Supplementary Information

Selective production of bicyclic alkanes as high-density fuel additives

by coupling lignocellulose-derived furanics and phenolics

Shumin Huang^a, Xiaolin Luo^a, Ji Li^{b,c}, Sibao Liu^d, Li Shuai^{a,*}

^a College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China

^b School of Aeronautic Science and Engineering, Beihang University, Beijing 100191, China

^c Chengdu Aeronautic Polytechnic, Chengdu 610100, Sichuan, China.

^dKev Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China

Fig. S1. GC-MS of FPP-PF and its isomers.

Fig. S2. GC-MS of FPP-GF and its isomers..

Fig. S3. GC-MS of syringol self-coupling product and FPP-SF.

Fig. S4. GC chromatograms and GC-MS mass of FPP-PH, FPP-GH, and FPP-SH.

Fig. S5. Chromatograms of HDO products of FPPs. (A) FPP-SF, HDO conditions: Pd/C and H₃PO₄, 250 °C; (B) FPP-PF, HDO conditions: Ir-ReO_x/SiO₂, 180 °C; (C)FPP-GF, HDO conditions: Ir-ReO_x/SiO₂, 180 °C; (E) FPP-PH, HDO conditions: Ir-ReO_x/SiO₂, 200 °C; (E) FPP-PH, HDO

conditions: Ir-ReO_x/SiO₂, 200 °C; (F) FPP-GH, HDO conditions: Ir-ReO_x/SiO₂, 200 °C; (G) FPP-SH, HDO conditions: Ir-ReO_x/SiO₂, 200 °C.

Fig. S7: GC-MS of C18-BCA.

Phenol/furfural (mol)	Temperature (°C)	NaOH (mg)	Reaction time (h)	FPP-PF yield
16/1	80	10	4	11.1%
16/1	80	10	8	25.1%
16/1	80	10	12	41.9%
16/1	80	10	24	56.3%
16/1	80	10	48	67.0%

Tab. S1 Parametric optimization of phenol-furfural coupling

Tab. S2 Parametric optimization of HDO of FPP

Time (h)	Temperature (°C)	Catalyst	BCA yield
6 <i>a</i>	250	Pd/C and H ₃ PO ₄	24.9%
12 ^{<i>a</i>}	180	Pd/C and H ₃ PO ₄	18.2%
6 <i>a</i>	250	Ru/C and H ₃ PO ₄	<10.0%
6 <i>a</i>	250	Pt/C and H ₃ PO ₄	<10.0%
6 <i>a</i>	200	Ir-Re/SiO ₂	48.0%
18 ^b	200	Ir-Re/SiO ₂	86.8%
18 ^c	200	Ir-Re/SiO ₂	94.2%
18^{d}	200	Ir-Re/SiO ₂	90.0%
18 ^e	200	Ir-Re/SiO ₂	90.7%

^{*a*} 100 mg catalyst, 100 mg FPP; ^{*b*} 50 mg catalyst, 100 mg FPP; ^{*c*} the first recycling of Ir-Re/SiO₂; ^{*d*} the second recycling of Ir-Re/SiO₂, ^{*e*} the third recycling of Ir-Re/SiO₂.

Fig. S8 (A) and (B) TEM image of Ir-ReO_x/SiO₂; (C), (D), (E)and (F) EDX mapping of Ir-ReO_x/SiO₂.

Fig. S9 XPS spectra of the Ir-ReO_x/SiO₂. (A) High-resolution Ir spectra of Ir-ReO_x/SiO₂; (B) High-resolution Re spectra of Ir-ReO_x/SiO₂.

Fig. S10 (A) XRD Patterns of the Ir-ReO_x/SiO₂. (B) DRIFT spectra of CO adsorbed on the Ir-ReO_x/SiO₂ after the reduction at 200 °C. (C) TPR profiles of Ir-ReO_x/SiO₂. Conditions: sample (50 mg, calcined at 500 °C for 3 h) and H₂/Ar (10% v/v, 50 ml/min) at a heating rate of 10 °C /min.