1

Supporting Information

2 Glutenin protein corona ameliorated TiO₂ nanoparticle-induced gut

- 3 barrier dysfunction and altered gut microbiota composition
- 4

5 Methods:

ABTS Radical Scavenging Assay. The detection of ABTS radical scavenging ability was performed according to the literature with slight changes.¹ The ABTS mother solution was obtained by mixing 10 mL of 7 mmol/L ABTS solution with 178 μ L of 140 mmol/L potassium persulfate solution in the dark for 12 hours. The working solution with OD_{734 nm}=0.7 was obtained by diluting the stock solution. The absorbance was measured at 734 nm after mixing 1 mL of the working solution with 1 mL of digestive solution in the dark at room temperature for 1 h.

DPPH Radical Scavenging Assay. The measurement of DPPH scavenging activity was performed with some changes according to the previous literature.² Samples were mixed with DPPH (0.04 mg/mL in absolute ethyl alcohol) at the ratio of 1:1 in the 96well plate and incubated at 37°C in the dark for 30 min. The absorbance was read at 517 nm.

Hydroxyl radical scavenging Assay. The hydroxyl radical scavenging activity was measured according to the method reported in the literature.³ One milliliter of samples, 1 mL 6 mmol/L FeSO₄, 1 mL 6 mmol/L H₂O₂, and 1 mL 6 mmol/L of ethanol salicylic acid solution were added consecutively and incubated at 37°C for 1 h. After incubated, the reaction solution was transferred to a 96-well plate and the absorbance was 23 measured at 510 nm.

Total reducibility Assay. The total reducibility assay was slightly modified according to the method reported previously.⁴ Mix 2.5 mL samples, 2.5 mL 0.02 mol/L PBS, 2.5 mL 1% (w/v) potassium ferricyanide and incubate at 55°C for 20 minutes. Then add 2.5 mL 10% (w/v) trichloroacetic acid followed by a 1000 g centrifugation for 15 min. The supernatant (2.5 mL) was mixed with 2.5 mL of distilled water and 0.5 mL 0.1% (w/v) ferric chloride, and the absorbance at 700 nm was measured after 10 min of incubation at room temperature in the dark.

33 Supplementary Figures

- 34 Supplementary Figure 1. The antioxidant activity of digestive fluid with different
- 35 treatments. (A-D) The ABTS radical scavenging rate (A), DPPH radical scavenging
- 36 rate (B), Hydroxyl radical scavenging rate (C) and Reducing power (D) of digestive
- 37 fluids with TiO_2 nanoparticles, glutenin, and Glu- TiO_2 corona during simulated
- 38 digestion. Bars assigned different lowercase letters are significantly different (p < 0.05).
- 39 Supplementary Table 1. Primers used in qRT-PCR experiments.
- 40 Supplementary Table 2. The visceral index of mice with different groups.

41 Supplementary Figure 1.

Gene	Forward Primer	Reverse Primer		
Mouse Cldn1	5'-TGCCCCAGTGGAAGATTTACT-3'	5'-CTTTGCGAAACGCAGGACAT-3'		
Mouse Tjp1	5'-GAGCGGGCTACCTTACTGAAC-3'	5'-GTCATCTCTTTCCGAGGCATTAG-3'		
Mouse Ocln	5'-TTGAAAGTCCACCTCCTTACAGA-3'	5'-CCGGATAAAAAGAGTACGCTGG-3'		
Mouse Cldn7	5'-AGGGTCTGCTCTGGTCCTT-3'	5'-GTACGCAGCTTTGCTTTCA-3'		
Mouse Cldn2	5'-GATTGGAGAGGCTCTGTACTTG-3'	5'-TAGTTGGTACGATTGCCCTG-3'		
Mouse Muc2	5'-GGCTCGGAACTCCAGAAAGAAG-3'	5'-CTCGGCAGTCAGACGCAAAG-3'		
Mouse Gapdh	5'-TGAATACGGCTACAGCAACA-3'	5'-AGGCCCCTCCTGTTATTATG-3'		
Human Cldn1	5'-GATGAGGTGCAGAAGATGAG-3'	5'-GGACAGGAACAGCAAAGTAG-3'		
Human Ocln	5'-CGCTGCTGTAACGAGGCT-3'	5'-CCAATGTCGAGGAGT-3'		
Human Tjp1	5'-ATCAGGGACATTCAATAGCGTAGC-3'	5'-CAAGATAGTTTGGCAGCAAGAGATG-3'		
Human Gapdh	5'-CGGAGTCAACGGATTTGGTC-3'	5'-GACAAGCTTCCCGTTCTCAG-3'		

44 Supplementary Table 1. Primers used in qRT-PCR experiments.

	Heart (mg/g)	Liver (mg/g)	Spleen (mg/g)	Lung (mg/g)	Kidney (mg/g)	Brain (mg/g)
Control	$5.91 \pm 0.72^{a,*}$	$48.83\pm3.90^{\rm a}$	$5.32\pm0.77^{\rm a}$	$7.56 \pm 1.19^{\rm a}$	12.79 ± 0.56^{a}	$14.88\pm3.41^{\mathtt{a}}$
TiO ₂ 100 mg/kg	$6.28\pm1.56^{\rm a}$	$44.18\pm4.61^{\rm a}$	3.93 ± 0.86^a	$7.16\pm0.56^{\rm a}$	12.84 ± 0.66^{a}	$19.49\pm4.98^{\text{a}}$
TiO ₂ 500 mg/kg	$6.35\pm0.93^{\rm a}$	$45.87\pm2.08^{\rm a}$	3.86 ± 0.85^{a}	$6.38\pm0.94^{\rm a}$	$12.99\pm0.60^{\mathrm{a}}$	$16.43\pm1.77^{\mathrm{a}}$
Glu-TiO ₂ Corona 100 mg/kg	$5.82\pm0.39^{\text{a}}$	$45.41\pm2.84^{\rm a}$	$4.26\pm1.37^{\text{a}}$	$7.84 \pm 1.43^{\mathtt{a}}$	12.95 ± 0.65^{a}	19.99 ± 1.53^{a}
Glu-TiO ₂ Corona 500 mg/kg	$6.34 \pm 1.09^{\rm a}$	$47.18\pm2.63^{\rm a}$	3.41 ± 0.39^{a}	$6.49\pm0.54^{\rm a}$	12.39 ± 0.96^{a}	$18.36 \pm 1.00^{\mathrm{a}}$

48 Supplementary Table 2. The visceral index of mice with different groups.

49 * Values with different inline letters within a row were significantly different (p < 0.05).

51 **References:**

- 52 1 A. K. Arise, A. M. Alashi, I. D. Nwachukwu, O. A. Ijabadeniyi, R. E. Aluko and E. O. Amonsou, Antioxidant
- 53 activities of bambara groundnut (Vigna subterranea) protein hydrolysates and their membrane ultrafiltration
- 54 fractions, *Food Funct.*, 2016, **7**, 2431-2437.
- 55 2 X.-X. Zhang, Z.-J. Ni, F. Zhang, K. Thakur, J.-G. Zhang, M. R. Khan, R. Busquets and Z.-J. Wei,
- 56 Physicochemical and antioxidant properties of Lycium barbarum seed dreg polysaccharides prepared by
- 57 continuous extraction, *Food Chem.*: *X*, 2022, **14**, 100282.
- 58 3 H. Shan, Y. Guo, J. Li, Z. Liu, S. Chen, B. Dashnyam, D. J. McClements, C. Cao, X. Xu and B. Yuan, Impact of
- whey protein corona formation around TiO2 nanoparticles on their physiochemical properties and
 gastrointestinal fate, *J. Agric. Food Chem.*, 2024, **72**, 4958-4976.
- 61 4 Z. Zhu, X. Song, Y. Jiang, J. Yao, Y. Jiang, Z. Li and F. Dai, Chemical structure and antioxidant activity of a
- 62 neutral polysaccharide from Asteris Radix et Rhizoma, *Carbohydr. Polym.*, 2022, **286**, 119309.