Gene	Forward (5'–3')	Reverse (5'–3')
ACC-1	GATGAACCATCTCCGTTGGC	GACCCAATTATGAATCGGGAGT
FXR	GGCAGAATCTGGATTTGGAATCG	GCTGAACTTGAGGAAACGGG
PGC-1	TATGGAGTGACATAGAGTGTGCT	CCACTTCAATCCACCCAGAAAG
PPAR-α	AGAGCCCCATCTGTCCTCTC	ACTGGTAGTCTGCAAAACCAAA
UCP-1	AGGCTTCCAGTACCATTAGGT	CTGAGTGAGGCAAAGCTGATTT
SREBP-1c	TGGAGCTTTTGAGACTCAGGA	TCGATTAAGCAGGTGAGGTCG
FABP-1	ATGAACTTCTCCGGCAAGTACC	CTGACACCCCCTTGATGTCC
HMGCR	AGCTTGCCCGAATTGTATGTG	TCTGTTGTGAACCATGTGACTT
PPAR-γ	TCGCTGATGCACTGCCTATG	GAGAGGTCCACAGAGCTGATT
FASN	GGAGGTGGTGATAGCCGGTAT	TGGGTAATCCATAGAGCCCAG
CD36	ATGGGCTGTGATCGGAACTG	GTCTTCCCAATAAGCATGTCTC
SCD-1	TTCTTGCGATACACTCTGGTGC	CGGGATTGAATGTTCTTGTCGT
ABCA1	GCTTGTTGGCCTCAGTTAAGG	GTAGCTCAGGCGTACAGAGAT
ABCG1	CTTTCCTACTCTGTACCCGAGG	CGGGGCATTCCATTGATAAGG
ZO-1	ACCACCAACCCGAGAAGAC	CAGGAGTCATGGACGCACA
Claudin-1	GGGGACAACATCGTGACCG	CCGGATAAAAAGAGTACGCTG
β-actin	CATGTACGTTGCTATCCAGGC	CTCCTTAATGTCACGCACGAT

Table S1. Specific primers used for qRT-PCR analysis of gene expression

Amino acids	Relative amount (%)	Amino acids	Relative amount (%)
Aspartate (Asp)	13.03	Proline (Pro)	6.28
Threonine (Thr)	5.59	Tryptophan (Trp)	2.29
Serine (Ser)	3.63	Lysine (Lys) ^a	7.15
Glutamate (Glu)	13.57	Phenylalanine (Phe) ^a	0.80
Glycine (Gly)	6.32	Isoleucine (Ile) ^a	6.05
Alanine (Ala)	7.18	Leucine (Leu) ^a	8.31
Cysteine (Cys)	1.17	Valine (Val) ^a	7.80
Arginine (Arg)	8.24	Methionine (Met) ^a	0.54
Histidine (His)	1.62		

Table S2. Amino acid composition of MEP

^a: Represented essential amino acids.

Fig S1. MEP alleviated adipocyte proliferation and regulated the expression of lipid metabolism in mice with NAFLD. H&E analysis of white adipose tissue (A) and epididymal adipose tissue (B), scale bar: 50 μ m. The mRNA levels of UCP-1 (C), PPAR- γ (D), SREBP-1c (E), FABP1 (F), CD36 (G), SCD-1 (H), HMGCR (I), ABCA-1 (J), ABCG-1 (K), FXR (L) and PGC-1 α (M) were detected. All values are presented as means \pm SEM (n = 5). Significantly different (*P<0.05, **P<0.01, ***P<0.001) versus the HFD group. Significantly different (#P<0.05, ##P<0.01, ###P<0.001) versus the CTL group.

Fig S2. MEP improved liver function *in vivo*. The levels of ALT (A) and AST (B) in serum, and the levels of MDA (C) and T-AOC (D) in liver tissue were detected. All values of animal experiments are presented as means \pm SEM (n = 5). Significantly different (*P<0.05, **P<0.01, ***P<0.001) versus the HFD group. Significantly different (#P<0.05, ###P<0.001) versus the CTL group.

Fig S3. MEP regulated lipid metabolism in liver cells of NAFLD mice. Immunohistochemical analysis of HNF-4 α (A), PPAR- α (B) and SREBP (C) were showed. The mRNA levels of PPAR- α (D), SREBP (E), PPAR- γ (F), FXR (G), FASN (H), CD36 (I) and ACC-1 (J) were detected. All values are presented as means ± SEM (n = 5). Significantly different (*P<0.05, **P<0.01, ***P<0.001) versus the HFD group. Significantly different (#P<0.05, ##P<0.01, ###P<0.001) versus the CTL group. Scale bar: 50 µm.

Fig S4. MEP regulated PGC-1a level in liver of NAFLD mice. Immunohistochemical analysis of PGC-1a (A) was showed, and the positive staining areas of PGC-1a (B). The mRNA level of PGC-1a was detected (C). All values of animal experiments are presented as means \pm SEM (n = 5). Significantly different (*P<0.05, **P<0.01, ***P<0.001) versus the HFD group. Significantly different (##P<0.01, ###P<0.001) versus the CTL group. Scale bar: 50 µm.

Fig S5. MEP restored the mRNA levels of Claudin-1 (A) and ZO-1 (B) in NAFLD mice. All values are presented as means \pm SEM (n = 5). Significantly different (*P<0.05, **P<0.01, ***P<0.001) versus the HFD group. Significantly different (##P<0.01) versus the CTL group.

Fig S6. PLS-DA of 16S rRNA genes (A). Composition of gut microbiota in phylum level (B).