Electronic Supplementary Material (ESI) for Green Chemistry. This journal is © The Royal Society of Chemistry 2024

Supporting Information

Advancing Sustainable Lignin Valorisation: Utilizing Z-Scheme Photocatalysts for Efficient Hydrogenolysis of Lignin's β-O-4, α-O-4, and 4-O-5 Linkages under Ambient Conditions

Rajat Ghalta^a and Rajendra Srivastava^{a*}

^aCatalysis Research Laboratory, Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab-140001, India

*Email: rajendra@iitrpr.ac.in

*Phone: +91-1881-242175; Fax: +91-1881-223395

This Supporting information has seventy-three pages (S1-S73), and contains:

Twelve Supporting Table (Table S1-S12)

Thirty-four Supporting Figures (Figures S1-S34)

	Description	Page			
	Materials	S7			
	Catalyst preparation	S7			
	Catalyst characterization	S10			
	Catalytic reaction procedure	S11			
	Apparent Quantum Yield Calculation	S13			
	Photoelectrochemical measurement	S13			
	Tauc plot for band gap calculations	S14			
	Time-Correlated Single Photon Counting calculations	S14			
	Mott-Schottky analysis calculations	S14			
	Nitro blue tetrazolium (NBT) test	S15			
	Terephthalic acid (THA) test	S15			
Table S1	Surface elemental composition, determined from EDX analysis.	S16			
Table S2	Surface area and total pore volume derived from BET analysis.	S17			
Table S3	Surface elemental composition, determined from XPS analysis.	S18			
Table S4	Band gap of the synthesized catalysts calculated from tauc plot.	S19			
Tabla S5	Best fitted parameters of multiexponential components for decay				
1 able 55	curve.	320			
Table S6	AQY for photocatalytic BPE hydrogenolysis.	S21			
Table S7	The photocatalytic hydrogenation for the various organic substrates.	S23			
Table S8	AQY for photocatalytic PPE hydrogenolysis.	S25			
Table S9	AQY for photocatalytic PPEOH hydrogenolysis.	S26			
Table S10	AQY for photocatalytic DPE hydrogenolysis.	S27			
Table C11	Comparative catalytic activity for photocatalytic cleavage of α -O-4	6 .70			
Table STT	linkage in lignin modal compounds.	526			
Table S17	Comparative catalytic activity for photocatalytic cleavage of β -O-4	\$20			
Table S12	linkage in lignin modal compounds.	529			
	The digital image of photocatalytic reactor and reaction setup for the				
Fig. S1	photocatalytic hydrogenolysis performed in room temperature using	S31			
	150 W cool white LED (intensity = 1210 W/m^2).				
Fig. S2	The digital image of büchi pressure reactor and reaction setup for the	S32			

	thermal hydrogenolysis of BPE.	
Fig. S3	GC-MS chromatograph for reaction mixture of BPE. (Reaction conditions -light source (150 W LED), photocatalyst 3%Pd@CN/rGO/BMO(2:1) (20 mg), reactant (0.1 mmol), IPA (5 ml)), H ₂ (2 bar) time (0.5 h)).	S33
Fig. S4	GC-MS chromatograph for reaction mixture of BPE. (Reaction conditions -light source (150 W LED), photocatalyst 3%Pd@CN/rGO/BMO(2:1) (20 mg), reactant (0.1 mmol), IPA (5 ml)), H ₂ (2 bar) time (5 h)).	S34
Fig. S5	GC-MS chromatograph for reaction mixture of PPE. (Reaction conditions -light source (150 W LED), photocatalyst 1%Pd@CN/rGO/BMO(2:1) (20 mg), reactant (0.1 mmol), IPA (5 ml)), H ₂ (2 bar) time (10 h)).	S35
Fig. S6	GC-MS chromatograph for reaction mixture of PPE. (Reaction conditions -light source (150 W LED), photocatalyst 3%Pd@CN/rGO/BMO(2:1) (20 mg), reactant (0.1 mmol), IPA (5 ml)), H ₂ (2 bar) time (20 h)).	S36
Fig. S7	GC-MS chromatograph for reaction mixture of DPE. (Reaction conditions -light source (150 W LED), photocatalyst 3%Pd@CN/rGO/BMO(2:1) (20 mg), reactant (0.1 mmol), IPA (5 ml)), H ₂ (5 bar) time (15 h)).	S37
Fig. S8	GC-MS chromatograph for reaction mixture of photocatalytic hydrogenolysis of simulated lignin bio-oil. (Reaction conditions - light source (150 W LED), photocatalyst 3%Pd@CN/rGO/BMO(2:1) (20 mg), reactant (100 mg), IPA (5 ml)), H ₂ (5 bar), time 15 h).	S38
Fig. S9	GC chromatogram of the reaction mixture of BPE hydrogenolysis demonstrating the formation of acetone in the reaction. (Reaction conditions -light source (150 W LED), photocatalyst $3\%Pd@CN/rGO/BMO(2:1)$ (20 mg), reactant (0.1 mmol), IPA (5 ml)), H ₂ (2 bar) time 3 h).	S39
Fig. S10	FTIR spectra of CN, GO, BMO, and the composite with various combinations of CN and BMO.	S40

Fig. S11	SEM images of (a)-(b) BMO, (c)-(d) CN, (e) GO, and (f)-(g) CN/rGO/BMO.	S41
Fig. 812	Pd nanoparticles size distribution obtained from HR-TEM images of 3%Pd@CN/rGO/BMO(2:1).	S42
Fig. S13	TGA of the CN, BMO, CN/rGO/BMO, 3%Pd@CN/rGO/BMO.	S43
Fig. S14	N2-adsorption/desorption isotherms of (a) BMO, CN, 0.5%Pd@CNandCN/rGO/BMO, and(b)0.5%Pd@CN/rGO/BMO,1%Pd@CN/rGO/BMO,3%Pd@CN/rGO/BMO, and5%Pd@CN/rGO/BMO,	S44
Fig. S15	XPS survey spectra of the photocatalysts (CN, BMO, and 3%Pd@CN/rGO/BMO(2:1)).	S45
Fig. S16	Tauc plots (a-e) of synthesized photocatalysts.	S46
Fig. S17	LSV spectra of photocatalyst in dark and light for (a) BMO , (b) CN,(c)CN/rGO/BMO(2:1)composites,and(d)5%Pd@CN/rGO/BMO(2:1).	S47
Fig. S18	UPS spectra of (a) CN/rGO/BMO, (b) 0.5%Pd@CN/rGO/BMO, and, (c) 5%Pd@CN/rGO/BMO.	S48
Fig. S 19	BPE hydrogenolysis (a) catalyst with different metal NPs over CN (b) 0.5 % Pd over different variation of heterojunction (d) with individual component (CN, BMO, and CN/rGO/BMO) of heterojunction 3%Pd@CN/rGO/BMO. (Reaction conditions: light source (150 W LED), catalyst amount (20 mg), BPE (0.1 mmol)), H ₂ (2 bar), time 3h, and IPA (5 ml).	S49
Fig. S20	Spectral response of 3%Pd@CN/rGO/BMO in different LEDs. (Reaction conditions: substrate (0.1 mmol), catalyst amount (20 mg), IPA (5 mL), 9W LEDs, room temperature, H ₂ (2 bar), time (6 h).	S50
Fig. S21	PPEOL hydrogenolysis was conducted with different catalyst and time interval. (Reaction conditions: light source (150 W LED), catalyst amount (20 mg), PPEOL (0.1 mmol)), H ₂ (2 bar), and IPA (5 ml).	S51
Fig. S22	(a) FTIR spectrum and, (b) XRD pattern of extracted lignin.	S52
Fig. 823	GC-MS chromatograms of lignin-MeOH solution before and after photocatalysis.	S54

Fig. S24	MS spectra of the monomers (1 to 24) obtained after the photocatalytic hydrogenolysis of real lignin.	S62
Fig. S25	(a) Comparative absorption spectra of NBT solution after light illumination for 10 min over various photocatalysts, and (b) comparative fluorescence spectra of THA solution after light illumination for 30 min over various photocatalysts.	S63
Fig. 826	(a) Transient photocurrent response, and (b) PL spectra of CN/rGO/BMO(2:1) with different variation (0%, 0.5%, 2% and 5%) in wight present of rGO precursor (GO).	S64
Fig. S27	Control experiments during BPE hydrogenolysis (a) reaction in light, dark, and different temperature using $3\%Pd@CN/rGO/BMO(2:1)$, (b) reaction in light, dark, and different temperature using $3\%Pd@SBA-15$, (c) with using 1.5 mmol of electron scavenger, (d) in IPA, ACN and ACN + TEA, (e) in mixture of different ratio of IPA andACN [Reaction conditions: $3\%Pd@CN/rGO/BMO(2:1)$ (20 mg), light source (150W LED), BPE (0.1 mmol), solvent (5 ml), time (1.5 h), and H ₂ (2 bar)].	S65
Fig. S28	Control experiments during BPE hydrogenolysis (a) reaction indifferent H ₂ concentration using $3\%Pd@CN/rGO/BMO(2:1)$, (b) with using 1.5 mmol of OH radical scavenger (c) with using 1.5 mmol of super oxide scavenger, and (d) with using 1.5 mmol of radical scavenger [Reaction conditions: $3\%Pd@CN/rGO/BMO(2:1)$ (20 mg), light source (150W LED), BPE (0.1 mmol), solvent (5 ml), time (1.5 h), and H ₂ (2 bar)].	S66
Fig. S29	Control experiments during PPE hydrogenolysis (a) with using 1.5 mmol of electron scavenger, and (b) in IPA, ACN, ACN + TEA, and mixture of different ratio of IPA and ACN [Reaction conditions: 3%Pd@CN/rGO/BMO(2:1) (20 mg), light source (150W LED), PPE (0.1 mmol), solvent (5 ml), time (8 h), and H ₂ (2 bar)].	S67
Fig. S 30	Control experiments during DPE hydrogenolysis (a) with using 1.5 mmol of electron scavenger, and (b) in IPA, ACN, ACN + TEA, and mixture of different ratio of IPA and ACN [Reaction conditions: 3%Pd@CN/rGO/BMO(2:1) (20 mg), light source (150W LED), DPE	S68

	(0.1 mmol), solvent (5 ml), time (16 h), and H_2 (5 bar)].	
Fig. 831	A plausible mechanism for lignin modal BPE valorisation into useful chemicals using photocatalysis as a mediator.	S69
Fig. 832	A plausible mechanism for lignin modal PPE valorisation into useful chemicals using photocatalysis as a mediator.	S70
Fig. 833	A plausible mechanism for lignin modal DPE valorisation into useful chemicals using photocatalysis as a mediator.	S71
Fig. 834	 (a) Catalyst recyclability conducted at half reaction starting from ~61 %conversion [Reaction conditions: BPE (1 mmol), catalyst amount (20 mg), IPA (5 mL),150 W LED, room temperature, time 1.5 h, H₂ (2 bar)], 	S72

Materials

 $Bi(NO_3)_3 \cdot 5H_2O$, graphite powder, urea and $PdCl_2$ were purchased from Sigma-Aldrich. $Na_2MoO_4 \cdot 2H_2O$, $KMnO_4$, H_2O_2 and HCl were purchased from Loba-chemie. All other chemicals and solvents were obtained from Merck. All the chemicals were used without any further purification.

Catalyst preparation

Synthesis of CN

A crucible was filled with 16 g of urea, a nitrogen-rich organic compound, and the crucible was covered with a lid to create a sealed environment. The crucible containing urea was then subjected to an annealing process in a muffle furnace. The temperature was increased gradually with a ramp rate of 2.5 °C per minute until reaching a temperature of 550 °C. The annealing process lasted for a duration of 3 h. After the annealing process, the resulting material was yellow. The material was transformed into a powdered form using a mortar and pestle, ensuring the complete breakdown of the solid into fine particles. The resulting powder was designated g-C₃N₄ (CN), representing graphitic carbon nitride.

Synthesis of BMO

Bi₂MO₆ (BMO) was synthesized using a solvothermal method. Firstly, 1.68 g of Bi(NO₃)₃·5H₂O was dissolved in 5 mL of ethylene glycol under continuous stirring. The solution was allowed to mix for 30 minutes to ensure complete dissolution. Then, 0.421 g of Na₂MoO₄·2H₂O was added to the solution and stirred until a transparent solution was obtained, indicating the formation of a homogeneous precursor mixture. To promote the crystallization of BMO, 20 mL of ethanol was added to the precursor solution, and the mixture was aged for 4 h, allowing for nucleation and growth of the desired phase. Subsequently, the solution was transferred into a 50 mL Teflon-lined stainless-steel autoclave to undergo a solvothermal reaction. The autoclave was sealed and heated to a temperature of 160 °C and maintained at this temperature for 20 h, promoting the formation of BMO crystals through a controlled reaction within the solvent environment. After completion of the solvothermal reaction, the autoclave was gradually cooled to room temperature. The resulting solid product was separated from the solution by centrifugation to remove any remaining liquid. The obtained solid was then subjected to multiple washing using water and ethanol to eliminate impurities and residual reactants. The washing step was crucial for the purification of the BMO material. Following the washing process, the obtained BMO material was dried in a vacuum oven at a temperature

of 50 °C for an extended period, typically overnight. This prolonged drying allowed for the complete removal of any remaining solvents, ensuring the final product was free from residual solvent.

Synthesis of GO

The 1 g of graphite powder was dispersed in a 500 ml beaker containing a mixture of acids consisting of H₂SO₄, H₃PO₄, and HNO₃, with a ratio of 70:20:10, respectively. The dispersion was achieved by stirring the mixture at a medium rotational speed to ensure a homogeneous distribution of the graphite powder. Subsequently, 6 g of KMnO₄ was added gradually to the mixture while maintaining the temperature below 5 °C using an ice bath. The solution was then subjected to a temperature of 45 °C for 2 h by immersing the beaker in an oil bath. Following this step, the beaker was returned to the ice bath, and a slow addition of 100 ml of deionized water was performed to avoid sudden temperature fluctuations. The beaker was then transferred back to the oil bath, where the temperature was maintained at 85 °C for an additional hour. Throughout the experimental procedure, the mixture was continuously stirred at a moderate rate. To conclude the experiment, a simultaneous addition of 120 ml of deionized water and 15 ml of H₂O₂ (30%) was carried out. This resulted in the reduction of permanganate and manganese dioxide, as indicated by the observable colour change from caramel brown to a greenish-yellow solution. The solution was allowed to reach room temperature and subsequently subjected to a washing step involving the addition of an extra 25 ml of a 9:1 mixture of deionized water and HCl acid. This washing process aimed to eliminate metal ions present in the solution. The mixture was then subjected to centrifugation at a speed of 5000 rpm for 30 minutes at room temperature. The washing step was repeated multiple times using deionized water to thoroughly remove any residual acid. The pH of the solution was monitored continuously, and the washing process was terminated once the solution reached a neutral pH.

Synthesis of Pd@CN

To prepare the Pd NPs supported on graphitic carbon nitride (g- C_3N_4), 600 mg of CN was combined with 100 ml of ethanol and stirred for 30 minutes to ensure uniform dispersion. Subsequently, the suspension was subjected to sonication for 3 h to promote the proper mixing and dispersion of the CN particles. During this time, the required amount of PdCl₂ was dissolved in 10 ml of ethanol, creating a PdCl₂ solution. After completing the sonication process, the PdCl₂ solution was added dropwise to the CN suspension under continuous stirring. The addition of the PdCl₂ solution facilitated the deposition of Pd species onto the CN surface. Once the addition of the PdCl₂ solution was completed, the ethanol in the mixture was evaporated at a temperature of 80 °C, promoting the removal of the solvent. The resulting material obtained from this process exhibited a greyish appearance. This greyish material was then finely powdered using a mortar and pestle to ensure a uniform and homogeneous sample. Subsequently, the finely powdered material was transferred into a boat-type crucible. The crucible containing the material was subjected to heat treatment at 300 °C for 3 h in a gas mixture of 5% H₂ (hydrogen) and 95% Ar (argon) atmosphere. The heat treatment was performed in a tube furnace, which provided a controlled and uniform heating environment. The resulting material obtained from this process is designated as x% Pd@CN, where x% represents the percentage of Pd nanoparticles incorporated within the material. The amount of PdCl₂ taken for x% Pd is x × (molar mass of PdCl₂/ molar mass of Pd) × 600.

Synthesis of Pd@CN/rGO/BMO

In the experimental procedure, an initial mixture was prepared by combining 200 mg of BMO with 25 ml of ethanol. Subsequently, specific quantities of Pd@CN (200 mg, 300 mg, 400 mg, and 500 mg) were added to the mixture. 2 wt% of graphene oxide (GO) was introduced into the mixture. The components were thoroughly mixed through stirring for a minimum of 30 minutes. Following the stirring process, the resulting suspension underwent a sonication step for 4 h. Sonication was employed to achieve a uniform dispersion of all particles within the mixture, facilitating the breakup of aggregates and ensuring homogeneous distribution of the materials. The suspension, after sonication, was transferred to an autoclave for a solvothermal treatment at 120 °C. The solvothermal process lasted for 8 h, during which the GO was successfully reduced to reduced graphene oxide (rGO) over the heterojunction of CN and BMO. The solvothermal conditions, including the controlled temperature and duration, enabled the desired reduction process and the formation of the composite structure. Subsequent to the solvothermal treatment, the solvent remaining in the suspension was evaporated by stirring the mixture at 60 °C. The resulting material was then subjected to thorough washing with water and ethanol to eliminate any impurities or residues, ensuring the purification of the composite material. After the washing procedure, the obtained material was dried in a vacuum oven at a temperature of 50 °C for an extended period, typically overnight. This prolonged drying process facilitated the complete removal of any residual solvents, resulting in a stable and dry composite material. The resulting composite material was denoted as x%Pd@CN/rGO/BMO(y:1), where x represents the wt % of Pd incorporated within the composite, and y signifies the composition ratio of the heterojunction.

Catalyst characterization

Powder X-ray diffraction (XRD) patterns were recorded on a Rigaku Miniflex III diffractometer (30 kV and 10 mA) with Cu Ka radiation. Nitrogen-sorption measurements were performed at -200 °C by Bellsorp-MiniX, volumetric adsorption analyzer, to determine the textural properties of the catalyst. Degassing was conducted at 200 °C for 3 h in the degassing port of the adsorption apparatus. Brunauer-Emmett-Teller (BET) equation was used to calculate the surface area of the material from the adsorption data points obtained for P/P0 between 0.05-0.3, and the pore diameter was estimated using the Barret-Joyner-Halenda (BJH) model. Scanning electron microscopy (SEM) measurements were carried out on a Joel instrument at an accelerating voltage of 10 kV to explore the morphology. (TEM) was obtained for an in-depth study of material on (M/s JEOL JSM 2100) instrument operating at 200 kV. The surface composition of the catalyst was investigated by the Thermofisher scientific 'Nexsa Base' X-Ray Photoelectron Spectroscopy (XPS) instrument. The XPS, VB-XPS and UPS were conducted using the Thermofisher scientific 'Nexsa Base' X-Ray Photoelectron Spectroscopy (XPS) instrument. TGA/DSC 1 STARe SYSTEM from Mettler Toledo instrument with a temperature increment of 10 °C min-1 under a nitrogen atmosphere from 27 °C to 600 °C was utilized for TGA analysis. UV-DRS study of all catalysts was performed on a UV-visible spectrophotometer of Shimadzu (UV-2600) using BaSO₄ as standard reference material. The liquid UV analysis was also conducted using a UV-visible spectrophotometer of Shimadzu (UV-2600). The fluorescence decay time was evaluated using the TCSPC instrument of DeltaFlex TCSPC Lifetime Fluorimeter.

Catalytic reaction procedure

Selective hydrogenolysis of (α-O-4 linkage) benzyl phenyl ether (BPE)

The selective hydrogenolysis of BPE was conducted in a homemade photoreactor using a 150 W LED (Fig. S1). The reactor was charged with 0.1 mmol of BPE, 20 mg catalyst, and 5 mL solvent, followed by H_2 purging thrice. Finally, the reactor was filled with 2 bar H_2 , and the reaction was conducted for varied reaction intervals. The BPE conversion and product selectivity were determined using gas chromatography.

Selective hydrogenolysis of (β-O-4 linkage) 2-phenoxy-1-phenylethanol (PPE)

The selective hydrogenolysis of PPE was conducted in the presence of 150 W LED (Fig. S1). The reactor was charged with 0.1 mmol of PPE, 20 mg catalyst, and 5 mL solvent, followed by H_2 purging thrice. Finally, the reactor was filled with 2 bar H_2 , and the reaction was conducted for varied reaction intervals. The BPE conversion and product selectivity were determined using gas chromatography. The hydrogenolysis of PPEOH was conducted in similar way.

Selective hydrogenolysis of (4-O-5 linkage) diphenyl ether (DPE)

The selective hydrogenolysis of BPE was conducted in a homemade photoreactor using a 150 W LED (Fig. S1). The reactor was charged with 0.1 mmol of BPE, 20 mg catalyst, and 5 mL solvent, followed by H_2 purging thrice. Finally, the reactor was filled with 5 bar H_2 , and the reaction was conducted for varied reaction intervals. The DPE conversion and product selectivity were determined using gas chromatography.

Selective hydrogenolysis of lignin bio-oil

The selective hydrogenolysis of lignin bio-oil was executed in a custom-built photoreactor equipped with a 150 W LED light source (Fig. S1). The reactor was loaded with 100 μ l of simulated lignin bio-oil, 20 mg of catalyst, and 5 mL of solvent, with subsequent purging using hydrogen (H₂) three times. Subsequently, the reactor was pressurized with 5 bars of hydrogen, and the reaction was carried out for varying durations. The conversion and the selectivity of the resulting products were determined through gas chromatography.

The conversion and product selectivity were monitored by gas chromatography (GC, Yonglin 6100; BP-5; $30 \text{ m} \times 0.25 \text{ mm} \times 0.25 \text{ mm}$) using the following equations.

$$\frac{Moles \ of \ substrate \ reacted}{Substrate \ conversion} (\%) = \frac{Moles \ of \ substrate \ reacted}{Initial \ moles \ of \ substrate} \times 100$$
(S1)
Product selectivity (\%) =
$$\frac{Moles \ of \ specific \ product \ formed}{Moles \ of \ substrate \ converted} \times 100$$
(S2)

The reactant conversion and product selectivity were determined by calculating the response factor obtained from the GC calibration using a standard addition method. The standards containing a fixed concentration of n-decane with different concentrations of reactants were prepared in IPA for the reactions conducted in photochemical conditions. Solutions were injected in GC (triplicate injection), and the areas were recorded. After the analysis, the calibration curve was plotted with concentration (g/L) *vs* peak area, and the reactant conversion and its corresponding product selectivity were determined using the below expression.

$$\frac{Area(x)}{[x]} = F \times \frac{Area(s)}{[s]}$$
(S3)

Where F is the response factor, Area(x) and Area(s) are areas under the peaks for analyte and n-decane, respectively. [x] and [s] are the concentrations of analyte and n-decane, respectively.

Products were also confirmed using GC-MS (Shimadzu GCMS-QP 2010 Ultra; Rtx-5 Sil Ms; $30 \text{ m} \times 0.25 \text{ mm} \times 0.25 \text{ µm}$) (Fig. S3-S8). The injector and detector temperature were set at 290 °C. GC column oven temperature was programmed as follows: Initial temperature = 40 °C, hold time = 5 min followed by temperature ramping to a final temperature of 280 °C with a ramp rate of 5 °C/min. 0.2 µL of the sample was injected for the analysis.

Lignin extraction from Teak wood

Five grams of teak wood sawdust were added to a 250 mL round-bottom flask equipped with a magnetic stir bar. 40 mL IPA, 10 mL of water, and 1 mL of 37% (12 M) HCl were added to the flask. The setup was then attached to a reflux condenser, and the mixture was heated and stirred at 80 °C (oil bath temperature) for 7 h. After cooling to room temperature, the resulting solid was isolated by filtration. The filtrate was concentrated using rotary evaporation. The resulting solid was then dissolved in a minimal volume of acetone, and lignin was precipitated by adding 300 mL of water. The water was removed, and the resulting precipitate was washed with saturated aqueous Na₂SO₄ to aid flocculation. It was followed by further washing with deionized water at least five times. Finally, the product was dried overnight in a vacuum oven.

Photocatalytic hydrogenolysis of native lignin

The lignin was not completely soluble in the alcoholic solvent. The thermolytic solvolysis technique was used to render the lignin soluble in an alcoholic solvent, and according to the literature, methanol (MeOH) has the best efficiency in the thermolytic solvolysis of lignin.^{S1}

Therefore, 300 mg of extracted lignin was mixed with 10 ml of MeOH and treated at 180 °C for 2 h in 10 bar N_2 pressure using a Parr pressure reactor. After the treatment, 78% of the lignin became soluble in methanol. The insoluble residue was removed through filtration. For comparison purpose the GC MS of resulted lignin solution was taken. For comparison purposes, the GC-MS of the resulted lignin solution was taken. The lignin solution was then subjected to treatment under a 150 W LED light source in the presence of 50 mg of photocatalyst. The reaction was carried out under 5 bar H2 pressure for 24 hours. After the reaction, the catalyst was removed from the reaction mixture through centrifugation. The obtained reaction mixture was again analysed by GC-MS and compared with the initial GC-MS spectrum to assess the reaction progress (Fig. S23).

Apparent Quantum Yield (\$\$) Calculation

The quantum yield of the reaction was calculated using eq S7, which gives the ratio between the electron involved in the reaction and the molar flow of photons introduced into the reactor. The apparent wavelength (λ) of photons was estimated from the band gap of the catalyst, determined from Tauc plots. The quantum yield calculated in this manner was not the exact value but served as a reference to compare the photo efficiency of photocatalytic system.

Apparent Quantum Yield (
$$\phi$$
) = $\frac{Number of reacted electron \times 100}{Number of incident photon}$

(S4)

Number of reacted electron = Reactant conversion
$$(mol^{-1}) \times N_A(mol)$$
 (S5)

Number of incident photon =
$$\frac{\text{Light intensity } (Wm^{-2}) \times \text{Area } (m^2) \times \text{Time } (s)}{\frac{h (Js) c (ms^{-1})}{\lambda (m)}}$$

(S6)

$$\phi = \frac{Reactant\ conversion\ (mol^{-1})\ \times\ N_A\ (mol)\ \times\ h\ (Js)c\ (ms^{-1})\ \times\ 100}{Light\ intensity\ (Js^{-1}m^{-2})\ \times\ Area\ (m^2)\ \times\ Time\ (s)\ \times\ \lambda\ (m)}$$
(S7)

Photoelectrochemical measurement

photoelectrochemical analyses were performed with PGSTAT302N Autolab The electrochemical workstation using standard three-electrode grouping in Pyrex cell with a 0.5 M aqueous sodium sulfate solution as electrolyte. The coated photocatalyst acts as a photoanode (working electrode), Pt wire electrode as a counter electrode, and Ag/AgCl as a reference electrode. Photoanode was prepared by coating photocatalyst on glass slides containing fluorine-doped tin oxide (FTO), cleaned with acetone, rinsed with DI water, and oven-dried before use. The catalyst was coated over the FTO surface using the drop-casting method. To make a binder solution, 1.5 ml of ethanol was mixed with 1 ml of water and 40 µl of Nafion. 20 mg of the photocatalyst was added to the binder solution and sonicated for 10 min. The binder solution was cast dropwise over the glass surface using a dropper and hotplate with a temperature of 50 °C. The electrochemical impedance measurement was conducted in the frequency range of 1 MHz to 1 Hz using a sinusoidal AC perturbation signal of 5 mV. Mott-Schottky experiment was conducted at 1000 Hz constant frequency in dark conditions. LSV and transient photocurrent measurements were carried out under dark and illumination conditions using a 300 W Xenon arc lamp (Newport-R22) with a cut-off filter (λ > 420 nm and intensity of 100 mW.cm⁻²).

Tauc plot for band gap calculations

The equation $((\alpha h\nu)^{1/r} = \beta(h\nu - E_g))$ was utilized to determine the band gap. The value of r is contingent on the transition nature, where $r = \frac{1}{2}$ is appropriate for direct and r = 2 signifies indirect transitions. The $(\alpha h\nu)^{1/r}$ vs. (hv) plots with $r = \frac{1}{2}$, enabling estimation of the band-gap for direct allowed transitions by straight line extrapolation in the case of CN and BMO.

Time-Correlated Single Photon Counting calculations

The data analysis employed double-exponential fitting to determine the average lifetimes and

n

$$y = y_{\circ} + \sum_{i=1}^{n} \alpha_i e^{-\frac{\tau}{\tau_i}}$$
). To calculate

their percentage contributions, employing the equation (

$$\langle \tau \rangle = \frac{\sum_{i=1}^{n} \alpha_i \tau_i^2}{\sum_{i=1}^{n} \alpha_i \tau_i}$$
 was utilised, and $\sum \alpha_i$ was normalised to 1.

the average decay time, $\langle \tau \rangle$, the

Mott-Schottky analysis calculations

This method involved the relation $1/C^2 = 2 [V-V_{fb}-(k_bT/e)]/(\epsilon\epsilon_0eA2N_d)$. Plots of $1/C^2$ vs. applied potential were constructed. All the materials possess a positive slope, indicating their n-type semiconducting behaviour. The MS plots' x-intercepts yielded the flat-band position (E_{fb}) (Fig. 5f). In n-type semiconductors, the E_{fb} lies below to conduction band (CB) edge. The E_{fb} values were used to determine the position of the CB edge (E_{CB}) through the relation $E_{CB} = E_{fb} - 0.1$ V. Potential values were standardized using the equation ($E_{NHE} = E_{Ag/AgCl} + 0.196$), and Table S3 presents the calculated E_{CB} vs. NHE values for all the material. Finally, the valence band positions (E_{VB}) were obtained by applying the relation $E_{VB} = E_{CB} + E_g$, where E_{CB} represents the conduction band potential and E_g is the band gap.

Nitro blue tetrazolium (NBT) test

10 mL of 2.5×10^{-5} M aqueous solution of NBT was mixed with the 5 mg of the catalyst. The mixture was illuminated with light under continuous stirring. After 10 min, the catalyst was separated from the solution using a centrifuge. The solution was monitored using a UV-visible spectrophotometer, and its absorbance for NBT was compared with the neat stock solution. A decreased absorbance peak of NBT after light illumination confirms the capability of the photocatalyst for generating O_2^{-1} .

Terephthalic acid (THA) test

The 5×10^{-3} M aqueous solution of THA was prepared with a small amount of NaOH to make THA soluble in an aqueous medium. 20 mg of catalyst was mixed with the 20 ml of THA solution and exposed to light for 30 min. Then catalyst was separated from the solution using a centrifuge. The clear solution was monitored using a fluorescence spectrophotometer with an excitation wavelength of 330 nm. The emission peak at 425 nm confirms 2-hydroxyl terephthalic acid in the reaction mixture. The OH radicals react with THA (non-fluorescent) and convert it into 2-hydroxyl terephthalic acid (fluorescent). The emission peak of the reaction mixture was compared with the stock solution.

S.N.			Wt %								
	Catalyst	Pd	Bi	Мо	С	N	0				
1	0.5%Pd@CN/rGO/BMO(2:1)	0.4	32.2	6.3	16.3	38.8	6.0				
2	1%Pd@CN/rGO/BMO(2:1)	1.2	31.8	6.0	16.1	38.4	6.5				
3	3%Pd@CN/rGO/BMO(2:1)	2.3	31.7	5.9	15.8	38.5	5.8				
4	5%Pd@CN/rGO/BMO(2:1)	4.8	31.1	5.5	15.3	38.2	5.1				

Table S1. Surface elemental composition, determined from EDX analysis.

S.N.	Catalyst	$S_{BET}(m^2g^{-1})$	Total pore vol. (cm ³ g ⁻¹)
1	BMO	24	0.50
2	CN	43	0.28
3	0.5%Pd@CN	61	0.26
4	CN/rGO/BMO(2:1)	38	0.24
5	0.5%Pd@CN/rGO/BMO(2:1)	51	0.23
6	1%Pd@CN/rGO/BMO(2:1)	53	0.21
7	3%Pd@CN/rGO/BMO(2:1)	59	0.19
8	5%Pd@CN/rGO/BMO(2:1)	60	0.17

Table S2. Textural properties of the photocatalysts of this study.

 S_{BET} = BET Surface area, TPV= Total pore volume.

S.N.			Surface Atomic (%)							
	Catalyst	Pd (283.9 eV)	Bi (160 eV)	Mo (240 eV)	C (286.9 eV)	N (398.3 eV)	O (531.0 eV)			
1	0.5%Pd@CN/rGO/BMO(1:2)	0.14	1.3	1.02	41.32	47.43	8.79			
2	1%Pd@CN/rGO/BMO(1:2)	0.30	1.23	0.96	41.56	46.32	9.63			
3	3%Pd@CN/rGO/BMO(1:2)	0.83	1.17	0.66	41.43	45.87	10.04			
4	5%Pd@CN/rGO/BMO(1:2)	1.47	1.38	0.98	41.19	45.05	9.93			

 Table S3. Surface elemental composition, determined from XPS analysis.

Entry	Catalyst	Band gap
1	ВМО	2.64
2	CN	2.76
4	CN/rGO/BMO(2:1)	2.72
5	0.5%Pd@CN/rGO/BMO(2:1)	2.79
6	1%Pd@CN/rGO/BMO(2:1)	2.80
7	3%Pd@CN/rGO/BMO(2:1)	2.83
8	5%Pd@CN/rGO/BMO(2:1)	2.84

Table S4. Band gap of the synthesized catalysts calculated from tauc plot.

 Table S5 Best fitted parameters of multiexponential components for decay curve.

			Pre-						F	raction	al
	Catalyst	exponential		De	contribution						
Entry		functions							(%)		
		α ₁	α2	α ₃	$ au_1$	τ2	τ_3	$\langle \tau \rangle$	f_1	f ₂	f_3
1	CN	40	17	43	1.9812	4.3654	0.2025	2.98	48.9	45.8	5.3
2	ВМО	37	16	47	2.0253	5.4842	0.9552	3.26	36.1	42.3	21.6
3	CN/rGO/BMO(2:1)	43	15	42	2.1253	6.1235	0.5263	3.74	44.5	44.7	10.8
4	3%Pd@CN/rGO/BMO(2:1)	45	20	35	2.1285	6.2934	0.5619	4.17	39.7	52.2	8.1

 Table S6 AQY for photocatalytic BPE hydrogenolysis.

.		-	Conv.	Pr	oduct Sel	lectivity (%)	AQY
Entry	Catalyst	Time	(%)	TOL	PhOH	СуОН	СуН	
1	CN	3h	1.0	52.3	47.7	-	-	2 × 10 ⁻³
2	ВМО	3h	3.0	52.1	47.9	-	-	7 × 10 ⁻³
3	0.5%Pd@CN	3h	38.6	51.5	48.5	-	-	86 × 10 ⁻³
4	0.5%Ru@CN	3h	24.3	52.3	47.7	-		54 × 10 ⁻³
5	0.5%Ni@CN	3h	3.8	53.1	46.9	-	-	8 × 10 ⁻³
6	0.5%Co@CN	3h	2.3	52.8	47.2	-	-	5 × 10 ⁻³
7	0.5%Pd@CN/rGO/BMO(1:1)	3h	64.6	51.8	48.2	-	-	142 × 10 ⁻³
8	0.5%Pd@CN/rGO/BMO(1.5:1)	3h	72.6	53.0	47.0	-	-	159 × 10 ⁻³
9	0.5%Pd@CN/rGO/BMO(2:1)	3h	78.3	50.8	49.2	-	-	172 × 10 ⁻³

10	0.5%Pd@CN/rGO/BMO(2.5:1)	3h	67.1	51.1	48.9	-	-	147 × 10 ⁻³
11	CN/rGO/BMO(2:1)	3h	6.0	51.3	48.7	-	-	12 × 10 ⁻³
12	1%Pd@CN/rGO/BMO(2:1)	3h	92.3	51.7	48.3			209 × 10 ⁻³
13	3%Pd@CN/rGO/BMO(2:1)	3h	~100	51.2	44.1	4.7		219 × 10 ⁻³
14	3%Pd@CN/rGO/BMO(2:1)	6h	~100	50.7	15.0	12.0	22.3	110 × 10-3
15	3%Pd@CN/rGO/BMO(2:1)	16h	~100	51.5	-	-	48.5	41 × 10 ⁻³

Reaction conditions: light source (150 W LED), photocatalyst (20 mg), reactant (0.1 mmol), IPA (5 ml)), H₂ (2 bar). AQY was calculated using Equation S4-S7 (SI).

Substrate	Catalyst	Time	Conv. (%)	Product Selectivity	Product Selectivity	AQY
				ECH (100%)		52 × 10 ⁻³
EB	3%Pd@CN/rGO/BMO(2:1)	12h	95 %	\bigcirc		
			100	СуОН (57%)	СуН (43 %)	111 × 10-3
он PhOH	3%Pd@CN/rGO/BMO(2:1)	6h	~100 %	ОН	\bigcirc	
ОН			100	СуН (100 %)		65 × 10 ⁻³
СуОН	3%Pd@CN/rGO/BMO(2:1)	10h	~100 %	\bigcirc	-	
				PEA (15 %)	STY (3 %)	106×10^{-3}
o AcPh	3%Pd@CN/rGO/BMO(2:1)	6h	~97 %	OH		
				EB (75 %)	ECH (7 %)	
				STY (5 %)	EB (69 %)	110 × 10 ⁻³
ОН	2%₽d@CN/#GO/₽MO(3.1)	64	~100			
PEA	3%Pd@CN/rGO/BMO(2:1)	UII	%			

 Table S7 The photocatalytic hydrogenation for the various organic substrates.

	3%Pd@CN/rGO/BMO(2:1)	6h	100	EB (65 %)	ECH (35 %)	110 × 10 ⁻³
STY			%			
Н			~100	BnOH (42 %)	TOL (58)	164 × 10 ⁻³
ö BZAL	3%Pd@CN/rGO/BMO(2:1)	4 h	%	ОН		
	3%Pd@CN/rGO/BMO(2:1)	4 h	100	TOL (100%)		164 × 10 ⁻³
BnOH			~100			
		4.1	1.0/			-
TOL	3%Pa@UN/FGO/BMO(2:1)	4 n	~1 %0			
				MCY (100%)		4 × 10 ⁻³
TOL	3%Pd@CN/rGO/BMO(2:1)	16 h	9 %	\bigcirc		

Reaction conditions: Light source (150 W LED), photocatalyst (20 mg), reactant (0.1 mmol), IPA (5 ml)), H₂ (2 bar) AQY was calculated using Equation S4-S7 (SI).

 Table S8 AQY for photocatalytic PPE hydrogenolysis.

	Catalyst		Conv. (%)		AQY				
Entry	Catalyst	1 ime		EB	PhOH	ECH	СуОН	СуН	
1	0.5%Pd@CN/rGO/BMO(2:1)	16 h	80.2	51.8	48.2	-	-	-	32 × 10 ⁻³
2	0.5%Pd@CN/rGO/BMO(2:1)	24 h	100	52.5	47.5	-	-	-	27 × 10 ⁻³
3	1%Pd@CN/rGO/BMO(2:1)	16 h	95.8	50	48.4	0.5	1.1	-	39 × 10 ⁻³
4	1%Pd@CN/rGO/BMO(2:1)	24 h	100	48.2	46.2	2.1	3.5		27 × 10 ⁻³
5	3%Pd@CN/rGO/BMO(2:1)	16 h	100	32.4	22.0	18.5	20.8	6.3	41 × 10 ⁻³
6	3%Pd@CN/rGO/BMO(2:1)	24 h	100	25.6	11.6	25.7	19.5	17.6	27 × 10 ⁻³
7	5%Pd@CN/rGO/BMO(2:1)	16 h	100	11.7	7.6	40.3	12.9	27.5	41 × 10 ⁻³
8	5%Pd@CN/rGO/BMO(2:1)	24 h	100	-	-	50.9	6.5	42.6	27 × 10 ⁻³

Reaction conditions: Light source (150 W LED), photocatalyst (20 mg), reactant (0.1 mmol), IPA (5 ml)), H₂ (2 bar). AQY was calculated using Equation S4-S7 (SI).

 Table S9 AQY for photocatalytic PPEOH hydrogenolysis.

T (T .	Conv.	I	Product S	Selectiv			AQY		
Entry	Catalyst	Time	(%)	PEA	PhOH	STY	EB	ЕСН	СуОН	СуН	
1	0.5%Pd@CN/rGO/BMO(2:1)	12 h	69.8	25.2	48.2	4.5	22.1	-	-	-	38 × 10 ⁻³
2	0.5%Pd@CN/rGO/BMO(2:1)	16 h	78.9	16.5	49.9	2.5	31.1	-	-	-	32 × 10 ⁻³
3	1%Pd@CN/rGO/BMO(2:1)	12 h	88.7	14.6	49.5	3.2	32.7	-	-	-	48 × 10 ⁻³
4	1%Pd@CN/rGO/BMO(2:1)	16 h	98.5	5.6	42.3	1.3	44.6		6.3		40 × 10 ⁻³
5	3%Pd@CN/rGO/BMO(2:1)	12 h	100	3.2	26.2	0.9	35.3	11.6	21.6	1.2	55 × 10 ⁻³
6	3%Pd@CN/rGO/BMO(2:1)	16 h	100	0.8	12.5	0	31.9	18.5	26.5	9.8	41 × 10 ⁻³
7	5%Pd@CN/rGO/BMO(2:1)	12 h	100	-	8.5	-	24.2	26.5	18.2	22.6	55 × 10 ⁻³
8	5%Pd@CN/rGO/BMO(2:1)	16 h	100	-	-	-	11.2	39.6	14.6	34.6	41 × 10 ⁻³

Reaction conditions: light source (150 W LED), photocatalyst (20 mg), reactant (0.1 mmol), IPA (5 ml)), H₂ (2 bar). AQY was calculated using Equation S4-S7 (SI).

Table S10 AQY for photocatalytic DPE hydrogenolysis.

	Catalyst		Conv.	Pro	%)	AQY		
Entry		Time	(%)	СРЕ	DCE	СуОН	СуН	
1	0.5%Pd@CN/rGO/BMO(2:1)	16 h	4.6	5.6	15.2	37.4	41.8	2×10^{-3}
2	0.5%Pd@CN/rGO/BMO(2:1)	24 h	7.0	4.8	14.3	36.1	44.8	2 × 10 ⁻³
3	1%Pd@CN/rGO/BMO(2:1)	16 h	17.5	4.2	13.1	35.5	47.2	7 × 10 ⁻³
4	1%Pd@CN/rGO/BMO(2:1)	24 h	22.3	3.6	11.5	33.2	51.7	6 × 10 ⁻³
5	3%Pd@CN/rGO/BMO(2:1)	16 h	36.7	3.1	10.2	30.1	56.6	15 × 10 ⁻³
6	3%Pd@CN/rGO/BMO(2:1)	24 h	49.3	1.9	7.2	21.6	69.3	13 × 10 ⁻³
7	5%Pd@CN/rGO/BMO(2:1)	16 h	57.2	1.8	6.1	20	72.1	23 × 10 ⁻³
8	5%Pd@CN/rGO/BMO(2:1)	24 h	74.6		2.0	4.6	93.4	20 × 10 ⁻³

Reaction conditions: light source (150 W LED), photocatalyst (20 mg), reactant (0.1 mmol), IPA (5 ml)), H₂ (5 bar). AQY was calculated using Equation S4-S7 (SI).

Table S11 Comparative catalytic activity for photocatalytic cleavage of α -O-4 linkage in lignin modal compounds.

S. N.	Catalyst	Reaction Condition	Conver	Selectivity(S)/Yiel		d(Y) (%)	AQY	Ref.
			sion	Arom	natic	Aliphatic]	
			(%)	TOL	PhOH	СуН		
1	2.5Au-	Photocatalyst (20 mg), BPE	98	~50(S)	~50(S)	-	-	S2
	ASN-Ni ²⁺	(0.05 mmol), KOH (0.15						
		mmol), and 2 mL (IPA) as						
		solvent, argon atmosphere.						
		halogen lampand the reaction						
		was conducted at 90°C						
2	TiN NPs	20 mg of TiN NPs as the	11	~50(S)	~50(S)	-	-	S3
		photocatalyst, 0.05 mmol of						
		reactant, 0.15 mmol of KOH, 2						
		mL of isopropanol as the						
		solvent, reaction temperature of						
		100 °C, visible light intensity of						
		0.5 W/cm2, reaction time of 14						
		h, and 1 atm of argon						
		atmosphere.						
4	1%Pd@CN	Photocatalyst (20 mg), BPE	92.3	51.7(S)	48.3(S	-	0.20	This
	/rGO/BMO	(0.1 m mol mg), IPA (5 mL),)			Study
	(2:1)	H_2 (2 bar), and 150 W LEDs,						
		time 3h.						
5	3%Pd@CN	Photocatalyst (20 mg), PPEOL	100		51.5(S	48.5(S)	0.04	This
	/rGO/BMO	(0.1 m mol mg), IPA (5 mL),)			Study
	(2:1)	H_2 (2 bar), and 150 W LEDs,						
		time 16h.						

Table S12 Comparative catalytic activity for photocatalytic cleavage of β -O-4 linkage in lignin modal compounds.

S. N.	Catalyst	Reaction Condition	Conv	Selectivity(S)/Yield(Y) (%)					AQY	Ref.
			ersio		Aromati	c	Alip	hatic		
			n	PhO	EB	AP	ECH	CyH	-	
			(%)	Н						
1	$Zn_4In_2S_7$	Photocatalyst (10 mg), PPEOL	100	82 (Y)	-	86(Y)	-	-	0.000	S4
		(0.10 mmol), CH ₃ CN/H ₂ O (5.0							4	
		mL, 1:1 v/v), N ₂ atmosphere, 4								
		h, Xe lamp (λ=400–780 nm),								
2	ZnIn ₂ S ₄	Photocatalyst (5 mg), PPEOL	>99	90(Y)	-	83(Y)	-	-	-	S5
		(0.10 mmol), 1.0 mL of								
		CH ₃ CN, 9.6 W blue LEDs (455								
		nm), 42 °C, 4 h.								
3	ZnIn ₂ S ₄	Photocatalyst (10 mg), PPEOL	100	93.7(-	91.9(Y)	-	-	-	S6
		(10 mg), (CH_3CN) :		Y)						
		H2O = $2:3$), visible light								
		irradiation (0.35 W/cm^2) ,								
		Room temperature (20–25 °C),								
		90 min.								
4	TiN NPs	Photocatalyst (20 mg), PPEOL	82.0	49(S)	50	-	-	-	0.015	S3
		(0.05 mmol), 0.15 mmol of			(styren					
		KOH, 2 mL of isopropanol as			e)(S)					
		the solvent, reaction								
		temperature of 100 °C, visible								
		light intensity of 0.5 W/cm ² ,								
		reaction time of 14 h, and 1 atm								
5	210	of argon atmosphere.	00.8	91.70(74 (5)				87
5	Cas	0.01 g of photocatalyst, 3 mL	99.8	81./9(/4.65(V)	-	-	-	5/
		blue lower (455 nm) N		(Y)		Y)				
		blue lamps (455 nm) , N ₂								
6	Ni/CdS	Photocatalyst (20 mg) PPEOL	100	~100(~100(V				58
0	NI/Cu5	(5 mmol) in 10 mI of	100	×100(V))00100	-	-	-	50
		CH3CN/0.1 N KOH at room		1)		,				
		temperature time 3h irradiated								
		under royal blue light ($\lambda =$								
		440-460 nm								
8		Photocatalyst (5 mg), PPEOL	~100	~85(Y	_	~75(Y)	_	_	_	S9
Ű		(10 mg), and 2 mL of solvent	100			, (1)				~ ~
	CdS-	(1.6 mL of acetonitrile and 0.4								
	C ₂ N ₄	mL of H_2O) were added into a								
	0 32 4	quartz tube (20 mL),								
		respectively, purged with Ar.								
		After illumination with 50 W,								
		455 nm for 1.5 h.								
9	Ag ₂ S(2%)	Photocatalyst (1 mg), PPEOL	100	~88(Y		~76(Y)				S10
)@CdS	(10 mg), CH ₃ CN (1.0 mL), Ar)						
		(1 atm), and 6 W blue LEDs.								
10		0.1 mmol of model compound,	63.21	49.74		23.71(-	-	-	S11
		0.01 g of photocatalyst ZCS-		(Y)		Y)				
	Cd _x Zn ₁₋	70, 5 mL of CH ₃ CN except								
	xS	entry 6, 300 W Xe-lamp, 17-								
		23 °C, illumination for 2 h.								

10	CICOCI	0.01 mm $1/L$ of DD 1.10 mm	00	70(1/2)		$(f(\mathbf{V}))$				012
12			~ 90	/0(Y)		03(1)				512
	_x Zn ₁₋	of CdS@CdxZn1-xS@ZnS								
	_x S@ZnS	QDs photocatalyst, 0.1								
	Gradient	mmol/L of acid, 10 mL of								
	Alloyed	solvent MeCN, blue LED								
	QDs	irradiation (10 W), room								
		temperature, N2 atmosphere.								
13	1%Pd@	Photocatalyst (20 mg), PPE	95.8	49.5(S	50.5(S)	-	-	-	0.04	Thi
	CN/rGO/	(0.1 m mol mg), IPA (5 mL),)						s
	BMO(2:	H_2 (2 bar), and 150 W LEDs,								Stu
	1)	time 16h.								dy
1.4			100				50.0(10 ((0.02	
14	5%Pd@	Photocatalyst (20 mg), PPE	100	-	-	-	50.9(42.6(0.03	Ini
	CN/rGO/	(0.1 m mol mg), IPA (5 mL),					5)	S)		S
	BMO(2:	H_2 (2 bar), and 150 W LEDs,								Stu
	1)	time 24h.								dy
15	1%Pd@	Photocatalyst (20 mg), PPEOL	98.5	42.3(S	44.6(S)	-	-	-	0.04	Thi
	CN/rGO/	(0.1 m mol mg), IPA (5 mL),)						s
	BMO(2:	H_2 (2 bar), and 150 W LEDs,								Stu
	1)	time 16h.								dv
16	50/Dd@	Dhotoostalyst (20 mg) DDEOL	100		11.2(8)		20.6(24.6(0.04	
10	5%	(0.1 m mal ma) IBA (5 mL)	100		11.2(3)		59.0(54.0(S)	0.04	1 111
		(0.1 m mor mg), IPA (5 mL),					رد	5)		s
	BMO(2:	H_2 (2 bar), and 150 W LEDS,								Stu
	1)	time 16h.								dy

Fig. S1. The digital image of photocatalytic reactor and reaction setup for the photocatalytic hydrogenolysis performed in room temperature using 150 W cool white LED (intensity = 1210 W/m^2).

Fig. S2. The digital image of Büchi pressure reactor and reaction setup for the thermal hydrogenolysis of BPE.

Fig. S3. GC-MS chromatograph for reaction mixture of BPE. (Reaction conditions -light source (150 W LED), photocatalyst 3%Pd@CN/rGO/BMO(2:1) (20 mg), reactant (0.1 mmol), IPA (5 ml)), H₂ (2 bar) time (0.5 h)).

Fig. S4. GC-MS chromatograph for reaction mixture of BPE. (Reaction conditions -light source (150 W LED), photocatalyst 3%Pd@CN/rGO/BMO(2:1) (20 mg), reactant (0.1 mmol), IPA (5 ml)), H₂ (2 bar) time (5 h)).

Fig. S5. GC-MS chromatograph for reaction mixture of PPE. (Reaction conditions -light source (150 W LED), photocatalyst 1%Pd@CN/rGO/BMO(2:1) (20 mg), reactant (0.1 mmol), IPA (5 ml)), H₂ (2 bar) time (10 h)).

Fig. S6. GC-MS chromatograph for reaction mixture of PPE. (Reaction conditions -light source (150 W LED), photocatalyst 3%Pd@CN/rGO/BMO(2:1) (20 mg), reactant (0.1 mmol), IPA (5 ml)), H₂ (2 bar) time (20 h)).

Fig. S7. GC-MS chromatograph for reaction mixture of DPE. (Reaction conditions -light source (150 W LED), photocatalyst 3%Pd@CN/rGO/BMO(2:1) (20 mg), reactant (0.1 mmol), IPA (5 ml)), H₂ (5 bar) time (15 h)).

Fig. S8. GC-MS chromatograph for reaction mixture of photocatalytic hydrogenolysis of simulated lignin bio-oil. (Reaction conditions -light source (150 W LED), photocatalyst

Fig. S9: GC chromatogram of the reaction mixture of BPE hydrogenolysis demonstrating the formation of acetone in the reaction. (Reaction conditions -light source (150 W LED),

photocatalyst 3%Pd@CN/rGO/BMO(2:1) (20 mg), reactant (0.1 mmol), IPA (5 ml)), H₂ (2 bar) time (3h).

Fig. S10. (a) FTIR spectra of CN, GO, BMO, and the composite with various combinations of CN and BMO, and (b) & (c) Zoomed spectra clearly showing the characteristic peak of CN (* and &) and BMO (#).

Fig. S11. SEM images of (a)-(b) BMO, (c)-(d) CN, (e) GO, and (f)-(g) CN/rGO/BMO.

Fig. S12. Pd nanoparticles size distribution obtained from HR-TEM images of 3%Pd@CN/rGO/BMO(2:1).

Fig. S13. Thermograms of the CN, BMO, CN/rGO/BMO(2:1), 3%Pd@CN/rGO/BMO(2:1) performed in N₂ gas.

Fig. S14. N₂-adsorption/desorption isotherms of (a) BMO, CN, 0.5%Pd@CN and CN/rGO/BMO(2:1), and (b) 0.5%Pd@CN/rGO/BMO(2:1), 1%Pd@CN/rGO/BMO(2:1), 3%Pd@CN/rGO/BMO(2:1), and 5%Pd@CN/rGO/BMO(2:1).

Fig. S15. XPS survey spectra of the photocatalysts (CN, BMO, and 3%Pd@CN/rGO/BMO(2:1)).

Fig. S16. Tauc plots (a-e) of synthesized photocatalysts.

Fig. S17. LSV spectra of photocatalyst in dark and light for (a) BMO, (b) CN, (c) CN/rGO/BMO(2:1) composites, and (d) 5%Pd@CN/rGO/BMO(2:1).

Fig. S18. UPS spectra of (a) CN/rGO/BMO, (b) 0.5%Pd@CN/rGO/BMO, and, (c) 5%Pd@CN/rGO/BMO.

Fig. S19. BPE hydrogenolysis (a) catalyst with different metal NPs over CN (b) 0.5 % Pd over different variation of heterojunction (d) with individual component (CN, BMO, and CN/rGO/BMO) of heterojunction 3%Pd@CN/rGO/BMO. (Reaction conditions: light source (150 W LED), catalyst amount (20 mg), BPE (0.1 mmol)), H₂ (2 bar), time 3h, and IPA (5 ml).

Fig. S20. Spectral response of 3%Pd@CN/rGO/BMO in different LEDs. (Reaction conditions: substrate (0.1 mmol), catalyst amount (20 mg), IPA (5 mL), 9W LEDs, room temperature, H₂ (2 bar), time (6 h).

Fig. S21. PPEOL hydrogenolysis was conducted with different catalyst and time intervals. (Reaction conditions: light source (150 W LED), catalyst amount (20 mg), PPEOL (0.1 mmol)), H_2 (2 bar), and IPA (5 ml).

Fig. S22 (a) XRD pattern of extracted lignin, and (b) FTIR spectrum of extracted lignin.

In the extracted lignin, no impurity peaks corresponding to the cellulosic part (~19.8°, ~22.5° for crystalline, and ~16.0°, ~18.0° for amorphous) were observed.^{S13,S14} Analysis of the XRD patterns revealed the complete disappearance of cellulose peaks, providing definitive evidence for the purity of the extracted lignin.^{S15}

The FT-IR spectra were analyzed to identify the functional groups in the extracted lignin. Based on previous literature,^{S16–S18} the main peaks of lignin in FT-IR spectra were assigned. The broad peak at 3435 cm⁻¹ is assigned to the stretching vibrations of O–H groups. The peaks at 2918 cm⁻¹ and 2850 cm⁻¹ are assigned to the anti-symmetric stretching and stretching in methylene groups, respectively. The peaks at 1730 cm⁻¹ to 1710 cm⁻¹ are attributed to the C=O stretching vibration of unconjugated carbonyl groups, and the peaks at 1605 cm⁻¹, 1507 cm⁻¹, and 1423 cm⁻¹ are attributed to characteristic vibrations from aromatic rings. The spectra of all lignin samples showed vibrations characteristic of the guaiacyl unit (1267 cm⁻¹, G ring and C=O

stretch; 1130 cm⁻¹, CH in-plane deformation; 853 and 819 cm⁻¹, C–H out-of-plane vibrations in positions 2, 5, and 6 of guaiacyl units), but the intensity of the bands varied significantly between samples. Moreover, lignin showed a band at 1326 cm⁻¹, which is characteristic of syringyl (S) ring plus guaiacyl (G) ring condensed, and the vibration at 843 cm⁻¹, which arises from the C–H out-of-plane in positions 2 and 6 of S units. A weak band at 1371cm⁻¹ originated from phenolic OH and aliphatic C–H in methyl groups, and a strong vibration at 1209 cm⁻¹ could be associated with C–C plus C–O plus C=O stretching. The aromatic C–H deformation at 1032 cm⁻¹ appeared as a complex vibration associated with the C–O, C–C stretching, and C– OH bending in polysaccharides.

Fig. S23 GC-MS chromatograph of lignin-MeOH solution before and after photocatalysis.

(Reaction conditions -light source (150 W LED), photocatalyst 5%Pd@CN/rGO/BMO(2:1) (50 mg), (extracted lignin 300 mg, MeOH 10 ml), H₂ (5 bar) time (24 h)).

S60

Fig. S24 MS spectra of the monomers (1 to 24) obtained after the photocatalytic process of real lignin.

Fig. S25. (a) Comparative absorption spectra of NBT solution after light illumination for 10 min over various photocatalysts, and (b) comparative fluorescence spectra of THA solution after light illumination for 30 min over various photocatalysts.

Fig. S26. (a) Transient photocurrent response, and (b) PL spectra of CN/rGO/BMO(2:1) with variation of rGO content (0%, 0.5%, 2% and 5%).

Fig. S27. Control experiments during BPE hydrogenolysis (a) reaction in light, dark, and different temperature using 3%Pd@CN/rGO/BMO(2:1), (b) reaction in light, dark, and different temperature using 3%Pd@SBA-15, (c) with using 1.5 mmol of electron scavenger, (d) in IPA, ACN and ACN + TEA, (e) in mixture of different ratio of IPA andACN [Reaction conditions: 3%Pd@CN/rGO/BMO(2:1) (20 mg), light source (150W LED), BPE (0.1 mmol), solvent (5 ml), time (1.5 h), and H₂ (2 bar)].

Fig. S28. Control experiments during BPE hydrogenolysis (a) reaction indifferent H_2 concentration using 3%Pd@CN/rGO/BMO(2:1), (b) with using 1.5 mmol of OH radical scavenger (c) with using 1.5 mmol of super oxide scavenger, and (d) with using 1.5 mmol of radical scavenger [Reaction conditions: 3%Pd@CN/rGO/BMO(2:1) (20 mg), light source (150W LED), BPE (0.1 mmol), solvent (5 ml), time (1.5 h), and H_2 (2 bar)].

Fig. S29. Control experiments during PPE hydrogenolysis (a) with using 1.5 mmol of electron scavenger, and (b) in IPA, ACN, ACN + TEA, and mixture of different ratio of IPA and ACN [Reaction conditions: 3%Pd@CN/rGO/BMO(2:1) (20 mg), light source (150W LED), PPE (0.1 mmol), solvent (5 ml), time (8 h), and H₂ (2 bar)].

Fig. S30. Control experiments during DPE hydrogenolysis (a) with using 1.5 mmol of electron scavenger, and (b) in IPA, ACN, ACN + TEA, and mixture of different ratio of IPA and ACN [Reaction conditions: 3%Pd@CN/rGO/BMO(2:1) (20 mg), light source (150W LED), DPE (0.1 mmol), solvent (5 ml), time (16 h), and H₂ (5 bar)].

Fig. S31. A plausible mechanism for BPE photo valorisation.

Fig. S32. A plausible mechanism for PPE photo valorisation.

Fig. S33. A plausible mechanism for DPE photo velarization.

Fig. S34. (a) Catalyst recyclability conducted at half reaction starting from ~61 %conversion [Reaction conditions: BPE (1 mmol), catalyst amount (20 mg), IPA (5 mL),150 W LED, room temperature, time 1.5 h, H_2 (2 bar)],

References

- S1 P. D. Kouris, D. J. G. P. van Osch, G. J. W. Cremers, M. D. Boot and E. J. M. Hensen, *Sustain. Energy Fuels*, 2020, 4, 6212–6226.
- S2 P. Han, T. Tana, Q. Xiao, S. Sarina, E. R. Waclawik, D. E. Gómez and H. Zhu, *Chem*, 2019, **5**, 2879–2899.
- S3 Z. Liu, Y. Huang, G. Xiao, P. Li, H. Su, S. Sarina and H. Zhu, *Energy & Fuels*, 2021, 35, 13315–13324.
- S4 J. Lin, X. Wu, S. Xie, L. Chen, Q. Zhang, W. Deng and Y. Wang, *ChemSusChem*, 2019, **12**, 5023–5031.
- S5 N. Luo, M. Wang, H. Li, J. Zhang, T. Hou, H. Chen, X. Zhang, J. Lu and F. Wang, ACS Catal., 2017, 7, 4571–4580.
- S. Shao, K. Wang, J. B. Love, J. Yu, S. Du, Z. Yue and X. Fan, *Chem. Eng. J.*, 2022, 435, 134980.
- S7 J. Xu, F. Lin, J. Wang and Y. Wang, *Chem. Phys. Lett.*, 2022, **805**, 139981.
- S8 G. Han, T. Yan, W. Zhang, Y. C. Zhang, D. Y. Lee, Z. Cao and Y. Sun, ACS Catal., 2019, 9, 11341–11349.
- S9 J.-Y. Wang, Z.-Z. Hu, X.-T. Sun, Y.-Q. Gao, J.-L. Wang, J. Xu and G. Jin, *Surfaces and Interfaces*, 2023, **36**, 102505.
- S10 H. Yoo, M.-W. Lee, S. Lee, J. Lee, S. Cho, H. Lee, H. G. Cha and H. S. Kim, ACS Catal., 2020, 10, 8465–8475.
- S11 J. Xu, M. Li, J. Qiu, X.-F. Zhang and J. Yao, Int. J. Biol. Macromol., 2021, 185, 297– 305.
- S12 Y. Liu, Y. Guo, B. Lin, Z. Chen, X. Ying, M. Zhang, C. Wang, G. Zhang, H. Gu, D. Luo and X. Liu, ACS Appl. Nano Mater., 2023, 6, 6614–6626.
- S13 S. Tang, G. A. Baker, S. Ravula, J. E. Jones and H. Zhao, *Green Chem.*, 2012, 14, 2922.
- S. Y. Oh, D. Il Yoo, Y. Shin, H. C. Kim, H. Y. Kim, Y. S. Chung, W. H. Park and J. H. Youk, *Carbohydr. Res.*, 2005, 340, 2376–2391.
- S15 S. K. Singh, B. M. Matsagar and P. L. Dhepe, *Biomass Convers. Biorefinery*, 2024, 14, 5239–5249.
- S16 W. Tian, H. Li, J. Zhou and Y. Guo, *RSC Adv.*, 2017, 7, 41176–41181.
- S17 C. G. Boeriu, D. Bravo, R. J. A. Gosselink and J. E. G. van Dam, *Ind. Crops Prod.*, 2004, 20, 205–218.
- S18 M. J. Mehta, A. Kulshrestha, S. Sharma and A. Kumar, *Green Chem.*, 2021, 23, 1240– 1247.