Electronic Supplementary Information (ESI)

Thermodynamically Favorable Route to the Synthesis of Nanoporous Graphene Templated on CaO *via* Chemical Vapor Deposition

Kritin Pirabul^{a, §}, Qi Zhao^{b, §}, Shogo Sunahiro^c, Zheng-Ze Pan^{d,*}, Takeharu Yoshii^a, Yuichiro Hayasaka,^e Eddie Hoi-Sing Pang^b, Rachel Crespo-Otero^f, Devis Di Tommaso^{b,g,*}, Takashi Kyotani^a and Hirotomo Nishihara^{a,d,*}

^{*a*}Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi, 980-8577, Japan.

^bDepartment of Chemistry, Queen Mary University of London, Mile End Road, London E1 4NS, UK. E-mail: d.ditommaso@qmul.ac.uk

^cR & D Strategy Division, Tokai Carbon Co., Ltd., Aoyama Building, 1-2-3 Kita Aoyama, Minato-ku, Tokyo 107-8636, Japan.

^{*d}</sup>Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi, 980-8577, Japan. E-mail: zigzag.mpan@gmail.com, pan.zhengze.e6@tohoku.ac.jp, hirotomo.nishihara.b1@tohoku.ac.jp</sup>*

^eThe Electron Microscopy Centre, Tohoku University, 2-1-1 Katahira, Aoba, Sendai, Miyagi 980-8577, Japan.

^{*f*}Department of Chemistry, University College London, 2020 Gordon St., London, WC1H 0AJ, UK.

^{*g*}Digital Environment Research Institute, Queen Mary University of London, Empire House, 67-75 New Road, London E1 1HH, UK.

⁸ Equally contributed and regarded as co-first authors.

Corresponding authors e-mail: zigzag.mpan@gmail.com, pan.zhengze.e6@tohoku.ac.jp; d.ditommaso@qmul.ac.uk; hirotomo.nishihara.b1@tohoku.ac.jp

Fig.S1 SEM images of (a) SK-I, (b) SK-I_900, (c) C/SK-I, (d) TC_SK-I, and (e) TC_SK-I_A

Fig. S2 Side and top views of the optimized structural models of (left) C*on CaO(100), , and (right) C* on CaO(111) with the values of the CO desorption energy (ΔE_{des-CO^*}) from the labeled C* on O sites. The blue, red, and brown balls represent Ca, O, C atoms, respectively.

Fig. S3 (a) Charge density mappings of graphene/MgO(110) (Gra/MgO(110)). (b) The optimized structural model of Gra/MgO(110) and O* on Gra/MgO(110) with the energy required for transferring O from MgO to the surface graphene ($\Delta E_{O-trans(MgO to Gra)}$). The red, orange, and brown balls represent O, Mg, and C atoms, respectively.

Fig. S4 Top views of the optimized structural models of Gra/CaO(110) and O* on Gra/CaO(110) with the energy required for transferring O from CaO to the surface graphene ($\Delta E_{O-\text{trans}(CaO \text{ to Gra})}$). The green region locates the transferred O.

Fig. S5 N₂ adsorption/desorption isotherms at -196 °C for SK-I and SK-I_900.

Fig. S6 Pore-size distributions calculated by the BJH method for TC_SK-I and TC_SK-I_A.

Fig. S7 (a) Gas evolution patterns of YP-50F (solid lines) and TC_SK-I_A (dashed lines) during the high-sensitivity TPD measurement up to 1800 °C. (b) The oxidation resistance of YP-50F and TC_SK-I_A characterized by TG measurement in air. The heating rate is 5 °C min⁻¹.

Fig. S8 Cyclic voltammograms measured with a scan rate of 1 mV s⁻¹ using (a) TC_SK-I and (b) TC_SK-I_A. A three-electrode cell was used with 1 M Et_4NBF_4 /propylene carbonate at 25 °C. The blue lines represent the data during the upper limit potential inclining step in the range of 0.5-1.2 V. The red line is the data measured between 0.2 and 0.5 V following the CV performed from 0.2 to 1.2 V.

Fig. S9 The Nyquist plots of TC_SK-I and TC_SK-I_A measured by using a three-electrode cell in 1 M Et₄NBF₄/propylene carbonate at 25 °C. Nyquist plots at OCV (0.2 V) obtained throughout cyclic votemetry (CV) measurement of (a,b) TC_SK-I (c,d) TC_SK-I_A. The blue line represents the data before the CV measurement. The red line is data measured following the CV performed form 0.2 to 1.2 V.

Table S1 Impurities contained in $CaCO_3$ analyzed by inductively coupled plasma atomic emissionspectroscopy (ICP-AES). The data are kindly provided by Shiraishi Central Laboratories Co., Ltd.

Sample	Impurity content (ppm)					
	Na	Mg	Fe	Sr	Si	Al
SK-I	27.8	4.2	3.5	3.5	6.9	<0.1