. ALRESHIDI and H. K. HARIDI, Prevalence of anemia and associated risk factors among pregnant women in an urban community at the North of Saudi Arabia, *J. Prev. Med. Hyg.*, 2021, **62**, E653-E663.
- 24. D. Lee, W. Jung and D. W. Shin, Association of Coffee or Green Tea with Ferritin or Hemoglobin in Premenopausal Women, *Korean J. Fam. Med.*, 2023, **44**, 87-94.
- 25. H. Nanri, M. Hara, Y. Nishida, C. Shimanoe, C. Iwasaka, Y. Higaki and K. Tanaka, Association between green tea and coffee consumption and body iron storage in Japanese men and women: a cross-sectional study from the J-MICC Study Saga, *Front. Nutr.*, 2023, 10, 1249702.

Items	Questions	Answers
Tea intake	Which of the following situations best reflects	"Never or almost never", "occasionally", "used to drink tea
	your tea-drinking habits in the past year?	regularly, but not anymore" and "currently drink tea
		regularly (at least once a week)"
Frequency of tea	On average, how many days did you drink tea per	"1–2 days per week", "3–4 days per week", "5–6 days per
drinking (days/week)	week in the past 12 months?	week", "every day or almost every day"
Amount of tea	When you drink tea on a given day, how many	"Green tea/Jasmine tea/Dragon Well/White tea, □□
intake/occasion	cups of tea do you typically drink in a day?	cups/day",
	(Measured in cups with a capacity of 150 mL;	"Oolong tea (Tieguanyin, Narcissus, and others), $\Box\Box$
	please select the type of tea you most commonly	cups/day",
	drink)	"black tea (include brick tea, Pu-erh), □□ cups/day",
		"other (please specify, such as herbal tea, and others),
		□□ cups/day"
Tea drinking duration	At what age did you start habitually drinking tea?	"□□ years old"
(years)		
Tea concentration	What is your preferred tea concentration when	"Mild", "moderate", "strong", "very strong"
	you drink tea?	

Table S2. The characteristics relevant to tea intake on the questionnaire of GBCS at baseline (2003–2008).

GBCS: Guangzhou Biobank Cohort Study.

Туре	Phenotype	Consortium	Definition	Unit	GWAS ID/PMI D	Age, years	Populati on	Sample size (case/control)
Exposure	Tea intake	UK Biobank	"How many cups of tea do you drink each day (include black and green tea)?"	cups/day	ukb-b- 6066	40–69	European	447,485
	Green tea intake	UK Biobank	"How many cups of green tea did you drink yesterday (0 cups, 1 cup, 2 cups, 3 cups, 4 cups, 5 cups and \geq 6 cups).?"	cups/day	ukb-b- 4078	40-69	European	64,949
	Herbal tea intake	UK Biobank	"How many cups of herbal tea did you drink yesterday (0 cups, 1 cup, 2 cups, 3 cups, 4 cups, 5 cups and \geq 6 cups).?"	cups/day	ukb-b- 13344	40-69	European	64,949
	Green tea consumption	Biobank Japan	Participants were asked to determine the frequency of consumption on a four- point scale (1, almost daily; 2, 3–4 days a week; 3, 1–2 days per week; and 4, very rarely).	/	3195992 2	20–89	East Asian	152,653
Outcome	Anemia	FinnGen	A reduction in the number of circulating erythrocytes or in the quantity of hemoglobin	/	finngen_ R9_D3_ ANAEM IA	Median age was 63	European	27,371/88,536
	Iron deficiency anemia	The China Kadoorie Biobank	ICD 10 code D50: iron deficiency anemia	/	3760196 6	30-79	East Asian	128/75,752
	Hemoglobin	INTERVAL, UK Biobank, UK BiLEVE	Hemoglobin	g/dL	2786325 2	≥18	European	172,925
	Hematocrit	INTERVAL, UK Biobank, UK BiLEVE	Hematocrit	%	2786325 2	≥18	European	173,039

Table S3. The details of data source in Mendelian randomization.

 Hemoglobin	The UK Household Longitudinal	Hemoglobin	g/L	2888754 2	16–99	European	9,667
Hematocrit	Study BioVU	Hematocrit (volume fraction) of blood by automated count)	%	3344115 0	Average median age was 52	European	65,907
Hemoglobin	Korean Genome and Epidemiology Study	Hemoglobin	g/dL	3677799 9	Mean age was 54.15	East Asian	70,643
Hematocrit	Korean Genome and Epidemiology Study	Hematocrit	%	3677799 9	Mean age was 54.15	East Asian	54,365

BioVU: the Vanderbilt University biobank; GWAS: genome-wide association study.

	With (N=17,898)	Without (N=12,187)	Cohen's effect	
			size*	
Sex, men, N (%)	4,867 (27.2)	3,466 (28.4)	0.028	
Age, years, mean (SD)	60.7 (6.9)	62.8 (7.4)	0.290	
Self-reported health, good/very good, N (%)	14,543 (83.3)	9,485 (80.6)	0.072	
Hemoglobin, g/L, mean (SD)	136.5 (13.4)	136.4 (13.9)	0.011	
Hematocrit, %, (SD)	40.5 (4.2)	40.4 (3.8)	0.019	
Socioeconomic position				
Education, N (%)				
\leq Primary	6,964 (38.9)	5,921 (48.6)	0.162	
Middle school	9,289 (51.9)	5,213 (42.8)		
\geq College	1,641 (9.2)	1,046 (8.6)		
Occupation, N (%)				
Manual	10,701 (60.2)	7,597 (62.6)	0.019	
Non-manual	4,378 (24.6)	2,745 (22.6)		
Other	2,713 (15.3)	1,797 (14.8)		
Family income, CNY/year,				
N (%)				
≤ 30,000	6,611 (37.0)	4,811 (39.5)	0.012	
> 30,000	7,263 (40.6)	4,206 (34.6)		
Don't know	4,007 (22.4)	3,149 (25.9)		
Behavioral factors				
Smoking status, N (%)				
Never	14,698 (82.2)	9,572 (78.6)	0.083	
Former	1,512 (8.5)	1,248 (10.3)		
Current	1,675 (9.4)	1,354 (11.1)		
Alcohol use, N (%)				
Never	12,712 (71.4)	8,954 (73.9)	0.062	
Former	611 (3.4)	451 (3.7)		
Current	4,491 (25.2)	2,716 (22.4)		
Physical activity, N (%)				
Inactive	1,447 (8.1)	990 (8.1)	0.049	
Minimally active	7,140 (40.0)	5,233 (42.9)		
Active	9,311 (52.0)	5,964 (48.9)		
Tea intake, N (%)				
Never-drinkers	1,960 (11.0)	1,457 (12.0)	0.006	
Occasional drinkers	5,946 (33.2)	3,882 (31.9)		
Former drinkers	103 (0.6)	114 (0.9)		
Regular drinkers	9,889 (55.3)	6,734 (55.3)		

Table S4. Baseline characteristics by participants who with (N = 17,898) and without reassessments (12,187) during the first follow-up (2008–2012).

CNY = Chinese Yuan Renminbi (US\$1 = 7 CNY); SD = standard deviation.

* Cohen classified effect sizes as small (d = 0.2), medium (d = 0.5), and large (d \ge 0.8).

	With (N=10,241)	Without (N=7,657)	Cohen's effect	
			size*	
Sex, men, N (%)	2,728 (26.6)	2,139 (27.9)	0.029	
Age, years, mean (SD)	63.4 (6.6)	66.6 (7.2)	0.470	
Self-reported health,	0 266(04 1)	(177(922))	0.040	
good/very good, N (%)	8,366(84.1)	6,177 (82.3)	0.049	
Hemoglobin, g/L, mean	134.7 (13.3)	135.4 (12.8)	0.051	
(SD)	134.7 (13.3)	133.4 (12.8)	0.051	
Hematocrit, %, (SD)	40.5 (3.2)	40.3 (3.4)	0.048	
Socioeconomic position				
Education, N (%)				
\leq Primary	3,372 (32.9)	3,592 (46.9)	0257	
Middle school	5,840(57.0)	3,449 (45.1)		
\geq College	1,027 (10.0)	614 (8.0)		
Occupation, N (%)				
Manual	5,915 (58.2)	4,786 (62.8)	0.083	
Non-manual	2,587 (25.4)	1,791 (23.5)		
Other	1,669 (16.4)	1,044 (13.7)		
Family income, CNY/year,				
N (%)				
\leq 30,000	3,543 (34.6)	3,068 (40.1)	0.003	
> 30,000	4,647 (45.4)	2,616 (34.2)		
Don't know	2,042 (20.0)	1,965 (25.7)		
Behavioral factors				
Smoking status, N (%)				
Never	8,548 (83.5)	6,150 (80.4)	0.069	
Former	775 (7.6)	737 (9.6)		
Current	909 (8.9)	766 (10.0)		
Alcohol use, N (%)				
Never	7,041 (69.1)	5,671 (74.4)	0.123	
Former	342 (3.4)	269 (3.5)		
Current	2,805 (27.5)	1,686 (22.1)		
Physical activity, N (%)				
Inactive	878 (8.6)	569 (7.4)	0.008	
Minimally active	3,964 (38.7)	3,176 (41.5)		
Active	5,399 (52.7)	3,912 (51.1)		
Tea intake, N (%)				
Never-drinkers	1,040 (10.2)	920 (12.0)	0.007	
Occasional drinkers	3,505 (34.2)	2,441 (31.9)		
Former drinkers	63 (0.6)	40 (0.5)		
Regular drinkers	5,633 (55.0)	4,256 (55.6)		

Table S5. Baseline characteristics by participants who with (N = 10,241) and without reassessments (7,657) during the second follow-up (2013–2019).

CNY = Chinese Yuan Renminbi (US\$1 = 7 CNY); SD = standard deviation.

* Cohen classified effect sizes as small (d = 0.2), medium (d = 0.5), and large (d \ge 0.8).

	With (N= 5,303)	Without (N=5,132)	Cohen's effect
			size*
Sex, men, N (%)	1,381 (26.0)	1,394 (27.2)	0.025
Age, years, mean (SD)	66.8 (6.5)	69.7 (7.2)	0.428
Self-reported health,	1 215(81 2)	4 190 (94 0)	0.007
good/very good, N (%)	4,345(84.3)	4,180 (84.0)	0.007
Hemoglobin, g/L, mean	133.2 (12.0)	132.7 (12.7)	0.041
(SD)	155.2 (12.0)	132.7 (12.7)	0.041
Hematocrit, %, (SD)	40.0 (3.3)	40.1 (3.7)	0.025
Socioeconomic position			
Education, N (%)			
\leq Primary	1,522 (28.7)	1,910 (37.2)	0146
Middle school	3,234(61.0)	2,716 (52.9)	
\geq College	546 (10.3)	505 (9.8)	
Occupation, N (%)			
Manual	3,031 (57.6)	2,993 (58.7)	0.023
Non-manual	1,342 (25.5)	1,286 (25.2)	
Other	890 (16.9)	821 (16.1)	
Family income, CNY/year,			
N (%)			
\leq 30,000	1,798 (33.9)	1,806 (35.2)	< 0.001
> 30,000	2,478 (46.8)	2,263 (44.1)	
Don't know	1,023 (19.3)	1,058 (20.6)	
Behavioral factors			
Smoking status, N (%)			
Never	4,458 (84.1)	4,254 (83.0)	0.024
Former	383 (7.2)	405 (7.9)	
Current	461 (8.7)	465 (9.1)	
Alcohol use, N (%)			
Never	3,594 (68.1)	3,576 (70.0)	0.046
Former	172 (3.3)	179 (3.5)	
Current	1,510 (28.6)	1,351 (26.5)	
Physical activity, N (%)			
Inactive	461 (8.7)	443 (8.6)	0.019
Minimally active	2,018 (38.1)	2,021 (39.4)	
Active	2,824 (53.3)	2,668 (52.0)	
Tea intake, N (%)			
Never-drinkers	507 (9.6)	553 (10.8)	0.011
Occasional drinkers	1,877 (35.4)	1,691 (33.0)	
Former drinkers	35 (0.7)	31 (0.6)	
Regular drinkers	2,884 (54.4)	2,857 (55.7)	

Table S6. Baseline characteristics by participants who with (N = 5,303) and without reassessments (5,132) during the third follow-up (2016–2019).

CNY = Chinese Yuan Renminbi (US\$1 = 7 CNY); SD = standard deviation.

* Cohen classified effect sizes as small (d = 0.2), medium (d = 0.5), and large (d \ge 0.8).

			Othe	Effec		Standard			Dotontial
	SNP	CHR	r	t	β	Standard	Р	F statistic	Potential
			allele	allele		error			pleiotropy
l	rs10741694	11	С	Т	0.015	0.0022	7.90E-12	46.7845	
									Qualifications:
2	rs10752269	10	А	G	-0.0129	0.0021	1.30E-09	36.8782	college or
									university degre
3	rs10764990	10	А	G	-0.0122	0.0022	1.90E-08	31.5892	
ł	rs1156588	2	G	А	-0.0155	0.0026	2.90E-09	35.2411	
5	rs11587444	1	G	А	0.0140	0.0022	1.00E-10	41.7885	
5	rs12591786	15	Т	С	-0.0184	0.0029	3.70E-10	39.274	
7	rs13282783	8	Т	С	-0.0136	0.0024	7.90E-09	33.2893	
3	rs141071726	7	А	G	0.0407	0.0068	2.20E-09	35.7536	
)	rs1481012	4	G	А	-0.0262	0.0034	5.30E-15	61.1475	
0	rs149805207	6	G	А	-0.0719	0.0126	1.10E-08	32.6847	
1	rs17245213	11	А	G	-0.0146	0.0026	2.00E-08	31.5208	
2	rs17576658	13	А	G	-0.0135	0.0025	4.10E-08	30.1166	
3	rs17685	7	А	G	0.0231	0.0024	1.60E-22	95.364	
4	rs2117137	3	G	А	0.0130	0.0022	1.70E-09	36.3381	
5	rs2279844	17	А	G	-0.012	0.0022	4.00E-08	30.1514	
6	rs2351187	10	А	G	0.0129	0.0023	1.60E-08	31.9587	
7	rs2472297	15	Т	С	0.0533	0.0024	2.30E-109	493.6456	
8	rs2478875	6	G	А	0.0219	0.0026	5.10E-17	70.2994	
9	rs2645929	13	G	А	-0.015	0.0027	3.50E-08	30.4240	
									Years of
20	rs34619	5	А	G	0.0117	0.0021	4.30E-08	30.0212	educational
									attainment
21	rs4410790	7	С	Т	0.0406	0.0022	3.40E-76	341.2698	
22	rs4808193	19	С	Т	0.0151	0.0022	1.70E-11	45.2405	
23	rs4817505	21	С	Т	0.0151	0.0022	4.20E-12	48.0123	
24	rs56188862	1	С	Т	-0.0158	0.0022	4.30E-13	52.4973	
25	rs57462170	3	А	G	0.0192	0.0034	1.90E-08	31.6203	
26	rs57631352	19	G	А	-0.0131	0.0023	1.70E-08	31.8684	
27	rs6829	13	Т	С	-0.0119	0.0022	3.70E-08	30.2819	
									Qualifications:
28	rs72797284	5	G	А	-0.0171	0.0024	7.00E-13	51.5582	college or
									university degre
29	rs7757102	6	G	А	-0.0118	0.0021	3.10E-08	30.6239	
30	rs9624470	22	А	G	0.0252	0.0022	1.30E-31	136.8396	
31	rs9648476	7	А	G	0.0125	0.0022	1.10E-08	32.7221	
32	rs977474	12	Т	С	0.0218	0.0029	2.40E-14	58.1803	
33	rs9937354	16	А	G	-0.0141	0.0021	4.90E-11	43.2313	

Table S7. The detailed information on the tea intake instrumental variables used in the twosample Mendelian randomization.

1164870 1	C	C G	-0.012	0.0022	4.20E-08	30.0369	college or
						50.0507	concec of
							university degree
32904 2	2 0	G C	0.0166	0.0026	7.80E-11	42.2958	
453548 1	1 T	A A	-0.0133	0.0022	3.00E-09	35.1675	
273447 20	0 A	А Т	0.0175	0.0026	3.30E-11	43.9906	
783129 1	3 C	C G	-0.0117	0.0021	3.80E-08	30.2543	
6348300 9	C	C G	0.0159	0.0027	6.10E-09	33.7987	
13598 7	C	C G	0.0134	0.0022	5.20E-10	38.5899	
							Qualifications:
302428 1	6 C	C G	0.0122	0.0022	2.60E-08	30.9486	college or
							university degree
6	348300 9 3598 7	348300 9 C 3598 7 C	348300 9 C G 3598 7 C G	348300 9 C G 0.0159 3598 7 C G 0.0134	348300 9 C G 0.0159 0.0027 3598 7 C G 0.0134 0.0022	348300 9 C G 0.0159 0.0027 6.10E-09 3598 7 C G 0.0134 0.0022 5.20E-10	348300 9 C G 0.0159 0.0027 6.10E-09 33.7987 3598 7 C G 0.0134 0.0022 5.20E-10 38.5899

SNP: single-nucleotide polymorphisms.

	SNP	CHR	Othe r allele	Effec t allele	Effect allele freque	β	Standa rd error	Р	F statistic
				Gre	ncy en tea inta	ike			
1	rs12144868	1	Т	C	0.0151	3.0727	0.5275	5.70E-09	33.9363
2	rs142811251	2	G	C	0.0101	3.4598	0.6178	2.10E-08	31.3600
3	rs145313301	2	G	C C	0.0061	4.9937	0.8125	7.90E-10	37.7737
4	rs144954030	2	T	C	0.0057	4.8802	0.8211	2.80E-09	35.3273
5	rs115952340	3	G	A	0.0133	3.0097	0.5503	4.50E-08	29.9162
6	rs78547201	5	C	G	0.0116	3.2750	0.5777	1.40E-08	32.1332
7	rs79774709	6	С	Т	0.0058	5.1406	0.8538	1.70E-09	36.2513
8	rs116985617	6	С	Т	0.0085	3.8927	0.6744	7.80E-09	33.3157
9	rs189140232	7	G	А	0.0100	3.5608	0.6257	1.30E-08	32.3919
10	rs11976995	7	Т	G	0.0304	2.0194	0.3487	7.00E-09	33.5411
11	rs116035596	9	С	Т	0.0066	4.9036	0.7429	4.10E-11	43.5698
12	rs79638269	10	С	Т	0.0163	2.6764	0.4729	1.50E-08	32.0300
13	rs644205	10	G	А	0.1965	0.8489	0.1508	1.80E-08	31.7057
14	rs183788045	11	G	Т	0.0087	3.5482	0.6498	4.70E-08	29.8187
15	rs117251267	13	Т	С	0.0116	3.5501	0.6178	9.10E-09	33.0254
16	rs142373582	14	Т	С	0.0142	3.2463	0.5658	9.60E-09	32.9244
17	rs113898417	16	С	G	0.0070	3.9789	0.7266	4.40E-08	29.9850
18	rs62059726	17	G	А	0.0152	2.8216	0.5118	3.50E-08	30.3925
19	rs12958992	18	А	G	0.0269	2.1609	0.3789	1.20E-08	32.5250
20	rs117077082	20	А	G	0.0318	1.9206	0.3422	2.00E-08	31.5041
21	rs113322644	21	С	А	0.0117	3.2096	0.5551	7.40E-09	33.4352
				Herl	bal tea int	ake			
1	rs141595975	1	Т	С	0.0097	4.2359	0.6691	2.40E-10	40.0830
2	rs145853157	1	А	Т	0.0081	3.9211	0.6721	5.40E-09	34.0349
3	rs142141377	1	А	С	0.0061	4.9595	0.7972	4.90E-10	38.6983
4	rs114605739	4	А	G	0.0109	3.2706	0.5846	2.20E-08	31.3002
5	rs1796468	4	С	Т	0.0078	4.1480	0.7077	4.60E-09	34.3537
6	rs79840793	4	С	Т	0.0114	3.2899	0.5714	8.50E-09	33.1514
7	rs148443638	6	G	А	0.0098	3.8450	0.6183	5.00E-10	38.6778
8	rs73118299	7	А	G	0.0077	4.3053	0.7444	7.30E-09	33.4522
9	rs9792217	8	С	Т	0.0140	2.9309	0.5022	5.40E-09	34.0568
10	rs146680299	8	С	Т	0.0142	2.8700	0.5160	2.70E-08	30.9369
11	rs146747894	8	G	А	0.0105	3.4236	0.5970	9.80E-09	32.8843
12	rs79519615	10	Т	С	0.0099	3.4516	0.6002	8.90E-09	33.0682
13	rs57042533	11	G	Т	0.0054	4.5911	0.8235	2.50E-08	31.0784
14	rs148342659	11	С	Т	0.0068	4.2438	0.7483	1.40E-08	32.1601
15	rs79919614	12	А	Т	0.0204	2.5317	0.4230	2.20E-09	35.8208

 Table S8. Detailed information on the instrumental variables for green tea intake and herbal tea

 intake used in the two-sample Mendelian randomization.

16	rs112423877	14	Т	А	0.0070	4.0508	0.7337	3.40E-08	30.4802
17	rs141436163	18	G	Т	0.0186	2.4968	0.4430	1.70E-08	31.7650
18	rs77677063	18	С	Т	0.0099	3.5350	0.6326	2.30E-08	31.2242
19	rs188433347	18	Т	G	0.0087	3.6337	0.6554	3.00E-08	30.7343
-									

SNP: single-nucleotide polymorphisms.

	SNP	CHR	Othe r allele	Effec t allele	Effect allele frequen cy	β	Standa rd error	Р	F statistic
1	rs62257549	3	А	G	0.8184	-0.0588	0.0116	6.59E-07	25.8531
2	rs9390773	6	Т	G	0.7190	-0.0523	0.0107	1.87E-06	23.7971
3	rs17151746	7	А	G	0.8252	0.0556	0.0118	4.27E-06	22.0995
4	rs7827019	8	Т	С	0.8378	0.0641	0.0134	3.00E-06	22.7648
5	rs13295221	9	Т	А	0.9164	-0.0761	0.0157	2.03E-06	23.5811
6	rs10500924	11	С	G	0.9641	0.1145	0.0232	1.43E-06	24.2797
7	rs7137708	12	G	А	0.8986	-0.0800	0.0167	2.68E-06	23.0728
8	rs79105258	12	А	С	0.7468	-0.1169	0.0109	6.67E-26	115.7316
9	rs35640546	15	С	Т	0.7715	0.0494	0.0105	3.80E-06	22.3476
10	rs8031448	15	С	Т	0.5858	0.0427	0.0088	2.36E-06	23.2624

Table S9. Detailed information on the instrumental variables for tea consumption in East Asiansused in the two-sample Mendelian randomization.

SNP: single-nucleotide polymorphisms.

Exposure	Outcome	SNPs	F	Methods	OR (95% CI)	Р	IVW	MR-Egger
			statistic				Cochran's Q statistic (I ²)	Intercept (P)
Tea intake (cups/day)	Anemia (Ref.: no	30 ^a	69.66	IVW	1.15 (0.80, 1.64)	0.45	62.19	-0.010 (0.19)
(IEU OpenGWAS)	anemia) (FinnGen)			WM	1.50 (1.02, 2.20)	0.04	(53.4%)	
				MR-Egger	1.79 (0.86, 3.74)	0.13		
				MRPRESSO	1.24 (0.89, 1.72)	0.22		
					β (95% CI)			
Tea intake (cups/day)	Hemoglobin (g/dL)	30 ^a	69.66	IVW	-0.02 (-0.12, 0.08)	0.98	52.72	<0.001 (0.90)
(IEU OpenGWAS)	(INTERVAL, UK			WM	-0.06 (-0.17, 0.05)	0.93	(45.0%)	
	Biobank, UK			MR-Egger	-0.01 (-0.22, 0.20)	0.99		
	BiLEVE)			MRPRESSO	-0.04 (-0.13, 0.05)	0.42		
Tea intake (cups/day)	Hematocrit (%)	30 ^a	69.66	IVW	0.00 (-0.11, 0.10)	0.94	61.42	<0.001 (0.90)
(IEU OpenGWAS)	(INTERVAL, UK			WM	-0.05 (-0.16, 0.06)	0.35	(52.8%)	
	Biobank, UK			MR-Egger	-0.02 (-0.24, 0.21)	0.88		
	BiLEVE)			MRPRESSO	-0.02 (-0.12, 0.07)	0.62		
Tea intake (cups/day)	Hemoglobin (g/L)	10 ^b	78.85	IVW	0.47 (-0.14, 1.08)	0.13	4.41 (0.0%)	0.009 (0.59)
(IEU OpenGWAS)	(the UK Household			WM	0.70 (-0.11, 1.51)	0.09		
	Longitudinal Study)			MR-Egger	0.09 (-1.35, 1.54)	0.90		
				MRPRESSO	0.47 (0.04, 0.90)	0.06		
Tea intake (cups/day)	Hematocrit (%)	21°	80.57	IVW	0.00 (-0.13, 0.13)	0.97	25.30	<0.001 (0.98)
(IEU OpenGWAS)	(BioVU)			WM	0.03 (-0.13, 0.20)	0.67	(20.9%)	
				MR-Egger	0.00 (-0.27, 0.27)	0.99		
				MRPRESSO	0.00 (-0.13, 0.13)	0.97		

Table S10. Mendelian randomization associations of tea intake with anemia, hemoglobin, and hematocrit after excluding potential pleiotropic SNPs.

OR: odds ratio; CI: confidence interval. IVW: inverse-variance weighted; WM: weighted median method; MRPRESSO: Mendelian randomization pleiotropy residual sum and outlier; SNP: single-nucleotide polymorphisms; BioVU: the Vanderbilt University biobank.

- ^a 3 SNPs were removed from the remaining instrumental variables when anemia (FinnGen), hemoglobin (INTERVAL, UK Biobank, UK BiLEVE), and hematocrit (INTERVAL, UK Biobank, UK BiLEVE) were outcomes: rs34619, rs72797284, rs10752269.
- ^b 1 SNP was removed from the remaining instrumental variables when hemoglobin (The UK Household Longitudinal Study) was outcome: rs72797284.
- ^c 2 SNPs were removed from the remaining instrumental variables when hematocrit (BioVU) was outcome: rs72797284, rs34619.

Exposure	Outcome	SNPs	F	Methods	OR (95% CI)	Р	IVW	MR-Egger	
			statistic				Cochran's Q	Intercept (P)	
							statistic (I ²)		
Green tea intake	Anemia (Ref.: no	20	33.15	IVW	1.00 (0.99, 1.01)	0.90	17.24 (0.0%)	-0.007 (0.69)	
(cups/day) (IEU	anemia) (FinnGen)			WM	1.00 (0.99, 1.01)	0.36			
OpenGWAS)				MR-Egger	1.00 (0.99, 1.02)	0.78			
				MRPRESSO	1.00 (0.99, 1.01)	0.89			
Herbal tea intake	Anemia (Ref.: no	19	33.58	IVW	1.00 (0.99, 1.01)	1.00	17.85 (0.0%)	0.086 (0.13)	
(cups/day) (IEU	anemia) (FinnGen)			WM	1.00 (0.99, 1.01)	0.97			
OpenGWAS)				MR-Egger	0.98 (0.95, 1.01)	0.14			
				MRPRESSO	1.00 (0.99, 1.01)	1.00			
					β (95% CI)				
Green tea intake	Hemoglobin (g/dL)	21	33.18	IVW	0.001 (-0.002, 0.003)	0.66	22.48 (11.0%)	-0.012 (0.04)	
(cups/day) (IEU	(INTERVAL, UK			WM	0.001 (-0.002, 0.004)	0.57			
OpenGWAS)	Biobank, UK			MR-Egger	0.005 (0.000, 0.009)	0.05			
	BiLEVE)			MRPRESSO	0.001 (-0.002, 0.003)	0.67			
Green tea intake	Hematocrit (%)	21	33.18	IVW	0.001 (-0.002, 0.003)	0.69	24.87 (19.6%)	-0.013 (0.03)	
(cups/day) (IEU	(INTERVAL, UK			WM	0.001 (-0.003, 0.004)	0.72			
OpenGWAS)	Biobank, UK			MR-Egger	0.005 (0.001, 0.010)	0.03			
	BiLEVE)			MRPRESSO	0.001 (-0.002, 0.003)	0.70			
Herbal tea intake	Hemoglobin (g/dL)	19	33.58	IVW	0.000 (-0.002, 0.002)	0.90	17.63 (0.0%)	-0.022 (0.33)	
(cups/day) (IEU	(INTERVAL, UK			WM	0.000 (-0.003, 0.003)	0.88			
OpenGWAS)	Biobank, UK			MR-Egger	0.006 (-0.006, 0.018)	0.35			
	BiLEVE)			MRPRESSO	0.000 (-0.002, 0.002)	0.90			
Herbal tea intake	Hemoglobin (g/dL)	19	33.58	IVW	0.000 (-0.003, 0.002)	0.82	11.34 (0.0%)	-0.018 (0.41)	
(cups/day) (IEU	(INTERVAL, UK			WM	-0.001 (-0.004, 0.002)	0.71			
Open GWAS	Biobank, UK			MR-Egger	0.005 (-0.007, 0.017)	0.44			

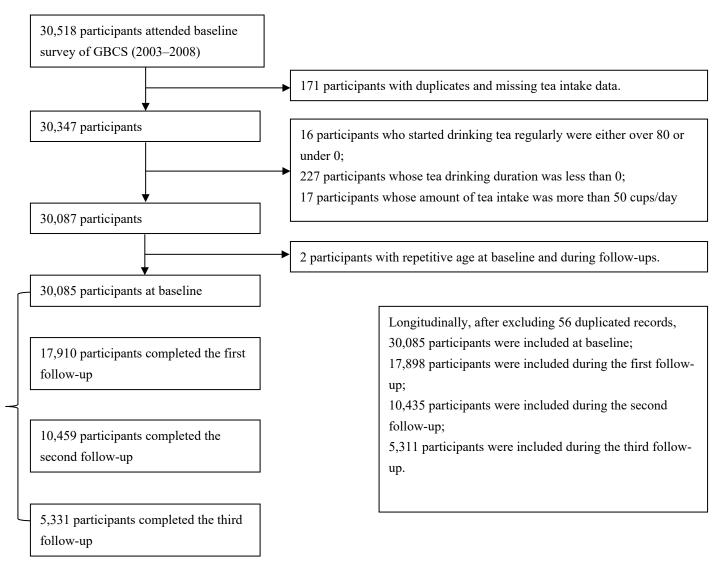
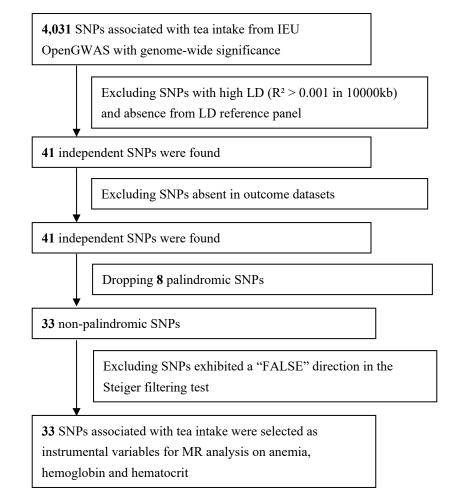
Table S11. Mendelian randomization associations of green tea intake and herbal tea intake with anemia, hemoglobin, and hematocrit.

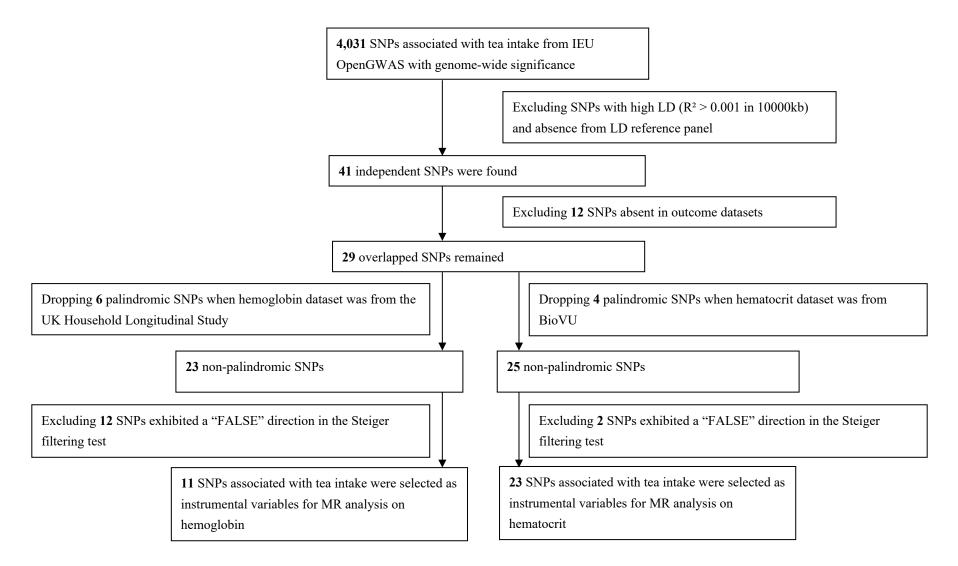
BiLEVE) MRI				MRPRESSO	0.000 (-0.002	, 0.002)	0.78			
OR: od	ds ratio; CI	: confidence in	nterval. IVW	: inverse-variance weigh	ted; WM: weighted m	edian method; N	ARPRESS	SO: Mendelian rand	domization pleiotr	opy residual
sum	and	outlier;	SNP:	single-nucleotide	polymorphisms;	BioVU:	the	Vanderbilt	University	biobank.

Exposure	Outcome	SNPs	F	Methods	OR (95% CI)	Р	IVW	MR-Egger
			statistic				Cochran's Q	Intercept (P)
							statistic (I ²)	
Green tea	Iron deficiency	10	32.68	IVW	2.49 (0.49, 12.66)	0.27	11.61	0.058 (0.76)
consumption	anemia (Ref: no			WM	2.65 (0.37, 19.03)	0.33	(22.5%)	
(categorical	iron deficiency			MR-Egger	1.15 (0.01, 181.00)	0.96		
ordered)	anemia) (The China			MRPRESSO	2.49 (0.49, 12.66)	0.30		
(Biobank Japan)	Kadoorie Biobank)							
					β (95% CI)			
Green tea	Hemoglobin (g/dL)	10	32.68	IVW	0.02 (-0.04, 0.08)	0.47	14.14	0.003 (0.67)
consumption	(Korean Genome			WM	0.04 (-0.03, 0.11)	0.22	(36.4%)	
(Categorical	and Epidemiology			MR-Egger	-0.02 (-0.21, 0.17)	0.85		
Ordered)	Study)			MRPRESSO	0.02 (-0.04, 0.08)	0.49		
(Biobank Japan)								
Green tea	Hematocrit (%)	10	32.68	IVW	0.05 (-0.04, 0.14)	0.30	23.70	-0.008 (0.44)
consumption	(Korean Genome			WM	0.09 (0.00, 0.18)	0.05	(62.0%)	
(Biobank Japan)	and Epidemiology			MR-Egger	0.15 (-0.12, 0.43)	0.30		
	Study)			MRPRESSO	0.02 (-0.06, 0.10)	0.63		

Table S12. Mendelian randomization associations of tea intake with iron deficiency anemia, hemoglobin, and hematocrit in East Asians.

OR: odds ratio; CI: confidence interval. IVW: inverse-variance weighted; WM: weighted median method; MRPRESSO: Mendelian randomization pleiotropy residual sum and outlier; SNP: single-nucleotide polymorphisms.


Figure S1. Flow chart of GBCS participants.

GBCS: Guangzhou Biobank Cohort Study.

SNP: single-nucleotide polymorphisms; LD: linkage disequilibrium; MR: Mendelian randomization; GWAS: genome-wide association study.

Figure S3. Flow chart about how to select instrumental variables associated with tea intake in sensitive analysis.

SNP: single-nucleotide polymorphisms; LD: linkage disequilibrium; MR: Mendelian randomization; GWAS: genome-wide association study; BioVU: the Vanderbilt University biobank.

Α –				
	Outcome and data source	Weight		ß (95% CI)
	Hemoglobin		i	
	INTERVAL, UK Biobank, UK BiLEVE	80.84%	ė –	-0.02 [-0.11, 0.07]
	The UK Household Longitudinal Study	19.16%	<u>⊢ </u>	0.36 [-0.23, 0.95]
	Overall Hematocrit	100.00%	•	0.05 [-0.24, 0.35]
	INTERVAL, UK Biobank, UK BiLEVE	62.73%	ė.	-0.01 [-0.11, 0.08]
	BioVU	37.27%	н <u>н</u>	0.00 [-0.13, 0.12]
	Overall	100.00%	•	-0.01 [-0.09, 0.07]
I	Heterogeneity for hemoglobin: $Q = 1.55 (P = 0.21)$; $I^2 = 35.30\%$	-0 -0	0.5 0.0 0.5 1	.0

Heterogeneity for hematocrit: Q = 0.01 (P = 0.90); $I^2 = 0.00\%$

В

Outcome and data source	Weight	ß (95% CI)
Hemoglobin		
INTERVAL, UK Biobank, UK BiLEVE	69.92%	-0.02 [-0.12, 0.08]
The UK Household Longitudinal Study	30.08% H	0.47 [-0.14, 1.08]
Overall Hematocrit	100.00%	0.13 [-0.31, 0.57]
INTERVAL, UK Biobank, UK BiLEVE	60.64%	0.00[-0.11, 0.10]
BioVU	39.36% H	➡ 0.00 [-0.13, 0.13]
Overall Heterogeneity for hemoglobin: $Q = 2.39$ (P = 0.12); $I^2 = 58.12\%$	100.00%	0.00 [-0.08, 0.08]

Heterogeneity for hematocrit: Q = 0.01 (P = 0.94); $I^2 = 0.00\%$

Figure S4: Meta-analysis of inverse-variance weighted results for hemoglobin and hematocrit as outcomes in the main analysis (A) and sensitive analysis after excluding potential pleiotropic SNPs (B).

CI: confidence interval; SNP: single-nucleotide polymorphisms; BioVU: the Vanderbilt University biobank.