A heuristic process prediction model for screening the optimal green entrainer with TAC and LCA impacts based on PSE concepts

Electronic Supplementary Information

Qinggang Xu^a, Yangyang Wang^a, Kexin Yin^a, Hongwei Xu^a, Jianguang Qi^a, Peizhe Cui^a, Zhaoyou Zhu^a, Yinglong Wang^{a,*}, Limei Zhong^a, Yixin Ma^b

 ^a College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
 ^b College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, P. R. China

*Corresponding Author: Yinglong Wang

*E-mail: wangyinglong@qust.edu.cn

College of Chemical Engineering, Qingdao University of Science and Technology 266042, Qingdao, China

Table S1: The optimization operation parameters and objective function of TAC evaluation following the Luyben model⁴⁹.

Parameters	Unit	Content
condensers		
heat transfer coefficient	$kW \cdot m^{-2} \cdot K^{-1}$	0.852

capital cost		$7296 \times (Ac)^{0.65}$
heat transfer area: A	m ²	$A_C = \frac{Q_C}{K_C \Delta T_C}$
reboilers		
heat transfer coefficient	$kW \cdot m^{-2} \cdot K^{-1}$	0.568
capital cost		$7296 \times (A_R)^{0.65}$
heat transfer area: A	m ²	$A_R = \frac{Q_R}{K_R \Delta T_C}$
Q is the duty of the heat exch	anger (kW), ⊿t is the tem	perature difference (K), and K is the heat
	transfer coefficient	
column vessel		
capital cost		$17640 \times D^{1.066} \times H^{0.802}$
length: H	m	$H = 1.2 \times 0.61 \times (NT-2)$
diameter: D	m	Calculated by Aspen tray sizing

Project	Content	Unit
ID	Aspen tray sizing	m
Н	0.61×(NT/0.75-3) +6	m
Column shell cost C_1	$= \left(\frac{M\&S}{280}\right) \times 937.636 \times D^{1.066} \times H^{0.802} \times (2.18 + F_c)$	\$
F _C =Fm⋅Fp, F	m=3.67, $Fp = 1.05$, $P \le 6.8atm$; $Fp = 1.00$, $P \le 3.4atm$	
A _C	$A_C = \frac{Q_C}{K_C \Delta T_C}$	m ²
Kc	0.852	$kW \cdot m^{-2} \cdot K^{-1}$
EH cost	$C_2 = \left(\frac{M\&S}{280}\right) \times 474.668 \times A^{0.65} \times (2.29 + F_c)$	\$
$F_{C} = (F_{d} + F_{p}) \cdot F_{m}, F_{m} = 3.75, F_{d}$	$_{\rm d}$ =1.35(kettle reboiler), $F_{\rm d}$ = (fixed tube sheet heat exch	angers), F _p =0
A _R	$A_R = \frac{Q_R}{K_R \Delta T_C}$	m ²
K _R	0.568	$kW \cdot m^{-2} \cdot K^{-1}$
Energy costs		
LP steam /433 K	7.78	GJ^{-1}
MP steam /457 K	8.22	GJ^{-1}
HP steam /537 K	9.88	GJ^{-1}
M&S	1431.7	
Membrane Cost	$327.62 \times A_{M}$	\$
Vacuum Pump Cost	$C_3 = 4200 \times \left(\frac{60 \times F_P \times 8.314 \times 273.15}{3600 \times 101.325}\right)^{0.55}$	\$
Fp	Aspen simulation results	kmol·h ⁻¹
TAC	$TAC = \frac{capital \ cost}{paybackperiod} + energy \ cost$	\$∙y-1
Payback period	3	years
Operation time	8000	h·year-1

Table S2: Comply with the optimization operation parameters of the Douglas model and the objective function of TAC evaluation⁵⁰.

Table S3: The thermodynamic data of Methanol+Toluene azeotropes⁴⁴.

Azastraza	Methanol-toluene			
Azeotrope	x _{methanol} /mol	Temperature /K		
Experimental data	0.8820-0.8860	336.41-336.95		
NRTL model	0.887	337.02		
UNIQUAC model	0.8843	336.91		

Fig. S1 The flowsheet of separating azeotropes by ED with different entrainer

Parameters	Content	Unit
Total steam load (<i>Vi</i>)	$Vi = Di + Li = Di \times (Ri+1) = \frac{C_1}{ \alpha_i - 1 }$	kg∙h ⁻¹
Ri,min	$\frac{1}{R_{i,min}= \alpha_i-1 } \times \left(\frac{x_{D,LK}}{x_{F,LK}} - \alpha_i \times \frac{x_{D,HK}}{x_{F,HK}}\right) = C_2 \times \frac{1}{ \alpha_i-1 }$	
Ri	$R_{i=(1.2\sim2)\times R_{i,min}}$	
Ni,min	$N_{i,min} = \frac{\log_{10}\left(\frac{x_{D,LK}}{x_{D,HK}} \times \frac{x_{W,HK}}{x_{W,LK}}\right)}{\log_{10}\alpha_i} = C_4 \times \frac{1}{\log_{10}\alpha_i}$	
Ni	$N_{i=}(1.2\sim2) \times N_{i,min=} C_5 \times \frac{C_4}{\log_{10}\alpha_i}$	

Table S4: The relationship between V_i , $R_{i,min}$, R_i , $N_{i,min,and}$, N_i to α_{i44} .

Fig. S2 The simulated and optimized procedure of the ED processes⁴⁴.

Fig. S3 The changed curves of a: $\alpha_{TOL-META}$ and b: $\alpha_{ACT-META}$ after non or adding entrainers⁴⁵.

Project	Unit	NMP	Aniline	DMF	Styrene	o-xylene	p-xylene	m-xylene
GWP	kg·y ⁻¹ CO ₂ Eq.	289.703	281	285.973	335.708	345.655	407.781	494.128
AP	kg·y ⁻¹ SO ₂ Eq.	0.5176	0.5021	0.511	0.5998	0.6176	0.7287	0.8775
HTP	kg DCB Eq.	8.9837	8.7138	8.8681	10.4103	10.7188	12.6447	15.2299
FETP	kg DCB Eq.	0.1545	0.1499	0.1525	0.1791	0.1844	0.2175	0.262
TETP	kg DCB Eq.	0.1611	0.1563	0.159	0.1867	0.1922	0.2268	0.2731
TEDI		0.56	0.58	0.79	1.62	1.74	2.75	2.81
LTEDI		0.3815	0.4156	0.5319	0.7431	0.7772	0.9981	1.0178

Table S5: The detailed life cycle inventory of each entrainer for separating TOL+META azeotropes with the ED processes.

Table S6: The detailed life cycle inventory of each entrainer for separating ACT+META azeotropes with the ED processes.

Project	Unit	MEA	DMSO	Water	DMF	Ethanol
GWP	kg·y-1CO ₂ Eq.	273.415	353.737	516.617	487.398	1883.69
AP	kg·y-1SO ₂ Eq.	0.488513	0.632023	0.923043	0.870837	3.36561
HTP	kg DCB Eq.	8.4786	10.9694	16.0203	15.1142	58.4134
FETP	kg DCB Eq.	0.1458	0.1887	0.2756	0.26	1.0048
TETP	kg DCB Eq.	0.152	0.1967	0.2873	0.271	1.0495
TEDI		1.06	2.21	4.5	7.32	12.77
LTEDI		0.5209	0.7985	1.4536	1.6221	2.8898

Fig. S4 The simulated and optimized procedure of combining with the heuristics process prediction model, Luyben model, and Douglas model.

Model	T/K	RMSD
NDTI	303.2	0.96%
NKIL	323.2	1.00%
	303.2	0.88%
UNIQUAC	323.2	0.93%

 Table S7. RMSD of thermodynamic models for DIPE/IPA/EG system.

Table S8. The binary interaction parameters of EG experimental data and theUNIFIAC model.

Project	Experimental data	UNIFIAC model
A _{ij}	-32.6817072	0
A_{ji}	8.07455844	0
\mathbf{B}_{ij}	9753.87956	-605.303
\mathbf{B}_{ji}	-2648.31753	-96.11

Table S9. The binary interaction parameters of components on the UNIQUAC model.

Component <i>i</i>	Component j	A_{ij}	A_{ji}	\mathbf{B}_{ij}	\mathbf{B}_{ji}
DIPE	IPA	0	0	-353.6478	129.0989
IPA	EG	4.4078	-4.9486	-1828.0739	1906.1646
DIPE	EG	-32.6817072	8.07455844	9753.87956	-2648.31753
DIPE	H ₂ O	0	0	-774.7116	-29.592
IPA	H ₂ O	2.9234	-3.3127	-1111.674	1045.5786
EG	H ₂ O	0.6018	-0.6018	-18.6714	120.7787
DIPE	PDO	0	0	-632.111535	67.2706956
IPA	PDO	-0.888692	1.46548	525.204	-925.082
H ₂ O	PDO	-0.624216	0.317496	-295.272	228.528

Fig. S5. The y-x diagram of relative volatility changes with extractant molar ratio is 0.5. (a: The y--x diagram of $\alpha_{DIPE-IPA}$; b: the $\alpha_{IPA-DIPE}$ changes show the UNIQUAC model is superior to the UNIFAC model; EXP means experiment.)

Fig. S6. The ternary phase diagram of $DIPE/IPA/H_2O$, DIPE/IPA/EG and DIPE/IPA/PDO.

Project	Unit	DMSO	EG
T _{BP}	°C	189	197.3
$\alpha_{DIPE-IPA+H_2O}$		22.354	108.240
α_{IPA-H_20}		10.722	8.558
α _{H2} 0-SOL		40.884	43.548
PECI1		0.970	0.623
PECI2		1.307	1.459
PECI3		0.798	0.784
PECI		3.075	2.866
LTEDI		0.175	0.165

Table S10. The calculation results are based on the model index for separating DIPE/IPA/H₂O (30 wt%: 10 wt%: 60 wt%) ternary azeotropes.

Fig. S7. The changes of relative volatility for DIPE/IPA/H₂O azeotropes with EG, DMSO, and no entrainer.