Supporting information

Ethanol-assisted mechanochemical asymmetric cross-dehydrogenative coupling reaction with recoverable chiral amine/NaCl for accessing chiral α-alkyl α-glycine

Jingbo Yu, ^{a,*} Hong Chen, ^a Ziwen Zhang, ^a Yuxin Fang, ^a Tao Ying ^a and Weike Su ^a

derivatives

^a National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology. Hangzhou, 310014, P.R. China. E-mail: <u>yjb@zjut.edu.cn</u>

Table of Contents

1. General information	S3
2. Reaction optimization & typical procedures	S3
2.1 Optimization of the reaction conditions	S3
2.2 Typical procedures for LAG induced asymmetric CDC reaction	S6
3. Mechanism study	S7
3.1 Control experiments	S7
3.2 Radical trapping experiments	S7
3.3 Linear effect experiments	S8
3.4 Comparative experiments	S8
3.5 Gram-scale reactions	S9
3.6 Synthetic applications	S9
3.7 Recycling of grinding auxiliary (NaCl) and C8	S10
3.8. Green chemistry metrics evaluation	S11
3.9 Crystal data for 3ha	S17
4. Characterization data	S23
5. NMR spectra	S52
6. References	S102

1. General information

All of the ball milling reactions were conducted in a Mixer mill (MM 400 RetschGmbh, Hann, Germany) with 25 mL stainless-steel vessels (equipped with gas inlet and outlet valve) with stainless-steel balls, if not mentioned otherwise. Reactions were monitored by Thin Layer Chromatography (TLC) using UV light (254 nm) for detection. ¹H, ¹³C and ¹⁹F NMR spectra were recorded on Bruker 400, 500 or 600 MHz spectrometer in CDCl₃ with tetramethylsilane (TMS) as internal standard. Chemical shifts are reported in parts per million (ppm). The following abbreviations were used to explain multiplicities: s = singlet, brs = broad singlet, d = doublet, t = triplet, q = quadruplet, m = multiplet and the coupling constants (J) were reported in Hertz unit (Hz). Melting points were measured using an SRS OptiMelt MPA100 apparatus and were uncorrected. High Resolution Mass Spectrometry (HRMS) and Electrospray Ionization-Mass Spectrometry (ESI-MS) were recorded on an Agilent 6210 LC/TOFMS or Agilent 6550 QTOFMS. High Performance Liquid Chromatography (HPLC) were performed on SHIMADZU LC-20AT apparatus, using Daicel Chiralpak AD-H chiral column, eluted with a mixture of hexane and isopropyl alcohol. Optical Rotations were measured with Rudolph Autopol V polarimeter. X-ray crystallographic experiments were performed by the Crystallography Service of the Department of Chemistry, Zhejiang University. The synthesis of N-arylglycine esters/amide substrates was meticulously carried out under solvent-free ball-milling conditions, in accordance with our recent publication¹.

2. Reaction optimization & typical procedures

2.1 Optimization of the reaction conditions

Table S1. Screening of ligands^a

4	C4 (20)	39	43	82: 18
5	C5 (20)	35	16	60: 40
6	C6 (20)	30	13	50: 50
7	C7 (20)	33	10	55: 45
8	C8 (20)	37	58	88: 12
9	C9 (20)	42	<5	50: 50
10	C8 (15)	47	55	85: 15
11	C8 (10)	46	58	87: 13
12	C8 (5)	43	52	75: 25
13 ^c	C8 (10)	51	59	88: 12
14 ^d	C8 (10)	42	55	85: 15
15 ^e	C8 (10)	35	52	81: 19

^{*a*} Reaction conditions: **1a** (0.2 mmol), TFA (12.5 mol%), NaCl (2.0 g) were pre-milled at 20 Hz for 30 min under oxygen conditions, using two stainless-steel balls ($d_{MB} = 1.2$ cm) in a 25 mL stainless vial, then **2a** (5 equiv.), **C** (x mol%) were added and milled for another 30 min. ^{*b*} Yields were those of the isolated products, ee values were determined by HPLC, *dr* values were determined by ¹H NMR. ^{*c*} **2a** (4 equiv.) was used. ^{*d*} **2a** (3.5 equiv.) was used. ^{*e*} **2a** (3 equiv.) was used.

Table S2. Screening of LAGs^a

MeO	$H \rightarrow OEt + H \rightarrow H$	C8 (10 n LAGs, TFA (12 MM, NaCl (2.0 g), 20	nol%) .5 mol%), O ₂ ⊃ Hz, (30 + 30) min	O HN O HN O Et O OEt 3aa
entry	LAGs (ŋ)	yield (%) ^b	ee (%) ^b	dr ^b
1	TFA (1.5)	21	<5	20: 80
2	DMAE (1.5)	56	79	77: 23
3	MeOH (1.5)	53	73	80: 20
4	EtOH (1.5)	62	85	98: 2
5	<i>i</i> -PrOH (1.5)	58	83	98: 2
6	<i>t-</i> BuOH (1.5)	57	82	95 :5
7	BnOH (1.5)	45	74	68: 32
8	HFIP (1.5)	39	75	78: 22
9	H ₂ O (1.5)	42	9	56: 14
10	MeCN (1.5)	52	57	83: 17
11	EtOAc (1.5)	40	<5	50: 50
12	DMF (1.5)	25	54	50: 50

13	DMSO (1.5)	29	53	85: 15
14	NMP (1.5)	20	41	70: 30
15	Acetone (1.5)	49	37	60: 40
16	Et ₂ O (1.5)	32	5	55: 45
17	DBE (1.5)	22	14	50: 50
18	THF (1.5)	27	18	64: 36
19	1,4-Dioxane (1.5)	23	13	50: 50
20	DCM (1.5)	38	<5	55: 45
21	Cyclohexane (1.5)	35	5	50: 50
22	<i>n</i> -Hexane (1.5)	37	<5	43: 57
23	Toluene (1.5)	24	5	50: 50
24	EtOH (1.3)	71	89	98: 2
25	EtOH (1.1)	63	80	95: 5
26	EtOH (1.7)	61	87	96: 4

^a Reaction conditions: **1a** (0.2 mmol), TFA (12.5 mol%), NaCl (2.0 g) were pre-milled at 20 Hz for 30 min under oxygen conditions, using two stainless-steel balls (d_{MB} = 1.2 cm) in a 25 mL stainless vial, then **2a** (4 equiv.), **C8** (10 mol%) and LAGs (η) [η = V (liquid; μ L)/m (reagents; mg)] were added and milled for another 30 min. ^b Yields were those of the isolated products, *ee* values were determined by HPLC, *dr* values were determined by ¹H NMR. TFA = Trifluoroacetic acid; DMAE = Dimethylaminoethanol; HFIP = Hexafluoroisopropanol; DMF = *N*,*N*-Dimethylformamide; DMSO = Dimethyl sulfoxide; NMP = *N*-Methylpyrrolidone; DBE=Dibutyl ether; THF = Tetrahydrofuran; DCM = Dichloromethane.

Table S3. Screening of the additives and auxiliaries^a

8

AcOH (6.5)

MeO	$ \begin{array}{c} H \\ OEt \\ H \\ OEt \end{array} $	C8 (10 m H EtOH (η = 1.3), addi MM , auxiliary (y g), 20	nol%) tive (x mol%), O ₂ I Hz, (30 + 30) m		HN OEt 3aa
entry	additive (mol%)	auxiliary (g)	yield (%) ^b	ee (%) ^b	dr ^b
1	TFA (12.5)	NaCl (2.0)	71	89	98: 2
2	MeSO ₃ H (12.5)	NaCl (2.0)	n.r.	-	-
3	TfOH (12.5)	NaCl (2.0)	48	80	94: 6
4	AcOH (12.5)	NaCl (2.0)	66	90	97: 3
5	AcOH (9.5)	NaCl (2.0)	69	89	97: 3
6	AcOH (6.5)	NaCl (2.0)	75	91	98: 2
7	AcOH (6.5)	Silica gel (2.0)	53	51	65: 35

n.r.

Neutral Al₂O₃ (2.0)

9	AcOH (6.5)	Na ₂ SO ₄ (2.0)	72	85	90: 10
10	AcOH (6.5)	NaCl (1.0)	65	90	97: 3
11	AcOH (6.5)	NaCl (3.0)	66	89	97: 3

^a Reaction conditions: **1a** (0.2 mmol), additive, and grinding auxiliary were pre-milled at 20 Hz for 30 min under oxygen conditions, using two stainless-steel balls (d_{MB} = 1.2 cm) in a 25 mL stainless vial, then **2a** (4 equiv.), **C8** (10 mol%) and EtOH (η = 1.3) were added and milled for another 30 min. ^{*b*} Yields were those of the isolated products, *ee* values were determined by HPLC, *dr* values were determined by ¹H NMR. n.r. = no reaction.

Table S4. Screening of the mechanical parameters^a

MeO	H N H O D O Et +	O H EtOH MM, 2a	C8 (10 mol%) I (η = 1.3), AcOH (6.5 m , NaCl (2.0 g), x Hz, (30 ·	ol%), O ₂		OEt O 3aa
entry	Frequency (Hz)	balls (n×mm)	time (min+min)	yield (%) ^b	ee (%) ^b	dr ^b
1	25	2×12	30+30	82	82	88: 12
2	15	2×12	30+30	54	78	76: 24
3	20	2×12	30+30	75	91	98: 2
4	20	2×12	30+40	78	93	99: 1
5	20	2×12	30+50	80	95	>99: 1
6	20	2×12	30+60	83	89	97: 3
7	20	2×14	30+50	78	85	97: 3
8	20	2×10	30+50	76	90	99: 1

^a Reaction conditions: **1a** (0.2 mmol), AcOH (6.5 mol%), NaCl (2.0 g) were pre-milled at x Hz for 30 min under oxygen conditions, using two stainless-steel balls in a 25 mL stainless vial, then **2a** (4 equiv.), **C8** (10 mol%) and EtOH (η = 1.3) were added and milled for another y min. ^b Yields were those of the isolated products, *ee* values were determined by HPLC, *dr* values were determined by ¹H NMR.

2.2 Typical procedures for LAG induced asymmetric CDC reaction

Typical procedure: a mixture of **1** (0.2 mmol), AcOH (6.5 mol%) and NaCl (2.0 g) were placed in a stainless-steel vessel (25 mL, equipped with gas inlet and outlet valve) with two stainless-steel balls (d_{MB} = 1.2 cm), and oxygen was filled in through the gas inlet valve. Then, the ball milling vessel was placed in

the mixer mill and pre-milled at 20 Hz for 30 min. After that, **2** (0.8 mmol, 4.0 equiv.), **C8** (0.02 mmol, 0.1 equiv.) and EtOH (η = 1.3) were added and oxygen was also filled in through the gas inlet valve. The mixtures were milled at 20 Hz for another 2×25 min, then the contents were scratched off the vessel and purified directly by column chromatography on silica gel using petroleum ether/EtOAc as eluent to give the desired products **3**.

The preparation procedure for **3ac**, **3ah**, **3aj**, **3ak** and **3am**, using the LAG method follows the typical procedure. After the ball-milling, the contents were rinsed with petroleum ether/EtOAc (10:1), the filtrate was concentrated and dried under vacuum to give the pure products.

3. Mechanism study

HN______ C C8 (10 mol%) EtOH (η = 1.3), AcOH (6.5 mol%) OFt (a) 1a 2a N₂, NaCl (2.0 g) MM, 20 Hz, (30 + 50) min 3aa, n.d. HŅ^{_PMP} OEt. PMP (b) II C standard conditions ö without O₂ 3aa 1-1' variation from "standard conditions^a (without O₂)" yield (%)^b ee (%)^b entrv 1 85 82 2 without EtOH 78 70 3 without AcOH 90 86 4 without AcOH and EtOH 82 91

3.1 Control experiments

Reaction conditions: (a) **1a** (0.2 mmol), AcOH (6.5 mol%) and NaCl (2.0 g) were placed in a stainless-steel vessel (25 mL, equipped with gas inlet and outlet valve) with two stainless-steel balls (d_{MB} = 1.2 cm) under nitrogen atmospheres in a mixer mill and pre-milled at 20 Hz for 30 min. Then, **2a** (4.0 equiv.), **C8** (10 mol%) and EtOH (η = 1.3) were added under nitrogen atmospheres and the mixtures were milled for another 2×25 min under nitrogen atmospheres. (b) **1-1**' (0.2 mmol), AcOH (6.5 mol%) and NaCl (2.0 g) was placed in a stainless-steel vessel (25 mL) with two stainless-steel balls (d_{MB} = 1.2 cm). Then, the ball milling vessel was placed in the mixer mill and pre-milled at 20 Hz for 30 min. After that, **2a** (4.0 equiv.), **C8** (10 mol%) and EtOH (η = 1.3) were added. The mixtures were milled at 20 Hz for another 2×25 min.

3.2 Radical trapping experiments

Reaction conditions: **1a** (0.2 mmol), AcOH (6.5 mol%), BHT (2.0 equiv.) and NaCl (2.0 g) were placed in a stainless-steel vessel (25 mL, equipped with gas inlet and outlet valve) with two stainless-steel balls ($d_{MB} = 1.2$ cm), and oxygen was filled in through the gas inlet valve. Then, the ball milling vessel was placed in the mixer mill and pre-milled at 20 Hz for 30 min. After that, **2a** (4.0 equiv.), **C8** (10 mol%) and EtOH ($\eta = 1.3$) were added and oxygen was also filled in through the gas inlet valve. The mixtures were milled at 20 Hz for another 2×25 min.

3.3 Linear effect experiments

The reactions were conducted following the typical procedure (see section 2.2).

Table S5. Relationship between the ee values of C8 and 3aa.

ee % (C8)	0	5	15	25	30	40	50	60	75	85	99
ee % (3aa)	0	3	15	27	33	46	57	65	77	82	95

Figure S1. Relationship between the ee values of C8 and 3aa.

3.4 Comparative experiments

Comparative experiments under solution-based conditions.

Reaction of **1a** and **2a** under solution-based conditions. Reaction conditions: **1a** (0.2 mmol) and AcOH (6.5 mol%) were placed in a flask (10 mL) with EtOH (3 mL) under oxygen atmosphere pre-stirred at rt for 6 h, then **2a** (0.8 mmol, 4.0 equiv.) and **C8** (10 mol%) were added, and the mixtures were stirring for 7 h.

Comparative experiments under neat-stirring conditions.

Reaction of **1a** and **2a** under neat stirring conditions. Reaction conditions: **1a** (0.2 mmol) and AcOH (6.5 mol%) were placed in a flask (10 mL) with EtOH (η = 1.3, 4.5 equiv.) under oxygen atmosphere pre-stirred at rt for 6 h, then **2a** (0.8 mmol, 4.0 equiv.) and **C8** (10 mol%) were added, and the mixtures were stirring for 12 h.

3.5 Gram-scale reactions

A mixture of **1a** (4 mmol), AcOH (6.5 mol%) and NaCl (3.0 g) were placed in a stainless-steel vessel (50 mL, equipped with gas inlet and outlet valve) with two stainless-steel balls (d_{MB} = 1.2 cm), and oxygen was filled in through the gas inlet valve. Then, the ball milling vessel was placed in the mixer mill and pre-milled at 20 Hz for 30 min. After that, **2j** (4.0 equiv.) or **2k** (4.0 equiv.), **C8** (10 mmol%) and EtOH (η = 1.3) were added and oxygen was also filled in through the gas inlet valve. The mixtures were milled at 20 Hz for another 2×25 min. After the ball-milling, the contents were rinsed with petroleum ether/EtOAc (10:1), the filtrate was concentrated and dried under vacuum to give **3aj** (1.08 g) or **3al** (1.13 g).

3.6 Synthetic applications

Step1: A mixture of **3aa** (500 mg, 1.637 mmol), tosylhydrazine (427 mg, 1.4 equiv.) and NaCl (2.0 g) were placed in a stainless-steel vessel (25 mL) with two stainless-steel balls (d_{MB} = 1.2 cm). Then, the ball milling vessel was placed in the mixer mill and milled at 30 Hz for 30 min. After that, NaBH₄ (620 mg)

were added and the mixtures were milled at 30 Hz for 30 min, then the contents were scratched off the vessel, then brine was added and the mixture was extracted with EtOAc. The combined organic layers were dried and concentrated, and the residue was purified by flash column chromatography to afford ethyl (R)-N-(p-methoxyphenyl)-cyclohexylglycinate **4** in 78% yield with 95% ee.

Step2: To a solution of **4** (291 mg, 1.0 mmol) in dioxane/water (14 mL, 1:1) was added LiOH (280 mg) and the mixture was stirred at room temperature for 14 h. Then, the mixture was acidified with 1 N HCl and extracted with EtOAc. The combined organic layers were dried, filtered, and concentrated. Purification of the residue by flash column chromatography afforded known *N*-PMP-protected cyclohexylglycine. The solution of ceric ammonium nitrate (CAN, 1.1 g, 2 mmol, 2.5 equiv.) distilled water (8.0 mL) was added slowly to the stirred solution of *N*-PMP-protected cyclohexylglycine (200 mg, 0.81 mmol) in MeCN/H₂O (3/1, 16.0 mL) at 0 °C. The reaction mixture was further stirred at 0 °C for about 1 h, till the reaction completed as monitored by TLC. The reaction was then quenched by adding the saturated Na₂SO₄ solution and extracted with EtOAc. The combined organic layer was extracted with 0.1 M HCl. The combine aqueous layer was neutralized by NaHCO₃ (pH = 7) and extracted with EtOAc. The combined organic layer was washed with brine solution, dried over anhydrous Na₂SO₄ and evaporated under reduced pressure, product **5** (138.2 mg, 88% yield) was afforded without further purification.

A solution of **3an** (118 mg, 0.4 mmol) in THF (20 mL) was cooled to 0 °C and LiAH₄ (10 mL, 1 M solution in THF) was added. After stirring for 30 min, the ice-bath was removed and the mixture was stirred for 1.5 h at room temperature. The mixture was quenched by careful addition of aqueous NH₄Cl solution, followed by 3 M HCl, and then extracted with EtOAc. The combined organic layers were dried, filtered, and concentrated. Purification of the residue by flash column chromatography afforded (2*R*,3*S*)-2-isopropyl-3-((4-methoxyphenyl)amino)butane-1,4-diol **6** (86 mg, 85% yield, 93% *ee*, >99:1 *dr*) as pale yellow oil.

3.7 Recycling of grinding auxiliary (NaCl) and C8

After the reaction was completed (see section 2.2), the mixtures were dissolved in EtOAc, then filtered to give the recovered NaCl as offwhite solid, which can be directly used for the next reaction after drying under reduced pressure. <u>No additional acetic acid or **C8** was required when using the recovered NaCl for a fresh reaction, which implies the chiral catalyst can be simultaneously recovered with NaCl, and its inherent acidity was enough to promote the aerobic oxidation of glycinate.</u>

For the synthesis of **3aa**, NaCl along with **C8** can be recycled and reused for at least 5 times and its recovery yields (mass of recovered solid g/2.0 g) were ranging from 96% to 99%. The average consumption of NaCl for single reaction is 16 mg. (*Fresh NaCl was added to keep its mass at 2.0 g for each reaction*.)

Table S6. Recycling and recovery of NaCl and C8.

Recovery of NaCl and C8 (g)	ee (%)	Yield (%)	<i>dr</i> (n:1)	
------------------------------------	--------	-----------	-----------------	--

Run 1	1.98	93	78	99
Run 2	1.97	92	77	99
Run 3	1.95	92	79	99
Run 4	1.94	91	77	99
Run 5	1.92	91	76	98

3.8. Green chemistry metrics evaluation

The green chemistry metrics including Effective Mass Yield (EMY), Atom Economy (AE), Atom Efficiency (AEF), Reaction Mass Efficiency (RME), Optimum Efficiency (OE), Process Mass Intensity (PMI), Mass Intensity (MI), Mass Productivity (MP), *E*-factor, and Solvent Intensity (SI), were calculated according to the reported method.¹ EcoScale was also calculated according to the reported method.² Based on the mechanochemical LAG method, the green chemistry metrics were calculated as follows

(all the calculations are made on the basis that NaCl and ${\bf C8}$ can be recovered for five times) $\,:\,$

$$E \text{ factor} = \frac{\sum m (\text{reactants}) + \sum m (\text{reagents}) + \sum m (\text{solvent}) + \sum m (\text{additives}) - \sum m (\text{products})}{\sum m (\text{products})}$$

 $=\frac{39.04+78.52+0.23+44.90+0.525+16-46.03}{46.03}=2.89$

$$RME = \frac{\sum m \text{ (products)}}{\sum m \text{ (reactants)}} \times 100\% = \frac{46.03}{39.04 + 78.52} \times 100\% = 39.15\%$$

 $\text{EMY} = \frac{\sum m \text{ (products)}}{\sum m \text{ (toxic reagents)}} \times 100\% = \frac{46.03}{39.04 + 78.52 + 0.23 + 44.90 + 0.525 + 16} \times 100\% = 25.68\%$

$$AE = \frac{\sum MW (\text{products})}{\sum MW (\text{reactants})} \times 100\% = \frac{291.35}{195.22 + 98.15 \times 4} = 49.56\%$$

$$AEF = AE \times Yield\% = 49.56\% \times 79\% = 39.15\%$$

$$OE = \frac{RME}{AE} \times 100\% = \frac{39.15}{49.56} = 80.00\%$$

$$PMI = \frac{\sum m \text{ (reactants)} + \sum m \text{ (reagents)} + \sum m \text{ (solvents)} + \sum m \text{ (additives)}}{\sum m \text{ (products)}}$$
$$= \frac{39.04 + 78.52 + 0.23 + 44.90 + 0.525 + 16}{46.03} = 3.89$$

$$MI = \frac{\sum m \text{ (reactants)} + \sum m \text{ (reagents)} + \sum m \text{ (solvents (except water)} + \sum m \text{ (additives)}}{\sum m \text{ (products)}}$$
$$= \frac{39.04 + 78.52 + 0.23 + 44.90 + 0.525 + 16}{46.03} = 3.89$$

$$MP = \frac{1}{MI} \times 100\% = \frac{1}{3.89} = 25.69\%$$
$$SI = \frac{\sum m \text{ (solvents (except water))}}{\sum m \text{ (solvents (except water))}} = \frac{44.90}{1100\%} = 0.00\%$$

SI = $\frac{1}{\sum m \text{ (products)}}$ = $\frac{1}{46.03}$ = 0.98 LAG method MeO (10, 0) MeO (2.0 g) 1b 2a + C8 + EtOH + AcOH NaCl (2.0 g)

,OMe

HN

MeO i-PrOH (1 mL) C8 3aa ЭEt 22 MW 207.22 98.15 115.13 60.10 305.37 0.50 103.61 5.00 490.75 0.05 5.76 96% *ee* 146.58 mg, 96% yield n/mmol 785 m/mg

Entry		LAG method	Zhang's work	Mei's work	Wang's work	Tanaka's work
		method	WOIN	WOIN	WOIN	WOIN
Product	Yield (%)	79	78	60	86	96

	ee (%)	96	96	89	97	96
	dr	>99:1	97:3	>99:1	>20:1	>99:1
Effective Mass Yield	EMY (%)	25.68	1.39	0.74	2.52	10.58
Atom Economy	AE (%)	49.56	42.47	42.47	36.97	25.69
Atom Efficiency	AEF (%)	39.15	33.13	25.48	31.79	24.66
Reaction Mass Efficiency	RME (%)	39.15	33.13	25.48	30.14	24.66
Optimum Efficiency	OE (%)	79.00	78.01	60.00	81.53	96.00
Process Mass Intensity	PMI	3.89	71.74	135.10	39.61	9.45
Mass Intensity	MI	3.55	69.16	135.10	39.61	9.45
Mass Productivity	MP (%)	25.69	1.45	0.74	2.52	10.58
<i>E</i> -Factor	<i>E</i> -Factor	2.89	70.74	134.10	38.61	8.45
Solvent Intensity	SI	0.98	69.16	125.86	35.57	5.36
Reaction Time	h	1.33	>3	8	24	12

 Table S8. Calculation of eco-scale score of LAG method for the preparation of 3ba.

Parameters			Penalty points (LAG method)
1. Yield (100-x)/2			
Mechanochemical synthesis: 79%			10.5
2. Price of reaction com	ponents (to obtain	10 mmol of end	
product)			
Reaction components	Price/g or mL	Price to get 10	
to get 10 mmol of		mmol of	
product		product	
a. 1c (2.471 g)			
b. 2a (5.215 mL)	0.08	0.42	
c. C8 (0.0146 g)	112.70	1.646	
d. EtOH (3.6 mL)	0.063	0.23	
e. AcOH (0.0126 mL)	0.020	0.00026	
f. NaCl (25.32 g)	0.012	0.304	
total price (Mechanochem	ical synthesis) = \$2.	.596	0
Expensive (> \$10 and <\$5	50)		
3. Safety			
EtOH (F, highly flammable	e)		5
4. Technical setup			
Mechanochemical synthe	sis:		
Unconventional activation	technique (mechan	ial activation)	2
5. Temperature/Time			
Mechanochemical synthe	sis: Room temperatu	ure, <24 h	1
6. Workup and purificati	on		
Mechanochemical synthe	sis: Classical chrom	atography	0

Total	19.5
Eco-scale score	81.5

 Table S9. Calculation of eco-scale score of Zhang's method for the preparation of 3ba.

Parameters				Penalty points (Zhang's method)
1. Yield (100-x)/2				
Synthesis: 78%			11	
2. Price of reaction components (to obtain 10 mmol of end				
product)				
Reaction components	Price/g or mL	Price to ge	et 10	
to get 10 mmol of		mmol	of	
product		product		
a. 1c (2.502 g)				
b. 2a (6.601 mL)	101.44	253.80		
c. $C_5H_9F_3N_2O_2S$ (0.559	0.08	0.53		
g)				
d. Cu(OAc) ₂ ·H ₂ O (0.255	0.039	0.01		
g)				
e. Ru(bpy)₃Cl₂·6H₂O	18.80	7.52		
(0.400 g)				
f. MeCN (256.6 mL)	0.0083	2.14		
total price (Mechanochemical synthesis) = \$264			5	
Very expensive (> \$50)				
3. Safety				
a. Cu(OAc)₂·H₂O (N, dang	gerous for environm	ent)		5
b. MeCN (T, toxic)				5
c. MeCN (F+, extremely fl	ammable)			10
4. Technical setup				
Photocatalytic synthesis:				
Unconventional activation	technique			2
(photochemical activation)				
5. Temperature/Time				
Photocatalytic synthesis: Room temperature, <24 h			1	
6. Workup and purificati	on			
Photocatalytic synthesis: Classical chromatography			0	
Total				39
Eco-scale score				61

Table S10. Calculation of eco-scale score of Mei's method for the preparation of 3ba.

Parameters			Penalty points (Mei's method)
1. Yield (100-x)/2			
Synthesis: 60%		20	
2. Price of reaction components (to obtain 10 mmol of end			
product)			
Reaction components	Price/g or mL	Price to get 10	

to get 10 mmol of		mmol	of
product		product	
a. 1c (3.254 g)			
b. 2a (8.583 mL)	0.08	0.68	
c. L8 (0.384 g)	112.70	43.27	
d. TEMPO (0.521 g)	3.0596	1.59	
e. <i>n</i> -Bu₄NPF ₆ (12.915 g)	0.667	8.62	
f. CF ₃ CH ₂ OH (1.667 g)	4.1722	6.95	
g. DMSO (333.4 mL)	0.0092	3.06	
total price (Mechanochem	ical synthesis) = \$64	4.17	
Very expensive (> \$50)			
3. Safety			
a. CF ₃ CH ₂ OH (T, toxic)			
b. CF ₃ CH ₂ OH (F, highly fla	ammable)		
c. DMSO (T, toxic)			
d. DMSO (F+, extremely f	lammable)		
4. Technical setup			
Electrochemical synthesis			
Unconventional activation	technique (electrica	I activation)	
5. Temperature/Time			
Electrochemical synthesis	: Room temperature	e, <24 h	
6. Workup and purificati	on		
Electrochemical synthesis	: Classical chromate	ography	
Total			
Eco-scale score			

 Table S11. Calculation of eco-scale score of Wang's method.

Parameters			Penalty points (Wang's method)
1. Yield (100-x)/2			
Synthesis: 86%			7
2. Price of reaction components (to obtain 10 mmol of end			
product)			
Reaction components	Price/g or mL	Price to get 10	
to get 10 mmol of		mmol of	
product		product	
a. C ₉ H ₁₁ NO ₂ (2.433 g)	0.4033	0.98	
b. C₀H₀Br (7.4333 g)			
c. Ir[dF(CF ₃)ppy] ₂ (dtb	237.65	62.03	
bpy)PF ₆ (0.261 g)			
d. Ligand (0.815 g)	624.30	508.80	
e. NaHCO₃ (1.074 g)	0.0042	0.0045	
f. MeCN (58.14 mL)	0.0083	0.48	
g. 1,4-dioxane (58.14	0.0078	0.45	
mL)			

total price (Mechanochemical synthesis) = \$686.47	5
Very expensive (> \$50)	
3. Safety	
a. MeCN (T, toxic)	5
b. MeCN (F+, extremely flammable)	10
c. 1,4-dioxane (F, highly flammable)	5
4. Technical setup	
Photocatalytic synthesis:	
Unconventional activation technique (photochemical activation)	2
5. Temperature/Time	
Photocatalytic synthesis: Room temperature, <24 h	1
6. Workup and purification	
Photocatalytic synthesis: Classical chromatography	0
Total	35
Eco-scale score	65

Table S12. Calculation of eco-scale score of Tanaka's method.

Parameters			Penalty points (Tanaka's method)	
1. Yield (100-x)/2				
Synthesis: 96%			2	
2. Price of reaction com	ponents (to obtain	10 mmol of e	nd	
product)				
Reaction components	Price/g or mL	Price to get	10	
to get 10 mmol of		mmol	of	
product		product		
a. C ₁₁ H ₁₃ NO ₃ (2.158 g)				
b. 2a (10.73 mL)	0.08	0.86		
c. C8 (0.112 g)	112.70	12.62		
d. <i>i</i> -PrOH (3 mL)	0.005	0.10		
total price (Mechanochem	ical synthesis) = \$13	3.58		3
Expensive (> \$10 and <\$5	50)			
3.Safety				
<i>i</i> -PrOH (F, highly flammab	le)			5
4. Technical setup:				
Solution synthesis: Comm	ion setup			0
5. Temperature/Time				
Solution synthesis: Room	temperature, <24 h			1
6. Workup and purificati	on			
Solution synthesis: Classical chromatography			0	
Total				11
Eco-scale score				89

3.9 Crystal data for 3ha.

Single crystal of minor diastereomers of **3ha** suitable for X-ray analysis was obtained by slow evaporation of 0.01 M solution in 7:3 mixture of petroleum ether/ ethyl acetate at room temperature. A suitable crystal was selected on a Bruker APEX-II CCD diffractometer. The crystal was kept at 296.15 K during data collection. Using Olex2,³ the structure was solved with the SHELXT⁴ structure solution program using Intrinsic Phasing and refined with the SHELXT refinement package using Least Squares minimisation.

Table S13. Crystal data and structure refinement for compound 3ha.

Identification code	cu_230519_CH_3ka_0m
Empirical formula	C ₂₅ H ₃₃ NO ₄
Formula weight	411.52
Temperature/K	170.00
Crystal system	orthorhombic
Space group	P212121
a/Å	6.82470(10)
b/Å	15.1975(3)
c/Å	20.6745(4)
α/°	90
β/°	90
γ/°	90
Volume/Å ³	2144.33(7)
Z	4
$Z_{\rho_{calc}g/cm^3}$	4 1.275
Z $\rho_{calc}g/cm^3$ μ/mm^{-1}	4 1.275 0.682
Z $\rho_{calc}g/cm^3$ μ/mm^{-1} F(000)	4 1.275 0.682 888.0
Z ρ _{catc} g/cm ³ μ/mm ⁻¹ F(000) Crystal size/mm ³	4 1.275 0.682 888.0 0.48 × 0.26 × 0.2
Z p _{calc} g/cm ³ μ/mm ⁻¹ F(000) Crystal size/mm ³ Radiation	4 1.275 0.682 888.0 0.48 × 0.26 × 0.2 CuKα (λ = 1.54178)
Z p _{calc} g/cm ³ μ/mm ⁻¹ F(000) Crystal size/mm ³ Radiation 2Θ range for data collection/°	4 1.275 0.682 888.0 0.48 × 0.26 × 0.2 CuKα (λ = 1.54178) 7.218 to 149.136
Z p _{calc} g/cm ³ μ/mm ⁻¹ F(000) Crystal size/mm ³ Radiation 2Θ range for data collection/° Index ranges	4 1.275 0.682 888.0 0.48 \times 0.26 \times 0.2 CuKa (λ = 1.54178) 7.218 to 149.136 -8 \leq h \leq 7, -19 \leq k \leq 19, -25 \leq l \leq 25
Z p _{calc} g/cm ³ μ/mm ⁻¹ F(000) Crystal size/mm ³ Radiation 2Θ range for data collection/° Index ranges Reflections collected	4 1.275 0.682 888.0 0.48 \times 0.26 \times 0.2 CuKa (λ = 1.54178) 7.218 to 149.136 -8 \leq h \leq 7, -19 \leq k \leq 19, -25 \leq l \leq 25 22064
Z p _{calc} g/cm ³ μ/mm ⁻¹ F(000) Crystal size/mm ³ Radiation 2Θ range for data collection/° Index ranges Reflections collected Independent reflections	4 1.275 0.682 888.0 0.48 × 0.26 × 0.2 CuKa (λ = 1.54178) 7.218 to 149.136 -8 ≤ h ≤ 7, -19 ≤ k ≤ 19, -25 ≤ l ≤ 25 22064 4363 [R _{int} = 0.0621, R _{sigma} = 0.0384]
Z p _{calc} g/cm ³ μ/mm ⁻¹ F(000) Crystal size/mm ³ Radiation 2Θ range for data collection/° Index ranges Reflections collected Independent reflections Data/restraints/parameters	4 1.275 0.682 888.0 0.48 × 0.26 × 0.2 CuK α (λ = 1.54178) 7.218 to 149.136 -8 ≤ h ≤ 7, -19 ≤ k ≤ 19, -25 ≤ l ≤ 25 22064 4363 [R _{int} = 0.0621, R _{sigma} = 0.0384] 4363/1/275
Z p _{calc} g/cm ³ μ/mm ⁻¹ F(000) Crystal size/mm ³ Radiation 2Θ range for data collection/° Index ranges Reflections collected Independent reflections Data/restraints/parameters Goodness-of-fit on F ²	4 1.275 0.682 888.0 0.48 × 0.26 × 0.2 CuK α (λ = 1.54178) 7.218 to 149.136 -8 ≤ h ≤ 7, -19 ≤ k ≤ 19, -25 ≤ l ≤ 25 22064 4363 [R _{int} = 0.0621, R _{sigma} = 0.0384] 4363/1/275 1.032

Final R indexes [all data]	R ₁ = 0.0464, wR ₂ = 0.1077
Largest diff. peak/hole / e Å ⁻³	0.25/-0.21
Flack parameter	-0.12(12)

Table S14. Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for cu_230519_CH_3ka_0m. U_{eq} is defined as 1/3 of the trace of the orthogonalised U_{IJ} tensor.

Atom	x	У	Z	U(eq)
O1	6185(3)	3537.6(14)	5434.7(11)	41.4(5)
02	6052(3)	5381.0(13)	4782.1(8)	34.3(4)
O3	4854(2)	5660.5(11)	5785.7(8)	27.8(3)
O4	-764(3)	5649.6(14)	2380.5(9)	38.0(4)
N1	3115(3)	4213.0(14)	4516.1(10)	30.2(4)
C1	4722(3)	3389.9(16)	5744.8(12)	27.6(5)
C2	4586(4)	2621.7(18)	6204.1(13)	35.7(6)
C3	2669(4)	2112.7(17)	6138.7(14)	35.8(5)
C4	922(4)	2738.8(18)	6187.8(14)	37.3(6)
C5	1036(4)	3439.4(17)	5660.5(14)	35.1(5)
C6	2933(3)	3984.6(14)	5701.9(11)	25.7(4)
C7	3101(3)	4649.9(15)	5144.8(11)	26.4(4)
C8	4873(3)	5262.9(15)	5203.8(11)	26.6(4)
C9	6514(3)	6206.5(15)	6002.7(11)	24.2(4)
C10	8341(3)	5636.7(15)	6070.8(11)	27.5(5)
C11	9989(4)	6202.0(17)	6366.5(12)	30.4(5)
C12	9347(4)	6533.4(19)	7034.4(12)	35.1(5)
C13	7510(4)	7102.6(18)	6959.8(12)	34.1(5)
C14	5858(4)	6540.2(17)	6664.5(11)	29.4(5)
C15	6903(4)	6987.6(15)	5552.6(12)	27.7(5)
C16	8560(4)	7546.2(16)	5848.3(13)	32.0(5)
C17	7949(4)	7882.2(17)	6513.9(14)	36.9(6)
C18	10407(4)	6979.1(17)	5915.5(13)	33.2(5)
C19	2094(3)	4598.6(15)	3997.2(12)	27.5(4)
C20	205(4)	4932.4(16)	4061.6(12)	30.0(5)
C21	-804(3)	5283.5(17)	3536.0(12)	29.8(5)
C22	76(4)	5298.3(16)	2931.0(12)	29.5(5)
C23	1936(4)	4940.2(17)	2852.0(12)	32.3(5)
C24	2929(4)	4603.7(16)	3380.0(12)	31.0(5)
C25	-2535(4)	6115(2)	2461.8(15)	42.3(6)

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
O1	23.6(9)	47.8(11)	52.7(11)	6.9(9)	5.8(8)	5.3(8)
O2	32.7(9)	39.4(9)	30.8(8)	-4.9(7)	7.4(7)	-3.2(8)
O3	24.8(8)	31.8(8)	26.8(7)	-4.8(6)	3.4(6)	-3.6(7)
O4	36.8(10)	44.4(10)	32.9(8)	0.7(8)	-3.0(8)	11.3(8)
N1	28.0(10)	31.6(9)	31.0(10)	-7.7(8)	-2.7(8)	6.3(8)
C1	20.8(11)	31.1(11)	30.8(10)	-4.3(9)	-2.5(9)	0.5(9)
C2	31.1(13)	36.9(13)	38.9(13)	3.4(10)	-1.2(10)	4.9(10)
C3	37.0(14)	29.6(11)	40.8(13)	0.3(10)	2.8(11)	0.7(10)
C4	27.3(12)	34.4(13)	50.1(15)	-3.5(11)	7.0(11)	-3.6(10)
C5	20.6(11)	30.4(12)	54.4(15)	-1.7(11)	0.0(10)	-0.1(9)
C6	19.7(10)	26.4(10)	31.1(10)	-5.1(8)	3.2(8)	-1.0(8)
C7	21.5(10)	27.9(10)	29.7(11)	-4.2(9)	0.1(8)	4.0(9)
C8	26.0(11)	26.2(10)	27.5(10)	-3.3(8)	0.0(9)	2.9(9)
C9	21.6(10)	25.9(10)	25.2(10)	-3.0(8)	1.3(8)	-0.1(8)
C10	27.9(11)	23.9(10)	30.8(10)	1.0(8)	1.9(9)	2.5(9)
C11	22.9(11)	33.4(12)	34.8(12)	2.2(9)	-1.7(10)	5.0(10)
C12	32.8(13)	42.0(13)	30.5(12)	-0.1(10)	-7.6(10)	0.9(11)
C13	30.9(13)	39.0(13)	32.3(12)	-9.2(10)	-1.2(10)	2.4(10)
C14	24.3(10)	35.9(12)	28.1(10)	-4.5(9)	1.8(9)	1.1(9)
C15	25.2(11)	26.6(10)	31.1(11)	2.6(8)	-2.2(9)	0.6(9)
C16	30.6(12)	25.2(10)	40.3(13)	4.0(9)	-3.0(10)	-2.5(9)
C17	32.3(13)	28.4(12)	50.1(15)	-9.1(10)	-7.4(12)	2.8(10)
C18	22.7(12)	35.6(12)	41.4(13)	2.6(10)	1.2(10)	-2.5(9)
C19	24.8(10)	25.2(10)	32.5(11)	-6.8(8)	-2.6(9)	-3.6(9)
C20	24.6(11)	34.8(11)	30.7(11)	-2.6(9)	1.2(9)	-1.9(9)
C21	20.0(10)	33.8(12)	35.6(12)	-5.3(9)	-0.1(9)	1.2(9)
C22	25.8(11)	30.7(11)	31.9(11)	-3.5(9)	-3.9(9)	0.0(9)
C23	31.0(13)	36.7(12)	29.2(11)	-6.1(9)	2.8(10)	3.5(10)
C24	24.3(10)	33.7(11)	35.1(12)	-7.5(9)	-0.2(9)	3.0(10)
C25	36.9(14)	46.3(15)	43.7(14)	1.8(12)	-4.0(11)	11.1(11)

Table S15. Anisotropic Displacement Parameters (Ų×10³) for cu_230519_CH_3ka_0m. The Anisotropicdisplacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$.

|--|

Atom	Atom	Length/Å	Atom	Atom	Length/Å
01	C1	1.207(3)	C9	C14	1.526(3)
O2	C8	1.200(3)	C9	C15	1.531(3)
O3	C8	1.346(3)	C10	C11	1.541(3)

Table S16 continue	d. Bond	Lengths	for cu	230519	СН	3ka	0m.
		<u> </u>					_

Atom	Atom	Length/Å	Atom	Atom	Length/Å
O3	C9	1.474(3)	C9	C14	1.526(3)
O4	C22	1.382(3)	C9	C15	1.531(3)
O4	C25	1.411(3)	C10	C11	1.541(3)
N1	C7	1.460(3)	C11	C12	1.534(3)
N1	C19	1.407(3)	C11	C18	1.531(3)
C1	C2	1.508(3)	C12	C13	1.531(4)
C1	C6	1.521(3)	C13	C14	1.541(3)
C2	C3	1.526(4)	C13	C17	1.531(4)
C3	C4	1.529(4)	C15	C16	1.541(3)
C4	C5	1.526(4)	C16	C17	1.526(4)
C5	C6	1.539(3)	C16	C18	1.533(3)
C6	C7	1.537(3)	C19	C20	1.392(3)
C6	C7	1.537(3)	C19	C24	1.398(3)

Table S17. Bond Angles for cu_230519_CH_3ka_0m.

Atom	Atom	Atom	Length/Å	Atom	Atom	Atom	Length/Å
C8	O3	C9	121.16(18)	C9	C10	C11	108.48(18)
C22	O4	C25	116.8(2)	C12	C11	C10	109.4(2)
C19	N1	C7	119.10(19)	C18	C11	C10	108.92(19)
01	C1	C2	122.0(2)	C18	C11	C12	110.4(2)
01	C1	C6	121.5(2)	C13	C12	C11	109.2(2)
C2	C1	C6	116.6(2)	C12	C13	C14	109.0(2)
C1	C2	C3	112.9(2)	C17	C13	C12	109.7(2)
C2	C3	C4	110.3(2)	C17	C13	C14	109.5(2)
C5	C4	C3	110.3(2)	C9	C14	C13	108.97(19)
C4	C5	C6	112.3(2)	C9	C15	C16	108.27(19)
C1	C6	C5	111.00(18)	C17	C16	C15	110.0(2)
C1	C6	C7	112.01(19)	C17	C16	C18	109.3(2)
C7	C6	C5	112.0(2)	C18	C16	C15	109.3(2)
N1	C7	C6	111.62(19)	C16	C17	C13	109.7(2)
N1	C7	C8	110.04(19)	C11	C18	C16	109.6(2)
C8	C7	C6	113.55(18)	C20	C19	N1	122.5(2)
02	C8	O3	126.0(2)	C20	C19	C24	117.6(2)
02	C8	C7	124.2(2)	C24	C19	N1	119.8(2)
O3	C8	C7	109.68(19)	C19	C20	C21	121.5(2)
O3	C9	C10	109.69(17)	C22	C21	C20	119.7(2)
O3	C9	C14	103.57(17)	O4	C22	C21	124.7(2)
O3	C9	C15	112.63(18)	04	C22	C23	115.7(2)
C10	C9	C14	110.22(19)	C21	C22	C23	119.6(2)
C10	C9	C15	110.75(18)	C24	C23	C22	119.9(2)
C14	C9	C15	109.75(19)	C23	C24	C19	121.5(2)

А	В	С	D	Angle/°	А	В	С	D	Angle/°
01	C1	C2	C3	-134.7(3)	C9	C15	C16	C17	-60.2(2)
01	C1	C6	C5	136.6(3)	C9	C15	C16	C18	59.8(3)
01	C1	C6	C7	10.6(3)	C10	C9	C14	C13	60.8(3)
O3	C9	C10	C11	-174.07(17)	C10	C9	C15	C16	-60.6(2)
O3	C9	C14	C13	178.12(19)	C10	C11	C12	C13	-61.0(3)
O3	C9	C15	C16	176.10(18)	C10	C11	C18	C16	61.1(3)
04	C22	C23	C24	177.5(2)	C11	C12	C13	C14	60.7(3)
N1	C7	C8	O2	2.2(3)	C11	C12	C13	C17	-59.2(3)
N1	C7	C8	O3	-179.75(19)	C12	C11	C18	C16	-59.0(3)
N1	C19	C20	C21	-177.7(2)	C12	C13	C14	C9	-60.3(3)
N1	C19	C24	C23	177.0(2)	C12	C13	C17	C16	60.5(3)
C1	C2	C3	C4	-52.4(3)	C14	C9	C10	C11	-60.6(2)
C1	C6	C7	N1	65.2(2)	C14	C9	C15	C16	61.3(2)
C1	C6	C7	C8	-59.9(2)	C14	C13	C17	C16	-59.1(3)
C2	C1	C6	C5	-44.7(3)	C15	C9	C10	C11	61.0(2)
C2	C1	C6	C7	-170.7(2)	C15	C9	C14	C13	-61.4(2)
C2	C3	C4	C5	58.9(3)	C15	C16	C17	C13	59.7(3)
C3	C4	C5	C6	-58.9(3)	C15	C16	C18	C11	-61.0(3)
C4	C5	C6	C1	50.4(3)	C17	C13	C14	C9	59.8(3)
C4	C5	C6	C7	176.4(2)	C17	C16	C18	C11	59.4(3)
C5	C6	C7	N1	-60.3(2)	C18	C11	C12	C13	58.8(3)
C5	C6	C7	C8	174.62(19)	C18	C16	C17	C13	-60.3(3)
C6	C1	C2	C3	46.6(3)	C19	N1	C7	C6	140.8(2)
C6	C7	C8	O2	128.1(2)	C19	N1	C7	C8	-92.2(2)
C6	C7	C8	O3	-53.8(2)	C19	C20	C21	C22	0.5(4)
C7	N1	C19	C20	-45.3(3)	C20	C19	C24	C23	1.0(4)
C7	N1	C19	C24	138.9(2)	C20	C21	C22	O4	-178.3(2)
C8	O3	C9	C10	-63.9(3)	C20	C21	C22	C23	1.8(4)
C8	O3	C9	C14	178.4(2)	C21	C22	C23	C24	-2.5(4)
C8	O3	C9	C15	59.9(3)	C22	C23	C24	C19	1.1(4)
C9	O3	C8	O2	-9.3(4)	C24	C19	C20	C21	-1.8(3)
C9	O3	C8	C7	172.71(18)	C25	O4	C22	C21	7.8(4)
C9	C10	C11	C12	60.4(2)	C25	O4	C22	C23	-172.2(2)
C9	C10	C11	C18	-60.3(2)					

Table S18. Torsion Angles for cu_230519_CH_3ka_0m.

Table S19. Hydrogen Atom Coordinates (Å×10⁴) and Isotropic Displacement Parameters (Å²×10³) for cu_230519_CH_3ka_0m.

Atom	х	У	Z	U(eq)
H2A	4708	2840.48	6653.34	43
H2B	5695.23	2217.11	6121.83	43

Atom	Х	У	Z	U(eq)
H3A	2584.32	1663.94	6484.7	43
НЗВ	2638.27	1805.63	5716.52	43
H4A	-311.54	2402.14	6141.7	45
H4B	918.4	3025.03	6617.9	45
H5A	-105.11	3837.82	5699.76	42
H5B	967.41	3150.87	5231.78	42
H6	2873.24	4329.79	6113.14	31
H7	1902.77	5027.83	5159.69	32
H10A	8748.83	5412.86	5641.73	33
H10B	8062.66	5126.7	6354.16	33
H11	11200.43	5837.14	6412.86	36
H12A	9062.99	6027.18	7320.93	42
H12B	10411.96	6883.59	7232.78	42
H13	7091.7	7325.15	7393.57	41
H14A	5563.09	6036.11	6951.71	35
H14B	4653.96	6898.23	6618.65	35
H15A	5701.06	7346.87	5506.15	33
H15B	7292.67	6774.01	5118.93	33
H16	8842.81	8057.72	5558.66	38
H17A	6769.35	8257	6472.85	44
H17B	9015.22	8243.24	6701.12	44
H18A	10811.41	6758.5	5485.19	40
H18B	11490.61	7338.19	6093.57	40
H20	-410.3	4920.56	4473.72	36
H21	-2089.05	5511.87	3591.44	36
H23	2524.33	4926.79	2435.66	39
H24	4208.01	4370.63	3321.8	37
H25A	-2917.09	6383.82	2049.66	63
H25B	-2354.72	6576.61	2787.65	63
H25C	-3563.17	5709.27	2604.47	63
H1	4320(40)	4090(30)	4400(18)	51

Table S19 continued. Hydrogen Atom Coordinates ($Å \times 10^4$) and Isotropic Displacement Parameters ($Å^2 \times 10^3$) for cu_230519_CH_3ka_0m.

4. Characterization data

For substrates 1:

Allyl (4-methoxyphenyl)glycinate (1e)⁵

Yellow oil (375.7 mg, 85% yield). ¹**H NMR** (400 MHz, Chloroform-*d*) δ 6.79 (d, *J* = 8.9 Hz, 2H), 6.59 (d, *J* = 8.9 Hz, 2H), 6.01–5.83 (m, 1H), 5.35–5.24 (m, 2H), 4.67–4.66 (m, 2H), 3.90 (s, 2H), 3.74 (s, 3H). ¹³**C NMR** (100 MHz, Chloroform-*d*) δ 171.06, 152.61, 141.10, 131.58, 118.74, 114.83, 114.35, 65.68, 55.63, 46.69.

Hex-5-en-1-yl (4-methoxyphenyl)glycinate (1f)

Colorless oil (432.3 mg, 82% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 6.79 (d, *J* = 9.0 Hz, 2H), 6.58 (d, *J* = 8.9 Hz, 2H), 5.83–5.72 (m, 1H), 5.04–4.95 (m, 2H), 4.17 (t, *J* = 6.6 Hz, 2H), 3.86 (s, 2H), 3.74 (s, 3H), 2.10–2.04 (m, 2H), 1.70–1.62 (m, 2H), 1.44 (m, 2H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 171.44, 152.59, 141.23, 138.15, 114.86, 114.32, 65.06, 55.67, 46.75, 33.15, 27.94, 25.01. HRMS (ESI) *m/z*: calcd for C₁₅H₂₂NO₃ [M+H]⁺ 264.1594, found 264.1593.

(1S,3S)-Adamantan-1-yl (4-methoxyphenyl)glycinate (1h)

White solid (460 mg, 73% yield). m.p. = 86-87 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 6.78 (d, *J* = 8.9 Hz, 2H), 6.58 (d, *J* = 8.9 Hz, 2H), 3.75 (d, *J* = 5.5 Hz, 5H), 2.14 (m, 9H), 1.66 (d, *J* = 3.1 Hz, 6H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 170.15, 152.50, 141.38, 114.85, 114.39, 81.89, 55.72, 47.56, 41.30, 36.05, 30.81. HRMS (ESI) *m/z*: calcd for C₁₉H₂₆NO₃ [M+H]⁺ 316.1907, found 316.1906.

(S)-octan-2-yl (4-methoxyphenyl)glycinate (1i)

Colorless oil (439.5 mg, 75% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 6.78 (d, *J* = 8.9 Hz, 2H), 6.58 (d, *J* = 8.9 Hz, 2H), 4.99 (m, 1H), 3.83 (s, 2H), 3.73 (s, 3H), 1.64–1.44 (m, 2H), 1.31–1.21 (m, 11H), 0.88 (t, *J* = 6.8 Hz, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 171.02, 152.55, 141.32, 114.83, 114.31, 72.22, 55.66, 46.99, 35.83, 31.65, 29.02, 25.23, 22.51, 19.91, 14.00. HRMS (ESI) *m/z*: calcd for C₁₇H₂₈NO₃ [M+H]⁺ 294.2063, found 294.2051.

Cinnamyl (4-methoxyphenyl)glycinate (1n)⁶

Colorless oil (469.3 mg, 79% yield). ¹H NMR (600 MHz, Chloroform-*d*) δ 7.39–7.35 (m, 2H), 7.34–7.30 (m, 2H), 7.28–7.24 (m, 1H), 6.81–6.73 (m, 2H), 6.69–6.56 (m, 3H), 6.26 (m, 1H), 4.82 (m, 2H), 3.92 (s, 2H), 3.73 (s, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 171.21, 152.72, 141.06, 135.96, 134.76, 128.59, 128.18, 126.61, 122.45, 114.89, 114.50, 65.69, 55.67, 46.88.

Ethyl 2-(4-(2-((4-methoxyphenyl)amino)acetamido)phenyl)acetate (1r)

White Solid (266.7 mg, 78% yield). m.p. = 80-81 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.72 (s, 1H), 7.49 (d, *J* = 8.5 Hz, 2H), 7.22 (d, *J* = 8.5 Hz, 2H), 6.80 (d, *J* = 8.9 Hz, 2H), 6.63 (d, *J* = 8.9 Hz, 2H), 4.14 (t, *J* = 7.1 Hz, 2H), 3.82 (s, 2H), 3.74 (s, 3H), 3.56 (s, 2H), 1.23 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 171.56, 169.13, 153.48, 140.88, 136.28, 130.16, 129.78, 119.87, 114.98, 114.74, 60.84, 55.65, 50.59, 40.77, 14.11. HRMS (ESI) *m*/*z*: calcd for C₁₉H₂₃N₂O₄ [M+H]⁺ 343.1652, found 343.1645.

N-(2-(5-methoxy-1H-indol-2-yl)ethyl)-2-((4-methoxyphenyl)amino)acetamide (1t)

White Solid (254.2 mg, 72% yield). m.p. = 116-117 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.09 (s, 1H), 7.21 (d, *J* = 8.8 Hz, 1H), 7.00 (d, *J* = 2.5 Hz, 1H), 6.93 (t, *J* = 6.0 Hz, 1H), 6.84 (m, 1H), 6.75 (d, *J* = 8.9 Hz, 2H), 6.71 (d, *J* = 2.4 Hz, 1H), 6.47 (d, *J* = 8.9 Hz, 2H), 3.84 (s, 3H), 3.74 (s, 3H), 3.66 (s, 2H), 3.59 (m, 2H), 2.93–2.84 (m, 2H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 170.81, 153.80, 152.85, 141.13, 131.46, 127.50, 122.98, 114.79, 114.17, 112.05, 111.93, 100.35, 55.85, 55.66, 49.40, 39.00, 25.21. HRMS (ESI) *m/z*: calcd for C₂₀H₂₄N₃O₃ [M+H]⁺ 354.1812, found 354.1804.

For products:

Ethyl (S)-2-((4-methoxyphenyl)amino)-2-((R)-2-oxocyclohexyl)acetate (3aa)7

Yellow oil (49 mg, 80% yield); > 99:1 *dr*. ¹H NMR (500 MHz, Chloroform-*d*) δ 6.76 (d, *J* = 8.9 Hz, 2H), 6.63 (d, *J* = 8.9 Hz, 2H), 4.18–4.10 (m, 2H), 3.98 (d, *J* = 4.1 Hz, 1H), 3.73 (s, 3H), 3.14–3.05 (m, 1H), 2.50–2.37 (m, 1H), 2.36–2.27 (m, 1H), 2.17–2.08 (m, 1H), 2.06–2.01 (m, 1H), 1.97–1.87 (m, 2H), 1.77–1.62 (m, 2H), 1.21 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 211.03, 173.08, 152.74,

142.13, 115.60, 114.74, 61.19, 59.07, 55.68, 53.57, 41.80, 30.52, 26.83, 24.53, 14.09.

Methyl (S)-2-((4-methoxyphenyl)amino)-2-((R)-2-oxocyclohexyl)acetate (3ba)7

Pale yellow oil (46 mg, 79% yield); > 99:1 *dr*. ¹**H NMR** (400 MHz, Chloroform-*d*) δ 6.76 (d, *J* = 8.8 Hz, 2H), 6.62 (d, *J* = 8.8 Hz, 2H), 3.99 (d, *J* = 3.9 Hz, 1H), 3.73 (s, 3H), 3.68 (s, 3H), 3.16–3.08 (m, 1H), 2.45–2.39 (m, 1H), 2.37–2.28 (m, 1H), 2.11–2.02 (m, 2H), 1.97–1.83 (m, 2H), 1.78–1.61 (m, 2H). ¹³**C NMR** (100 MHz, Chloroform-*d*) δ 211.10, 173.64, 152.74, 142.02, 115.44, 114.77, 58.87, 55.67, 53.65, 52.27, 41.83, 30.56, 26.84, 24.57.

Optical Rotation: $[\alpha]^{25}_{D}$ = 24.3 (c = 1.0, CH₂Cl₂). The *ee* value was determined by **HPLC analysis:** 98.2:1.8 *er*, Chiralcel AD-H colum, hexane/*i*-PrOH = 90/10, flow rate = 0.7 mL/min, λ = 214 nm, retention time: t_{major} = 35.7 min, t_{minor} = 29.1 min.

1	29.169	68858297	2006741	49.731	1	29.123	907934	30034	1.795
2	35.475	69603611	1554593	50.269	2	35.658	49673100	1114778	98.205
Total		138461909	3561334	100.000	Total		50581034	1144812	100.000

Isopropyl (S)-2-((4-methoxyphenyl)amino)-2-((R)-2-oxocyclohexyl)acetate (3ca)⁷

Yellow oil (48.5 mg, 76% yield); > 99:1 *dr.* ¹**H NMR** (400 MHz, Chloroform-*d*) δ 6.75 (d, *J* = 8.9 Hz, 2H), 6.63 (d, *J* = 8.9 Hz, 2H), 5.06–4.92 (m, 1H), 3.96 (d, *J* = 4.2 Hz, 1H), 3.73 (s, 3H), 3.10–3.04 (m, 1H), 2.46–2.26 (m, 2H), 2.14–2.00 (m, 2H), 1.98–1.84 (m, 2H), 1.78–1.62 (m, 2H), 1.22 (d, *J* = 6.2 Hz, 3H), 1.13 (d, *J* = 6.2 Hz, 3H). ¹³**C NMR** (100 MHz, Chloroform-*d*) δ 210.86, 172.49, 152.72, 142.20, 115.68, 114.68, 68.74, 59.18, 55.67, 53.52, 41.73, 30.45, 26.83, 24.47, 21.62.

Optical Rotation: $[\alpha]^{25}_{D}$ = 18.9 (c = 1.0, CH₂Cl₂). The *ee* value was determined by **HPLC analysis:** 99.9:0.1 *er*, Chiralcel AD-H colum, hexane/*i*-PrOH = 90/10, flow rate = 0.7 mL/min, λ = 254 nm, retention time: t_{major} = 24.2 min, t_{minor} = 21.0 min.

8000 + + + + + + + + + + + + + + + + + +	558 81 	28 KR 0.0 22.5	90 ** 	min		nV		927 ¥7 995 892 ¥7 9 4 4 4 1 1 2 5 0	
Peak	RetTime	Area	Height	Conc.	Peak	RetTime	Area	Height	Conc.
	(min)	(mV*s)	(mV)	(%)		(min)	(mV*s)	(mV)	(%)
1	18.655	26909593	913510	10.173					
2	20.892	28183015	1049268	10.655					
3	23.092	104514440	3016069	39.511	1	23.355	1161	661	0.008
4	24.060	104909784	2978521	39.661	2	24.225	14731263	499373	99.992
Total		264516831	7957368	100.000	Total		14732424	500034	100.000

Tert-butyl (S)-2-((4-methoxyphenyl)amino)-2-((R)-2-oxocyclohexyl)acetate (3da)7

White solid (52 mg, 79% yield); > 99:1 *dr*. ¹**H NMR** (400 MHz, Chloroform-*d*) δ 6.75 (d, *J* = 8.8 Hz, 2H), 6.61 (d, *J* = 8.8 Hz, 2H), 3.92 (d, *J* = 4.3 Hz, 1H), 3.73 (s, 3H), 3.07–2.97 (m, 1H), 2.51–2.38 (m, 1H), 2.36–2.24 (m, 1H), 2.15–1.97(m, 2H), 1.96–1.83 (m, 2H), 1.78–1.63 (m, 2H), 1.39 (s, 9H). ¹³**C NMR** (100 MHz, Chloroform-*d*) δ 210.84, 172.00, 152.59, 142.32, 115.46, 114.67, 81.54, 59.47, 55.67, 53.45, 41.68, 30.32, 27.88, 26.78, 24.41.

Optical Rotation: $[\alpha]^{25}_{D} = 26$ (c = 1.0, CH₂Cl₂). The ee value was determined by **HPLC analysis:** 99.9:0.1 *er*, Chiralcel AD-H colum, hexane/*i*-PrOH = 90/10, flow rate = 0.5 mL/min, λ = 214 nm, retention time: t_{major} = 26.8 min, t_{minor} = 40.5 min.

	19 10 10 10 10 10 10 10 10 10 10 10 10 10	SR 22.5 35.0	80 GP 37.5 40.0	↓ 1		8 4 1 1 25.0 27.5 30	0 32.5 35.0	96 97 97 97 97 97 97 97 97 97 97 98 9 9 9 9	42.5 min
Peak	RetTime	Area	Height	Conc.	Peak	RetTime	Area	Height	Conc.
	(min)	(mV*s)	(mV)	(%)		(min)	(mV*s)	(mV)	(%)
1	26.161	4111310	122213	18.325	1	26.839	11483	207	0.031
2	28.739	7073238	187502	31.527					
3	32.285	7153016	171055	31.883					
4	40.038	4097981	79348	18.266	2	40.516	36719794	979707	99.969
Total		22435545	560118	100.000	Total		36731276	979914	100.000

Allyl (S)-2-((4-methoxyphenyl)amino)-2-((R)-2-oxocyclohexyl)acetate (3ea)⁷

Yellow oil (49.5 mg, 78% yield); > 99:1 *dr.* ¹H NMR (400 MHz, Chloroform-*d*) δ 6.76 (d, *J* = 8.4 Hz, 2H), 6.63 (d, *J* = 8.4 Hz, 2H), 5.95–5.75 (m, 1H), 5.31–5.14 (m, 2H), 4.58 (d, *J* = 5.5 Hz, 2H), 4.01 (d, *J* = 3.7 Hz, 1H), 3.73 (s, 3H), 3.17–3.10 (m, 1H), 2.47–2.40 (m, 1H), 2.37–2.27 (m, 1H), 2.15–2.02 (m, 2H), 1.98–1.87 (m, 2H), 1.80–1.59 (m, 2H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 211.02, 172.79, 152.78, 142.06, 131.77, 118.27, 115.55, 114.77, 65.75, 59.04, 55.69, 53.59, 41.81, 30.55, 26.83, 24.56.

Optical Rotation: $[\alpha]^{25}_{D}$ = 22.4 (c = 1.0, CH₂Cl₂). The ee value was determined by **HPLC analysis:** 98.0:2.0 *er*, Chiralcel AD-H colum, hexane/*i*-PrOH = 90/10, flow rate = 0.7 mL/min, λ = 254 nm, retention time: t_{major} = 33.8 min, t_{minor} = 27.3 min.

Total		5981322	164653	100.000	Total		23236412	570846	100.000
-------	--	---------	--------	---------	-------	--	----------	--------	---------

Allyl (S)-2-((4-methoxyphenyl)amino)-2-((R)-2-oxocyclohexyl)acetate (3fa)⁸

Yellow oil (53.2 mg, 74% yield); > 99:1 *dr.*¹**H NMR** (400 MHz, Chloroform-*d*) δ 6.77 (d, *J* = 9.1 Hz, 2H), 6.73 (d, *J* = 9.1 Hz, 2H), 5.81–5.70 (m, 1H), 5.03–4.92 (m, 2H), 4.22 (d, *J* = 5.2 Hz, 1H), 4.15–4.04 (m, 2H), 3.74 (s, 3H), 2.90–2.76 (m, 1H), 2.51–2.41 (m, 1H), 2.37–2.27 (m, 1H), 2.26–2.16 (m, 1H), 2.12–1.93 (m, 4H), 1.86–1.76 (m, 1H), 1.74–1.64 (m, 2H), 1.64–1.53 (m, 2H), 1.42–1.32 (m, 2H). ¹³**C NMR** (100 MHz, Chloroform-*d*) δ 210.05, 173.48, 153.11, 140.93, 138.28, 116.12, 114.79, 114.74, 65.04, 58.18, 55.66, 53.54, 41.83, 33.16, 29.66, 27.91, 26.85, 25.07, 24.78.

Optical Rotation: $[\alpha]^{25}_{D}$ = 16.4 (c = 1.0, CH₂Cl₂). The ee value was determined by **HPLC analysis:** 97.1:2.9 *er*, Chiralcel AD-H colum, hexane/*i*-PrOH = 90/10, flow rate = 0.7 mL/min, λ = 254 nm, retention time: t_{major} = 24.7 min, t_{minor} = 20.0 min.

Benzyl (S)-2-((4-methoxyphenyl)amino)-2-((R)-2-oxocyclohexyl)acetate (3ga)⁷

Yellow oil (58 mg, 79% yield); > 99:1 *dr.* ¹H NMR (400 MHz, Chloroform-*d*) δ 7.40–7.29 (m, 3H), 7.25–7.20 (m, 2H), 6.75 (d, *J* = 8.9 Hz, 2H), 6.62 (d, *J* = 8.9 Hz, 2H), 5.20–5.08 (m, 2H), 4.06 (d, *J* = 4.0 Hz, 1H), 3.74 (s, 3H), 3.16–3.07 (m, 1H), 2.46–2.37 (m, 1H), 2.35–2.25 (m, 1H), 2.12–1.99 (m, 2H), 1.95–1.85 (m, 2H), 1.74–1.60 (m, 2H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 211.02, 172.96, 152.83, 142.03, 135.58, 128.44, 128.14, 128.01, 115.67, 114.78, 66.88, 59.05, 55.71, 53.52, 41.78, 30.51, 26.82, 24.51.

Optical Rotation: $[\alpha]^{25}_{D}$ = 25.6 (c = 1.0, CH₂Cl₂). The *ee* value was determined by **HPLC analysis:** 98.2:1.8 *er*, Chiralcel AD-H colum, hexane/*i*-PrOH = 90/10, flow rate = 1.0 mL/min, λ = 214 nm, retention time: t_{major} = 40.5 min, t_{minor} = 28.3 min.

mV 70 60 40 30 10 0 	25.0		660: E6 +		350 300 250 150 50 0	25.0	35.0	LSF 00 40.0	
Peak	RetTime	Area	Height	Conc.	Peak	RetTime	Area	Height	Conc.
	(min)	(mV*s)	(mV)	(%)		(min)	(mV*s)	(mV)	(%)
1	27.937	1365916	29874	25.349	1	28.393	193017	5334	1.839
2	29.600	1318026	34574	24.460					
3	34.193	1335804	37580	24.790					
4	39.399	1368799	25930	25.402	2	40.457	10302721	187576	98.161
Total		5388545	127957	100.000	Total		10495738	192910	100.000

(1S,3R)-Adamantan-1-yl (2S)-2-((4-methoxyphenyl)amino)-2-((R)-2-oxocyclohexyl)aceta-te (**3ha**)⁸ White solid (60.9 mg, 74% yield); > 99:1 *dr.* m.p. = 122-123 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 6.75 (d, *J* = 8.8 Hz, 2H), 6.62 (d, *J* = 8.8 Hz, 2H), 3.93 (d, *J* = 4.4 Hz, 1H), 3.73 (s, 3H), 3.07–2.96 (m, 1H), 2.47–2.39 (m, 1H), 2.35–2.24 (m, 1H), 2.14–1.99 (m, 11H), 1.96–1.85 (m, 2H), 1.74–1.59 (m, 8H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 210.83, 171.65, 152.63, 142.24, 115.57, 114.67, 81.61, 59.52, 55.67, 53.43, 41.69, 41.15, 36.04, 30.73, 30.26, 26.76, 24.40.

Optical Rotation: $[\alpha]^{25}_{D} = 8.6$ (c = 1.0, CH₂Cl₂). The *ee* value was determined by **HPLC analysis:** 95.5:4.5 *er*, Chiralcel AD-H colum, hexane/*i*-PrOH = 90/10, flow rate = 0.7 mL/min, λ = 254 nm, retention time: t_{major} = 27.7 min, t_{minor} = 31.3 min.

Total		7546538	195617	100.000	Total		32551498	835446	100.000
-------	--	---------	--------	---------	-------	--	----------	--------	---------

(S)-Octan-2-yl (S)-2-((4-methoxyphenyl)amino)-2-((R)-2-oxocyclohexyl)acetate (3ia)

Yellow oil (60 mg, 77% yield); 98:2 *dr.* ¹**H NMR** (400 MHz, Chloroform-*d*) δ 6.74 (d, *J* = 8.8 Hz, 2H), 6.62 (d, *J* = 8.8 Hz, 2H), 4.95–4.78 (m, 1H), 3.94 (d, *J* = 4.3 Hz, 1H), 3.72 (s, 3H), 3.18–3.00 (m, 1H), 2.49–2.37 (m, 1H), 2.35–2.26 (m, 1H), 2.14–2.00 (m, 2H), 1.99–1.88 (m, 2H), 1.79–1.65 (m, 2H), 1.51–1.35 (m, 2H), 1.27–1.06(m, 11H), 0.85 (t, *J* = 7.1 Hz, 3H). ¹³**C NMR** (100 MHz, Chloroform-*d*) δ 210.80, 172.72, 152.79, 142.32, 115.63, 114.71, 72.19, 59.32, 55.65, 53.57, 41.75, 35.76, 31.66, 30.61, 29.00, 26.91, 25.05, 24.51, 22.49, 19.80, 13.98. **HRMS (ESI)** *m/z*: calcd for C₂₃H₃₆NO₄ [M+H]⁺ 390.2644, found 390.2645.

Optical Rotation: $[\alpha]^{25}_{D}$ = 17.5 (c = 1.0, CH₂Cl₂). The *ee* value was determined by **HPLC analysis:** 98.2:1.8 *er*, Chiralcel AD-H colum, hexane/*i*-PrOH = 90/10, flow rate = 0.7 mL/min, λ = 254 nm, retention time: t_{major} = 20.4 min, t_{minor} = 18.1 min.

Methyl (S)-2-((R)-2-oxocyclohexyl)-2-(p-tolylamino)acetate (3ja)

Yellow oil (38.2 mg, 71% yield); > 99:1 *dr*. ¹**H NMR** (600 MHz, Chloroform-*d*) δ 6.98 (d, *J* = 8.4 Hz, 2H), 6.57 (d, *J* = 8.4 Hz, 2H), 4.09 (d, *J* = 3.8 Hz, 1H), 3.69 (s, 3H), 3.19–3.12 (m, 1H), 2.47–2.38 (m, 1H), 2.36–2.31 (m, 1H), 2.23 (s, 3H), 2.14–2.08 (m, 1H), 2.06–2.03 (m, 1H), 1.95–1.85 (m, 2H), 1.76–1.63 (m, 2H). ¹³**C NMR** (150 MHz, Chloroform-*d*) δ 211.12, 173.48, 145.50, 129.79, 127.73, 113.95, 57.89, 53.67, 52.32, 41.84, 30.50, 26.84, 24.59, 20.36. **HRMS (ESI)** *m/z*: calcd for C₁₆H₂₂NO₃ [M+H]⁺ 276.1594, found

276.1585.

Optical Rotation: $[\alpha]^{25}_{D}$ = 14.7 (c = 1.0, CH₂Cl₂). The ee value was determined by **HPLC analysis:** 99.7:0.3 *er*, Chiralcel AD-H colum, hexane/*i*-PrOH = 98/2, flow rate = 1.0 mL/min, λ = 240 nm, retention time: t_{major} = 39.8 min, t_{minor} = 47.0 min.

Ethyl (S)-2-((R)-2-oxocyclohexyl)-2-(p-tolylamino)acetate (3ka)7

Yellow oil (39 mg, 66% yield); 98:2 *dr*. ¹**H NMR** (400 MHz, Chloroform-*d*) δ 6.97 (d, *J* = 7.8 Hz, 2H), 6.57 (d, *J* = 7.8 Hz, 2H), 4.23–4.05 (m, 3H), 3.21–3.05 (m, 1H), 2.48–2.37 (m, 1H), 2.32 (m, 1H), 2.22 (s, 3H), 2.16–2.00 (m, 2H), 1.97–1.81 (m, 2H), 1.80–1.61 (m, 2H), 1.25–1.17 (m, 3H). ¹³**C NMR** (100 MHz, Chloroform-*d*) δ 211.03, 172.90, 145.66, 129.71, 127.56, 113.97, 61.21, 57.95, 53.58, 41.78, 30.41, 26.79, 24.51, 20.34, 14.09.

Optical Rotation: $[\alpha]^{25}_{D}$ = 18.0 (c = 1.0, CH₂Cl₂). The ee value was determined by **HPLC analysis:** 97.3:2.7 *er*, Chiralcel AD-H colum, hexane/*i*-PrOH = 96/4, flow rate = 1.0 mL/min, λ = 254 nm, retention time: t_{major} = 20.6 min, t_{minor} = 23.3 min.

3	24.549	5036013	161456	31.594				
4	27.657	4893371	141462	30.699				
Total		15939697	518863	100.000	Total	17664742	597851	100.000

Ethyl (S)-2-((4-bromophenyl)amino)-2-((R)-2-oxocyclohexyl)acetate (3la)⁷

Yellow oil (41.1 mg, 58% yield); 80:20 *dr.* ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.24 (d, *J* = 8.8 Hz, 2H), 6.60 (d, *J* = 8.8 Hz, 2H), 4.23 (d, *J* = 5.0 Hz, 1H), 4.13 (m, 2H), 3.19–2.77 (m, 1H), 2.52–2.36 (m, 1H), 2.36–2.04 (m, 3H), 1.95 (m, 1H), 1.89–1.54 (m, 3H), 1.26–1.22 (m, 3H). ¹³**C NMR** (100 MHz, Chloroform-*d*) δ 209.90, 172.72, 145.97, 131.92, 115.63, 110.22, 61.33, 56.56, 53.35, 41.77, 29.77, 26.80, 24.77, 14.08.

Optical Rotation: $[\alpha]^{25}_{D}$ = 30.0 (c = 1.0, CH₂Cl₂). The ee value was determined by **HPLC analysis:** 95.6:4.4 *er*, Chiralcel AD-H colum, hexane/*i*-PrOH = 90/10, flow rate = 1.0 mL/min, λ = 254 nm, retention time: t_{major} = 20.9 min, t_{minor} = 16.3 min.

Ethyl (S)-2-((4-chlorophenyl)amino)-2-((R)-2-oxocyclohexyl)acetate (3ma)⁷

Yellow oil (37.2 mg, 60% yield); 99:1 *dr.* ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.12 (d, *J* = 8.8 Hz, 2H), 6.66 (d, *J* = 8.8 Hz, 2H), 4.24 (d, *J* = 4.9 Hz, 1H), 4.19–4.11 (m, 2H), 2.91–2.74 (m, 1H), 2.53–2.41 (m, 1H), 2.36–2.26 (m, 1H), 2.23–2.15 (m, 1H), 2.12–2.04 (m, 1H), 2.00–1.91 (m, 1H), 1.86–1.76 (m, 1H), 1.73–1.61 (m, 2H), 1.23 (t, *J* = 7.1 Hz, 3H). ¹³**C NMR** (100 MHz, Chloroform-*d*) δ 209.92, 172.85, 145.60, 129.12, 123.27, 115.30, 61.39, 56.80, 53.45, 41.85, 29.80, 26.85, 24.84, 14.15.

Optical Rotation: $[\alpha]^{25}_{D} = 42.5$ (c = 1.0, CH₂Cl₂). The ee value was determined by **HPLC analysis:** 93.0:7.0 *er*, Chiralcel AD-H colum, hexane/*i*-PrOH = 90/10, flow rate = 1.0 mL/min, λ = 254 nm, retention

	15.0 17	88 FE 1	560 22.5	min	125	009 51- 		989 N 22.5	
Peak	RetTime	Area	Height	Conc.	Peak	RetTime	Area	Height	Conc.
	(min)	(mV*s)	(mV)	(%)		(min)	(mV*s)	(mV)	(%)
1	15.886	1460095	67557	43.814	1	15.680	141608	8053	6.968
2	17.726	250532	9907	7.518					
3	19.363	205141	8267	6.156					
4	22.293	1416725	46567	42.512	2	21.859	1890559	64275	93.032
Total		3332493	132298	100.000	Total		2032167	72327	100.000

Cinnamyl (S)-2-((4-methoxyphenyl)amino)-2-((R)-2-oxocyclohexyl)acetate (3na)

Brown oil (52 mg, 69% yield); 99:1 *dr.* ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.38–7.31 (m, 4H), 7.30–7.26 (m, 1H), 6.79 (d, *J* = 8.9 Hz, 2H), 6.68 (d, *J* = 8.9 Hz, 2H), 6.56 (d, *J* = 15.9 Hz, 1H), 6.28–6.16 (m, 1H), 4.77 (m, 2H), 4.06 (d, *J* = 4.1 Hz, 1H), 3.75 (s, 3H), 3.23–3.13 (m, 1H), 2.51–2.42 (m, 1H), 2.40–2.32 (m, 1H), 2.20–2.04 (m, 2H), 2.03–1.91 (m, 2H), 1.82–1.65 (m, 2H). ¹³**C NMR** (100 MHz, Chloroform-*d*) δ 211.07, 172.91, 152.78, 142.06, 133.88, 128.53, 127.98, 126.56, 122.75, 115.59, 114.78, 65.58, 59.07, 55.65, 53.58, 41.83, 30.59, 26.85, 24.54. **HRMS (ESI)** *m/z*: calcd for C₂₄H₂₈NO₄ [M+H]⁺ 394.2013, found 394.2005.

Optical Rotation: $[\alpha]^{25}_{D}$ = 22.3 (c = 1.0, CH₂Cl₂). The ee value was determined by **HPLC analysis:** 95.1:4.9 *er*, Chiralcel AD-H colum, hexane/*i*-PrOH = 90/10, flow rate = 1.0 mL/min, λ = 254 nm, retention time: t_{major} = 36.9 min, t_{minor} = 27.4 min.

4	36.269	1036173	23235	38.727	2	36.891	5616542	117881	95.146
Total		2675606	71218	100.000	Total		5903064	126722	100.000

(S)-N-isopropyl-2-((4-methoxyphenyl)amino)-2-((R)-2-oxocyclohexyl)acetamide (3oa)

White solid (44.9 mg, 70% yield); 95:5 *dr*. m.p. = 118-120 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 6.84 (dd, *J* = 12.7, 8.5 Hz, 1H), 6.76 (d, *J* = 8.9 Hz, 2H), 6.55 (d, *J* = 8.9 Hz, 2H), 4.09–3.97 (m, 1H), 3.92 (d, *J* = 3.0 Hz, 1H), 3.73 (s, 3H), 3.36–3.20 (m, 1H), 2.38 (m, 2H), 2.10–2.01 (m, 2H), 1.90–1.82 (m, 1H), 1.71–1.50 (m, 3H), 1.13 (d, *J* = 6.6 Hz, 3H), 1.08 (d, *J* = 6.6 Hz, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 213.61, 170.97, 152.53, 141.14, 114.98, 114.46, 58.92, 55.68, 53.22, 42.34, 41.22, 31.08, 27.62, 24.91, 22.57, 22.55. HRMS (ESI) *m/z*: calcd for C₁₈H₂₆N₂NaO₃ [M+Na]⁺ 341.1836, found 314.1835.

Optical Rotation: $[\alpha]^{25}_{D}$ = 36.5 (c = 1.0, CH₂Cl₂). The *ee* value was determined by **HPLC analysis:** 95.3:4.7 *er*, Chiralcel AD-H colum, hexane/*i*-PrOH = 90/10, flow rate = 1.0 mL/min, λ = 254 nm, retention time: t_{major} = 19.3 min, t_{minor} = 15.1 min.

250	515 F1.	88 90 1 1 1 1 1 17.5	20.0 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	min	750 250 0	1800 15-0 15-0	17.5	10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	min
Peak	RetTime	Area	Height	Conc.	Peak	RetTime	Area	Height	Conc.
	(min)	(mV*s)	(mV)	(%)		(min)	(mV*s)	(mV)	(%)
1	14.315	672392	32522	10.110					
2	15.169	2681236	117944	40.314	1	15.081	805876	52062	4.692
3	16.328	623874	27008	9.380					
4	19.525	2673381	95141	40.196	2	19.271	16369050	577166	95.308
Total		6650883	272615	100.000	Total		17174926	629228	100.000

(S)-*N*-(4-fluorophenethyl)-2-((4-methoxyphenyl)amino)-2-((R)-2-oxocyclohexyl)acetamide (**3pa**) White solid (55 mg, 69% yield); >99:1 *dr*. m.p. = 146-147 °C. ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.09 (dd, J = 8.5, 5.5 Hz, 2H), 7.07–6.97 (m, 1H), 6.93 (t, J = 8.7 Hz, 2H), 6.75 (d, J = 8.9 Hz, 2H), 6.50 (d, J = 8.9Hz, 2H), 3.87 (d, J = 2.9 Hz, 1H), 3.74 (s, 3H), 3.47 (q, J = 6.7 Hz, 2H), 3.38–3.26 (m, 1H), 2.74 (t, J = 6.9Hz, 2H), 2.45–2.31 (m, 2H), 2.11–1.97 (m, 2H), 1.90–1.81 (m, 1H), 1.72–1.52 (m, 3H). ¹³**C NMR** (100 MHz, Chloroform-*d*) δ 213.42, 172.10, 161.52 (d, $J_1 = 243$ Hz, Cq), 152.70, 140.92, 134.47 (d, $J_4 = 3$ Hz, Cq), 134.44, 130.21 (d, $J_3 = 7$ Hz, CH), 130.13, 115.22 (d, $J_2 = 21$ Hz, CH), 115.03, 114.40, 59.28, 55.69, 53.13, 42.34, 40.51, 34.87, 31.28, 27.59, 24.90. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -116.85. HRMS (ESI) *m/z*: calcd for C₂₃H₂₇FN₂NaO₃ [M+Na]⁺ 421.1903, found 421.1912.

Optical Rotation: $[\alpha]^{25}_{D} = 42$ (c = 1.0, CH₂Cl₂). The ee value was determined by **HPLC analysis:** 95.0:5.0 *er*, Chiralcel AD-H colum, hexane/*i*-PrOH = 90/10, flow rate = 1.0 mL/min, λ = 254 nm, retention time: t_{major} = 61.1 min, t_{minor} = 28.8 min.

(S)-*N*-cyclohexyl-2-((4-methoxyphenyl)amino)-2-((R)-2-oxocyclohexyl)acetamide (**3qa**) Yellow oil (53.8 mg, 75% yield); 99:1 *dr.* ¹**H NMR** (400 MHz, Chloroform-*d*) δ 6.89 (s, 1H), 6.77 (d, *J* = 8.3 Hz, 2H), 6.58 (d, *J* = 8.3 Hz, 2H), 3.97 (s, 1H), 3.74 (s, 4H), 3.30 (m, 1H), 2.39 (m, 2H), 2.13–2.04 (m, 2H), 1.89–1.55 (m, 9H), 1.39–1.27 (m, 2H), 1.24–1.07 (m, 3H). ¹³**C NMR** (100 MHz, Chloroform-*d*) δ 213.68, 170.71, 152.67, 141.01, 115.04, 114.62, 58.92, 55.74, 53.25, 47.98, 42.37, 32.83, 30.98, 27.66, 26.51, 25.49, 24.94, 24.65. **HRMS (ESI)** *m/z*: calcd for C₂₁H₃₀N₂NaO₃ [M+Na]⁺ 381.2149, found 381.2142. **Optical Rotation:** [α]²⁵_D = 22.9 (c = 1.0, CH₂Cl₂). The *ee* value was determined by **HPLC analysis:** 97.2:2.8 *er*, Chiralcel AD-H colum, hexane/*i*-PrOH = 90/10, flow rate = 0.7 mL/min, λ = 254 nm, retention time: t_{major} = 19.0 min, t_{minor} = 17.4 min.

1	17.196	1078515	41896	45.667	1	17.388	460063	22238	2.802
2	19.454	1039284	35459	44.006	2	19.047	15956562	679586	97.198
3	21.618	130158	4175	5.511					
4	31.870	113733	2270	4.816					
Total		2361690	83800	100.000	Total		16416625	701824	100.000

Ethyl 2-(4-((S)-2-((4-methoxyphenyl)amino)-2-((R)-2-oxocyclohexyl)acetamido)phenyl)-acetate (**3ra**) Brown oil (61.3 mg, 70% yield); 96:4 dr. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.36–7.27 (m, 4H), 6.77 (d, *J* = 8.9 Hz, 2H), 6.64 (d, *J* = 8.9 Hz, 2H), 4.20–4.09 (m, 3H), 3.74 (s, 3H), 3.63–3.59 (m, 2H), 2.83–2.58 (m, 1H), 2.42–2.17 (m, 1H), 2.16–1.91 (m, 3H), 1.75–1.46 (m, 4H), 1.28–1.25 (m, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 213.48, 175.06, 171.40, 152.31, 141.67, 133.91, 133.60, 130.01, 127.51, 114.88, 114.04, 90.08, 61.01, 57.91, 55.74, 46.97, 40.89, 33.51, 24.70, 23.24, 22.17, 14.12. HRMS (ESI) *m/z*: calcd for C₂₅H₃₁N₂O₅ [M+H]⁺ 439.2233, found 439.2231.

Optical Rotation: $[\alpha]^{25}_{D}$ = 15.4 (c = 1.0, CH₂Cl₂). The ee value was determined by **HPLC analysis:** 96.5:3.5 *er*, Chiralcel AD-H colum, hexane/*i*-PrOH = 95/5, flow rate = 0.7 mL/min, λ = 240 nm, retention time: t_{major} = 21.7 min, t_{minor} = 23.4 min.

$\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$						75 200		27.5 30.0	
Peak	RetTime	Area	Height	Conc.	Peak	RetTime	Area	Height	Conc.
	(min)	(mV*s)	(mV)	(%)		(min)	(mV*s)	(mV)	(%)
1	21.397	4442924	175831	22.775	1	21.677	42227	1976	3.523
2	22.917	4562205	149089	23.386	2	23.338	1156504	41481	96.477
3	26.130	5338881	148492	27.368					
4	28.516	5164019	134127	26.471					
Total		19508028	607539	100.000	Total		1198731	43457	100.000

Ethyl 4-((S)-2-((4-methoxyphenyl)amino)-2-((R)-2-oxocyclohexyl)acetamido)benzoate (**3sa**) Brown oil (57.7 mg, 68% yield); 99:1 *dr.* ¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.03 (d, *J* = 8.5 Hz, 2H), 7.43 (d, *J* = 8.6 Hz, 2H), 6.76 (d, *J* = 9.1 Hz, 2H), 6.62 (d, *J* = 8.9 Hz, 2H), 4.64 (d, *J* = 5.9 Hz, 1H),
4.40–4.33 (m, 2H), 3.73 (s, 3H), 2.83–2.62 (m, 1H), 2.17–2.08 (m, 1H), 1.78–1.60 (m, 2H), 1.59–1.41 (m, 2H), 1.39 (t, J = 7.1 Hz, 3H), 1.28–1.12 (m, 1H), 1.12–0.96 (m, 1H), 0.96–0.73 (m, 1H). ¹³**C NMR** (100 MHz, Chloroform-*d*) δ 213.67, 174.86, 166.03, 152.41, 141.38, 139.32, 130.68, 130.28, 126.62, 118.85, 114.90, 114.09, 90.26, 61.16, 57.92, 55.72, 47.15, 42.26, 33.32, 24.76, 23.19, 21.96, 14.26. **HRMS (ESI)** *m*/z: calcd for C₂₄H₂₉N₂O₅ [M+H]⁺ 425.2076, found 425.2056.

Optical Rotation: $[\alpha]^{25}_{D} = 16.3$ (c = 1.0, CH₂Cl₂). The *ee* value was determined by **HPLC analysis:** 94.0:6.0 *er*, Chiralcel AD-H colum, hexane/*i*-PrOH = 90/10, flow rate = 0.7 mL/min, λ = 240 nm, retention time: t_{major} = 89.4 min, t_{minor} = 42.1 min.

(S)-*N*-(2-(5-methoxy-1H-indol-2-yl)ethyl)-2-((4-methoxyphenyl)amino)-2-((R)-2-oxocyclo-hexyl)acetamid e (**3ta**)

Brown oil (67.4mg, 75% yield);85:15 *dr*. ¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.05 (s, 1H), 7.22 (d, *J* = 8.8 Hz, 1H), 7.09 (t, *J* = 5.8 Hz, 1H), 7.03 (d, *J* = 2.5 Hz, 1H), 6.89 (d, *J* = 2.4 Hz, 1H), 6.84 (m, 1H), 6.72 (d, *J* = 8.9 Hz, 2H), 6.47 (d, *J* = 8.9 Hz, 2H), 3.89 (d, *J* = 3.2 Hz, 1H), 3.85 (s, 3H), 3.73 (s, 3H), 3.56 (m, 2H), 3.36–3.06 (m, 1H), 2.89 (t, *J* = 6.8 Hz, 2H), 2.51–2.24 (m, 2H), 2.09–1.96 (m, 2H), 1.88–1.78 (m, 1H), 1.73–1.48 (m, 3H). ¹³**C NMR** (100 MHz, Chloroform-*d*) δ 213.46, 172.15, 153.89, 152.47, 141.10, 131.40, 127.61, 122.97, 114.96, 114.34, 112.39, 112.20, 111.85, 100.35, 59.16, 55.87, 55.69, 53.08, 42.29, 39.40, 31.21, 27.50, 25.18, 24.86. **HRMS (ESI)** *m/z*: calcd for C₂₆H₃₂N₃O₄ [M+H]⁺ 450.2393, found 450.2380. **Optical Rotation:** [α]²⁵_D = 63.5 (c = 1.0, CH₂Cl₂). The *ee* value was determined by **HPLC analysis:** 95.7:4.3 *er*, Chiralcel AD-H colum, hexane/*i*-PrOH = 98/2, flow rate = 1.0 mL/min, λ = 240 nm, retention time: t_{major} = 74 min, t_{minor} = 56.3 min.

	9 9 • • • • • • • • • •	18 90 05 0 70.0	APT-1 75.0 80.0	1 1 1 1 1 1 85.0 min		100 000 000 000 000			
Peak	RetTime	Area	Height	Conc.	Peak	RetTime	Area	Height	Conc.
	(min)	(mV*s)	(mV)	(%)		(min)	(mV*s)	(mV)	(%)
1	55.067	9755168	144597	31.148	1	56.303	1244005	18722	4.303
2	66.161	5841788	76480	18.653					
3	73.230	9857390	112482	31.475	2	74.025	27669404	280501	95.697
4	77.637	5864184	61254	18.724					
Total		31318529	394813	100.000	Total		28913409	299222	100.000

Ethyl (2S)-2-((4-methoxyphenyl)amino)-2-((1R)-3-methyl-2-oxocyclohexyl)acetate (**3ab**) Yellow oil (42.2 mg, 66% yield); 97:3 *dr*. ¹**H NMR** (400 MHz, DMSO-*d*₆) δ 6.71 (d, *J* = 9.0 Hz, 2H), 6.61 (d, *J* = 9.0 Hz, 2H), 5.48 (d, *J* = 10.1 Hz, 1H), 4.34–4.24 (m, 1H), 3.96 (q, *J* = 7.1 Hz, 2H), 3.63 (s, 3H), 2.81–2.66 (m, 2H), 2.07–1.92 (m, 2H), 1.82–1.73 (m, 2H), 1.67–1.58 (m, 1H), 1.49–1.40 (m, 1H), 1.07 (t, *J* = 7.1 Hz, 3H), 0.99 (d, *J* = 6.7 Hz, 3H). ¹³**C NMR** (100 MHz, DMSO-*d*₆) δ 212.85, 172.89, 151.38, 141.86, 114.52, 114.06, 60.13, 56.07, 55.27, 51.91, 42.62, 34.55, 28.59, 19.70, 15.24, 14.00. **HRMS (ESI**) *m/z*: calcd for C₁₈H₂₅NNaO₄ [M+Na]⁺ 342.1681, found 342.1670.

Optical Rotation: $[\alpha]^{25}_{D} = 23.9$ (c = 1.0, CH₂Cl₂). The ee value was determined by **HPLC analysis:** 97.9:2.1 *er*, Chiralcel AD-H colum, hexane/*i*-PrOH = 90/10, flow rate = 0.7 mL/min, λ = 240 nm, retention time: $t_{major} = 26.4$ min, $t_{minor} = 25.9$ min.

Ethyl (S)-2-((R)-4,4-dimethyl-2-oxocyclohexyl)-2-((4-methoxyphenyl)amino)acetate (**3ac**) Yellow oil (51.3 mg, 77% yield); >99:1 *dr*. ¹**H NMR** (400 MHz, Chloroform-*d*) δ 6.76 (d, *J* = 8.9 Hz, 2H), 6.65 (d, *J* = 8.9 Hz, 2H), 4.18–4.10 (m, 2H), 3.97 (d, *J* = 4.0 Hz, 1H), 3.73 (s, 3H), 3.09–2.95 (m, 1H), 2.26–2.19 (m, 1H), 2.16–2.00 (m, 3H), 1.76–1.62 (m, 2H), 1.21 (t, *J* = 7.1 Hz, 3H), 1.05 (s, 3H), 0.87 (s, 3H). ¹³**C NMR** (100 MHz, Chloroform-*d*) δ 211.02, 173.11, 152.84, 142.18, 115.83, 114.75, 61.20, 58.97, 55.69, 54.66, 52.44, 37.47, 36.25, 31.41, 26.16, 25.35, 14.09. **HRMS (ESI)** *m/z*: calcd for C₁₉H₂₇NNaO₄ [M+Na]⁺ 356.1838, found 356.1827.

Optical Rotation: $[\alpha]^{25}_{D}$ = 16.8 (c = 1.0, CH₂Cl₂). The *ee* value was determined by **HPLC analysis:** 96.0:4.0 *er*, Chiralcel AD-H colum, hexane/*i*-PrOH = 90/10, flow rate = 1.0 mL/min, λ = 240 nm, retention time: t_{major} = 40.4 min, t_{minor} = 34.2 min.

Ethyl (S)-2-((R)-5,5-dimethyl-2-oxocyclohexyl)-2-((4-methoxyphenyl)amino)acetate (3ad)7

Yellow oil (50.7 mg, 76% yield); 95:5 *dr*. ¹H NMR (600 MHz, Chloroform-*d*) δ 6.76 (d, J = 9.0 Hz, 2H), 6.63 (d, J = 9.0 Hz, 2H), 4.17–4.10 (m, 2H), 3.86 (d, J = 3.4 Hz, 1H), 3.73 (s, 3H), 3.33–3.21(m, 1H), 2.51–2.44 (m, 1H), 2.31–2.25 (m, 1H), 1.93 (t, J = 13.2 Hz, 1H), 1.78–1.73 (m, 1H), 1.71–1.62 (m, 2H), 1.24 (s, 3H), 1.21 (t, J = 7.1 Hz, 4H), 1.04 (s, 3H). ¹³C NMR (150 MHz, Chloroform-*d*) δ 211.46, 173.12, 152.79, 142.36, 115.72, 114.74, 61.16, 59.42, 55.66, 49.55, 42.88, 38.80, 37.99, 31.48, 30.63, 24.55, 14.06.

Optical Rotation: $[\alpha]^{25}_{D} = 14.5$ (c = 1.0, CH₂Cl₂). The ee value was determined by **HPLC analysis:** 94.8:5.2 *er*, Chiralcel AD-H colum, hexane/*i*-PrOH = 90/10, flow rate = 0.5 mL/min, λ = 254 nm, retention

time: t _{major} =	22.7	min,	t _{minor} =	17.9) min
----------------------------	------	------	----------------------	------	-------

mV					1750 mV				
150					1500				
125 -					1250				
100		31.786	3.007		1000			32.857	
75		\bigwedge ()		750		(Ĵ	
50					500		/		
25		\downarrow \downarrow			250		31.586		
•					•	↑ ↓ ↓ ↓ ↓ ↓ 30.0	32.5		35.0 min
Peak	RetTime	Area	Height	Conc.	Peak	RetTime	Area	Height	Conc.
	(min)	(mV*s)	(mV)	(%)		(min)	(mV*s)	(mV)	(%)
1	31.786	3048777	78276	50.013	1	31.586	3503601	93847	9.285
2	33.007	3047239	76567	49.987	2	32.857	34230219	848048	90.715
Total		6096016	154843	100.000	Total		37733820	941895	100.000

Ethyl (S)-2-((4-methoxyphenyl)amino)-2-((R)-2-oxocycloheptyl)acetate (3ae)7

Yellow oil (48 mg, 75% yield); 99:1 *dr*. ¹**H NMR** (400 MHz, Chloroform-*d*) δ 6.77 (d, *J* = 8.9 Hz, 2H), 6.67 (d, *J* = 8.9 Hz, 2H), 4.31 (d, *J* = 4.9 Hz, 1H), 4.16 (q, *J* = 7.1 Hz, 2H), 3.74 (s, 3H), 3.07–2.98 (m, 1H), 2.61–2.47 (m, 2H), 2.03–1.84 (m, 4H), 1.60–1.49 (m, 2H), 1.43–1.32 (m, 2H), 1.23 (t, *J* = 7.1 Hz, 3H). ¹³**C NMR** (100 MHz, Chloroform-*d*) δ 214.19, 172.55, 152.73, 140.91, 115.23, 114.85, 61.29, 60.69, 55.70, 54.34, 43.88, 29.90, 29.01, 27.16, 24.22, 14.15.

Optical Rotation: $[\alpha]^{25}_{D}$ = 15.6 (c = 1.0, CH₂Cl₂). The *ee* value was determined by **HPLC analysis:** 94.8:5.2 *er*, Chiralcel AD-H colum, hexane/*i*-PrOH = 90/10, flow rate = 1.0 mL/min, λ = 254 nm, retention time: t_{major} = 22.7 min, t_{minor} = 17.9 min.

Ethyl (S)-2-((S)-4-oxotetrahydro-2H-pyran-3-yl)-2-(p-tolylamino)acetate (**3kf**)

Yellow oil (42 mg, 72% yield); 85:15 *dr*. ¹**H NMR** (400 MHz, Chloroform-*d*) δ 6.98 (d, *J* = 8.4 Hz, 2H), 6.56 (d, *J* = 8.4 Hz, 2H), 4.26–4.08 (m, 5H), 3.97 (t, *J* = 5.9 Hz, 1H), 3.93–3.82 (m, 1H), 3.84–3.72 (m, 1H), 3.32–2.88 (m, 1H), 2.65–2.54 (m, 1H), 2.53–2.43 (m, 2H), [2.23, 2.04] (s, 3H), 1.22 (t, *J* = 7.1 Hz, 3H). ¹³**C NMR** (100 MHz, Chloroform-*d*) δ 206.21, 171.97, 144.86, 129.77, 128.21, 114.19, 69.94, 67.75, 61.52, 55.32, 53.77, 42.81, 42.02, 20.33, 14.05. **HRMS (ESI)** *m/z*: calcd for C₁₆H₂₁NNaO₄ [M+Na]⁺ 314.1368, found 314.1353.

Optical Rotation: $[\alpha]^{25}_{D}$ = 8.6 (c = 1.0, CH₂Cl₂). The *ee* value was determined by **HPLC analysis:** 93.3:7.7 *er*, Chiralcel AD-H colum, hexane/*i*-PrOH = 96/4, flow rate = 1.0 mL/min, λ = 254 nm, retention time: t_{major} = 39.4 min, t_{minor} = 32.6 min.

Ethyl (S)-2-((4-methoxyphenyl)amino)-2-((R)-4-oxotetrahydro-2H-thiopyran-3-yl)acetate (3ag)⁷

Yellow oil (49.2mg, 76% yield); 95:5 *dr*. ¹**H NMR** (400 MHz, DMSO-*d*₆) δ 6.71 (d, *J* = 8.9 Hz, 2H), 6.63 (d, *J* = 9.0 Hz, 2H), 5.17 (d, *J* = 10.0 Hz, 1H), 4.52–4.35 (m, 1H), 4.09–4.03 (m, 2H), 3.64 (s, 3H), 3.26–3.16 (m, 1H), 3.09–3.01 (m, 1H), 2.99–2.88 (m, 3H), 2.71–2.58 (m, 2H), 1.13 (t, *J* = 7.1 Hz, 3H). ¹³**C NMR** (100 MHz, DMSO-*d*₆) δ 207.42, 171.93, 151.59, 141.83, 114.49, 114.34, 60.50, 56.64, 55.26, 54.50, 43.25, 31.32, 29.18, 14.03.

Optical Rotation: $[\alpha]^{25}_{D}$ = 32.5 (c = 1.0, CH₂Cl₂). The ee value was determined by **HPLC analysis:** 96.7:3.3 *er*, Chiralcel AD-H colum, hexane/*i*-PrOH = 90/10, flow rate = 1.0 mL/min, λ = 254 nm, retention time: t_{major} = 37.3 min, t_{minor} = 28.9 min.

90 mV 80 m 70 m 60 m 50 m 40 m 10 m 10 m 20 m	645 SZ 25.0	9100	35.0	* 	7500 2500 20.0	25.0	Bug etc	887 k) min
Peak	RetTime	Area	Height	Conc.	Peak	RetTime	Area	Height	Conc.
	(min)	(mV*s)	(mV)	(%)		(min)	(mV*s)	(mV)	(%)
1	25.979	1464355	42912	26.461					
2	29.316	1289711	35313	23.306	1	28.878	957661	29339	3.329
3	30.192	1464988	37351	26.473					
4	38.538	1314855	27447	23.760	2	37.268	27811493	465943	96.671
Total		5533909	143022	100.000	Total		28769154	495282	100.000

Ethyl (S)-2-((4-methoxyphenyl)amino)-2-((1R,5R)-5-methyl-2-oxocyclohexyl)acetate $(3ah)^7$ Yellow oil (50.5 mg, 79% yield); 80:20 *dr*. ¹H NMR (400 MHz, Chloroform-*d*) δ 6.73 (d, *J* = 8.9 Hz, 2H), 6.60 (d, *J* = 8.9 Hz, 2H), 4.16–4.07 (m, 3H), 3.69 (s, 3H), 3.20–2.94 (m, 1H), 2.42–2.31 (m, 2H), 2.26–2.09 (m, 1H), 2.06–1.90 (m, 2H), 1.79–1.48 (m, 2H), 1.18 (t, *J* = 7.1 Hz, 3H), 1.11 (d, *J* = 6.9 Hz, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 211.17, 172.65, 152.74, 141.23, 115.35, 114.57, 61.00, 58.80, 55.43, 50.23, 37.58, 36.13, 33.16, 26.66, 19.27, 13.99.

Optical Rotation: $[\alpha]^{25}_{D}$ = 23.6 (c = 1.0, CH₂Cl₂). The ee value was determined by **HPLC analysis:** 95.6:4.4 *er*, Chiralcel AD-H colum, hexane/*i*-PrOH = 90/10, flow rate = 0.5 mL/min, λ = 254 nm, retention time: t_{major} = 41.1 min, t_{minor} = 37.2 min.

6	41.257	634184	13496	5.891	2	41.130	84444729	1713470	95.563
7	42.800	518317	10633	4.815					
8	44.203	648479	12665	6.024					
Total		10764620	270560	100.000	Total		88365460	1825086	100.000

Ethyl (S)-2-((1R,5R)-5-(tert-butyl)-2-oxocyclohexyl)-2-((4-methoxyphenyl)amino)acetate (**3ai**)⁷ Yellow oil (52 mg, 72% yield); 98:2 *dr*. ¹**H NMR** (400 MHz, Chloroform-*d*) δ 6.74 (d, *J* = 8.9 Hz, 2H), 6.62 (d, *J* = 8.9 Hz, 2H), 4.32 (d, *J* = 9.2 Hz, 1H), 4.19–4.10 (m, 2H), 3.72 (s, 3H), 2.85–2.66 (m, 1H), 2.46–2.32 (m, 2H), 2.08–1.97 (m, 2H), 1.78–1.62 (m, 2H), 1.55–1.44 (m, 1H), 1.21 (t, *J* = 7.1 Hz, 4H), 0.92 (s, 9H). ¹³**C NMR** (100 MHz, DMSO-*d*₆) δ 210.35, 173.03, 151.72, 142.78, 114.90, 114.43, 60.56, 57.09, 55.69, 52.11, 46.01, 41.08, 32.63, 30.98, 27.85, 27.59, 14.55.

Optical Rotation: $[\alpha]^{25}_{D}$ = 26.5 (c = 1.0, CH₂Cl₂). The *ee* value was determined by **HPLC analysis:** 98.7:1.3 *er*, Chiralcel AD-H colum, hexane/*i*-PrOH = 90/10, flow rate = 1.0 mL/min, λ = 254 nm, retention time: t_{major} = 17.6 min, t_{minor} = 15.9 min.

000 000 000 000 000 000 000 000	88.6 	1851 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12		, 	8000		12.5	488 99 	1077
Peak	RetTime	Area	Height	Conc.	Peak	RetTime	Area	Height	Conc.
	(min)	(mV*s)	(mV)	(%)		(min)	(mV*s)	(mV)	(%)
1	9.768	4836354	258659	14.620					
2	10.701	8820779	435507	26.665					
3	11.991	9103491	392540	27.520					
4	12.885	4495806	210943	13.591					
5	13.146	1233104	90993	3.728					
6	15.160	1702352	79772	5.146					
7	15.588	1471966	67255	4.450	1	15.857	1024175	55899	1.259
8	16.671	1416189	61151	4.281	2	17.622	80332209	2940636	98.741
Total		33080042	1596820	100.000	Total		81356384	2996535	100.000

Ethyl (1R,3R)-3-((S)-2-ethoxy-1-((4-methoxyphenyl)amino)-2-oxoethyl)-4-oxocyclohexan-e-1-carboxylate (**3a**j)⁷

Yellow oil (62.6 mg, 83% yield); 97:3 *dr.* ¹**H NMR** (400 MHz, Chloroform-*d*) δ 6.78 (d, *J* = 8.9 Hz, 2H), 6.66 (d, *J* = 8.9 Hz, 2H), 4.26 (q, *J* = 7.1 Hz, 2H), 4.21–4.14 (m, 2H), 3.96 (d, *J* = 4.3 Hz, 1H), 3.76 (s, 3H), 3.45–3.30 (m, 1H), 3.02–2.90 (m, 1H), 2.60–2.32 (m, 4H), 2.28–2.19 (m, 1H), 2.01–1.95 (m, 1H), 1.33 (t, *J* = 7.1 Hz, 4H), 1.23 (t, *J* = 7.1 Hz, 3H). ¹³**C NMR** (100 MHz, Chloroform-*d*) δ 210.12, 173.99, 172.67, 152.94, 142.05, 115.75, 114.79, 61.30, 60.95, 59.13, 55.70, 50.20, 38.48, 38.20, 31.05, 27.61, 14.25, 14.10.

Optical Rotation: $[\alpha]^{25}_{D}$ = 29.2 (c = 1.0, CH₂Cl₂). The ee value was determined by **HPLC analysis:** 96.5:3.5 *er*, Chiralcel AD-H colum, hexane/*i*-PrOH = 90/10, flow rate = 1.0 mL/min, λ = 240 nm, retention time: t_{major} = 37.0 min, t_{minor} = 23.4 min.

Ethyl 2-((R)-3,3-dimethyl-9-oxo-1,5-dioxaspiro[5.5]undecan-8-yl)-2-((4-methoxyphenyl)a-mino)acetate (**3ak**)⁷

Yellow oil (63 mg, 78% yield); 97:3 *dr*. ¹**H NMR** (600 MHz, Chloroform-*d*) δ 6.76 (d, *J* = 8.8 Hz, 2H), 6.63 (d, *J* = 8.9 Hz, 2H), 4.25–4.07 (m, 3H), 3.94 (d, *J* = 3.4 Hz, 1H), 3.73 (s, 3H), 3.57 (s, 2H), 3.55 (d, *J* = 5.1 Hz, 2H), 3.40–3.32 (m, 1H), 2.60–2.50 (m, 3H), 2.36–2.29 (m, 1H), 2.07 (t, *J* = 13.3 Hz, 1H), 1.80–1.72 (m, 1H), 1.21 (t, *J* = 7.1 Hz, 3H), 1.04 (s, 3H), 0.98 (s, 3H). ¹³**C NMR** (150 MHz, Chloroform-*d*) δ 209.91,

172.69, 152.97, 142.13, 115.89, 114.81, 96.60, 70.74, 70.47, 61.30, 59.02, 55.71, 48.82, 36.85, 35.42, 30.51, 30.24, 22.64, 22.52, 14.10.

Optical Rotation: $[\alpha]^{25}D = 20.8$ (c = 1.0, CH₂Cl₂). The *ee* value was determined by **HPLC analysis:** 98.9:1.1 *er*, Chiralcel AD-H colum, hexane/*i*-PrOH = 90/10, flow rate = 1.0 mL/min, λ = 240 nm, retention time: $t_{major} = 29.1$ min, $t_{minor} = 21.5$ min.

Ethyl (S)-2-((4-methoxyphenyl)amino)-2-((R)-8-oxo-1,4-dioxaspiro[4.5]decan-7-yl)acetate (**3a**l)⁷ Yellow oil (59.5mg, 82% yield); >99:1 dr. ¹**H NMR** (400 MHz, Chloroform-*d*) δ 6.75 (d, *J* = 8.9 Hz, 2H), 6.62 (d, *J* = 8.9 Hz, 2H), 4.37–4.09 (m, 3H), 4.09–4.00 (m, 4H), 3.91 (d, *J* = 3.6 Hz, 1H), 3.73 (s, 3H), 3.53–3.42 (m, 1H), 2.72–2.62 (m, 1H), 2.45–2.36 (m, 1H), 2.29 (t, *J* = 13.1 Hz, 1H), 2.14–2.07 (m, 1H), 2.05–1.93 (m, 2H), 1.21 (t, *J* = 7.1 Hz, 3H). ¹³**C NMR** (100 MHz, Chloroform-*d*) δ 209.58, 172.65, 152.89, 142.10, 115.83, 114.72, 107.47, 64.81, 64.65, 61.29, 58.98, 55.65, 50.00, 37.96, 37.59, 33.81, 14.08. **Optical Rotation:** [α]²⁵_D = 22.0 (c = 1.0, CH₂Cl₂). The ee value was determined by **HPLC analysis:** 99.7:0.3 *er*, Chiralcel AD-H colum, hexane/*i*-PrOH = 90/10, flow rate = 1.0 mL/min, λ = 254 nm, retention time: t_{major} = 49.0 min, t_{minor} = 44.0 min.

|--|

Ethyl (2S,3R)-2-((4-methoxyphenyl)amino)-3-methyl-4-oxohexanoate (3am)7

Yellow oil (37 mg, 63% yield); 99:1 *dr.* ¹**H NMR** (600 MHz, Chloroform-*d*) δ 6.75 (d, J = 9.0 Hz, 2H), 6.64 (d, J = 9.0 Hz, 2H), 4.19 (d, J = 7.0 Hz, 1H), 4.16–4.10 (m, 2H), 3.73 (s, 3H), 3.08–2.98 (m, 1H), 2.58–2.49 (m, 2H), 1.20 (t, J = 7.2 Hz, 3H), 1.17 (d, J = 7.1 Hz, 3H), 1.06 (t, J = 7.2 Hz, 3H). ¹³**C NMR** (150 MHz, Chloroform-*d*) δ 212.20, 172.76, 153.05, 140.80, 115.81, 114.79, 61.16, 60.78, 55.64, 48.36, 34.94, 14.12, 13.36, 7.50.

Optical Rotation: $[\alpha]^{25_D} = -19.6$ (c = 1.0, CH₂Cl₂). The ee value was determined by **HPLC analysis:** 96.5:3.5 *er*, Chiralcel AD-H colum, hexane/*i*-PrOH = 96/4, flow rate = 1.0 mL/min, λ = 240 nm, retention time: $t_{major} = 32.2$ min, $t_{minor} = 37.0$ min.

Ethyl (2S,3R)-3-formyl-2-((4-methoxyphenyl)amino)-4-methylpentanoate (3an)⁷

Yellow oil (38.7 mg, 66% yield); 90:10 *dr*. ¹**H NMR** (600 MHz, Chloroform-*d*) δ 9.74 (d, *J* = 3.5 Hz, 1H), 6.76 (d, *J* = 8.9 Hz, 2H), 6.66 (d, *J* = 8.9 Hz, 2H), 4.35 (d, *J* = 7.7 Hz, 1H), 4.14 (q, *J* = 7.2 Hz, 2H), 3.73 (s, 3H), 2.61–2.53 (m, 1H), 2.16–2.05 (m, 1H), 1.20 (t, *J* = 7.1 Hz, 3H), 1.11 (d, *J* = 6.9 Hz, 3H), 1.07 (d, *J* = 6.9 Hz, 3H). ¹³**C NMR** (150 MHz, Chloroform-*d*) δ 203.20, 172.81, 153.26, 140.46, 115.86, 114.77, 61.30, 59.58, 57.24, 55.59, 27.51, 21.20, 19.12, 14.08.

Optical Rotation: $[\alpha]^{25}_{D}$ = -17.8 (c = 1.0, CH₂Cl₂). The *ee* value was determined by **HPLC analysis:**

900 mV 800	00000 		900 80 		450 mV 400		32.5 35.0	2005 BD	
Peak	RetTime	Area	Height	Conc.	Peak	RetTime	Area	Height	Conc.
	(min)	(mV*s)	(mV)	(%)		(min)	(mV*s)	(mV)	(%)
1	30.310	14305758	422877	29.542					
2	31.709	9734467	271744	20.102	1	31.433	8218583	218268	96.388
3	35.229	9849046	233238	20.339	2	35.362	307995	16204	3.612
4	36.706	14535711	381538	30.017					
Total		48424982	1309397	100.000	Total		8526578	234472	100.000

96.4:3.6 *er*, Chiralcel AD-H colum, hexane/*i*-PrOH = 88/12, flow rate = 0.5 mL/min, λ = 240 nm, retention time: t_{major} = 31.4 min, t_{minor} = 35.4 min.

Ethyl (2S,3R)-3-formyl-2-((4-methoxyphenyl)amino)octanoate (3en)⁷

Yellow oil (43.3 mg, 71% yield); 99:1 *dr.* ¹**H NMR** (400 MHz, DMSO-*d*₆) δ 9.66 (d, *J* = 3.9 Hz, 1H), 6.73 (d, *J* = 9.0 Hz, 2H), 6.68 (d, *J* = 9.0 Hz, 2H), 5.83 (m, 1H), 5.66 (d, *J* = 10.7 Hz, 1H), 5.24 (dd, *J* = 17.3, 1.7 Hz, 1H), 5.17 (dd, *J* = 10.5, 1.6 Hz, 1H), 4.56 (d, *J* = 5.3 Hz, 2H), 4.53–4.47 (m, 1H), 3.64 (s, 3H), 2.50–2.44 (m, 1H), 2.02–1.88 (m, 1H), 1.01 (d, *J* = 6.9 Hz, 3H), 0.97 (d, *J* = 6.8 Hz, 3H). ¹³**C NMR** (100 MHz, DMSO-*d*₆) δ 203.74, 172.27, 151.87, 141.20, 132.19, 117.85, 114.62, 114.48, 64.83, 58.60, 56.02, 55.23, 26.87, 20.97, 18.42.

Optical Rotation: $[\alpha]^{25}_{D}$ = -26.5 (c = 1.0, CH₂Cl₂). The *ee* value was determined by **HPLC analysis:** 96.1:3.9 *er*, Chiralcel AD-H colum, hexane/*i*-PrOH = 98/2, flow rate = 1.0 mL/min, λ = 254 nm, retention time: t_{major} = 87.5 min, t_{minor} = 66.8 min.

4	96.121	1683905	15029	25.956				
Total		6487528	67816	100.000	Total	1182078	11463	100.000

Benzyl (2S,3R)-3-formyl-2-((4-methoxyphenyl)amino)-4-methylpentanoate (3gn)⁷

Yellow oil (48 mg, 68% yield); 92:8 *dr*. ¹**H NMR** (400 MHz, Chloroform-*d*) δ 9.72 (d, *J* = 3.4 Hz, 1H), 7.37–7.28 (m, 3H), 7.26–7.14 (m, 2H), 6.76 (d, *J* = 8.9 Hz, 2H), 6.66 (d, *J* = 8.9 Hz, 2H), 5.13 (d, *J* = 1.1 Hz, 2H), 4.43 (d, *J* = 7.9 Hz, 1H), 3.74 (s, 3H), 2.68–2.57 (m, 1H), 2.09–1.98 (m, 1H), 1.10 (d, *J* = 7.0 Hz, 3H), 1.04 (d, *J* = 6.8 Hz, 3H). ¹³**C NMR** (100 MHz, Chloroform-*d*) δ 203.09, 172.66, 153.22, 140.30, 135.11, 128.42, 128.27, 128.13, 115.85, 114.72, 66.95, 59.41, 57.16, 55.52, 27.46, 21.12, 18.98.

Optical Rotation: $[\alpha]^{25}_{D}$ = -11.3 (c = 1.0, CH₂Cl₂). The ee value was determined by **HPLC analysis:** 96.7:3.3 *er*, Chiralcel AD-H colum, hexane/*i*-PrOH = 90/10, flow rate = 0.7 mL/min, λ = 254 nm, retention time: t_{major} = 26.7 min, t_{minor} = 17.5 min.

Ethyl (2S,3R)-3-formyl-2-((4-methoxyphenyl)amino)octanoate (3ao)⁷

Yellow oil (43.7 mg, 68% yield); 92:8 *dr*. ¹H NMR (400 MHz, Chloroform-*d*) δ 9.65 (d, *J* = 2.5 Hz, 1H), 6.77 (d, *J* = 8.9 Hz, 2H), 6.64 (d, *J* = 8.9 Hz, 2H), 4.26 (d, *J* = 6.5 Hz, 1H), 4.21–4.12 (m, 2H), 3.73 (s, 3H), 2.87–2.64 (m, 1H), 1.78–1.67 (m, 1H), 1.60–1.51 (m, 1H), 1.37–1.26 (m, 6H), 1.22 (t, *J* = 7.1 Hz, 3H), 0.89–0.84 (m, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 202.34, 172.27, 153.20, 140.39, 115.72, 114.88, 61.53, 58.14, 55.68, 53.97, 31.68, 26.99, 25.69, 22.36, 14.18, 13.96.

Optical Rotation: $[\alpha]^{25}_{D}$ = -22.6 (c = 1.0, CH₂Cl₂). The *ee* value was determined by **HPLC analysis:**

2500 2000 1500 500 0	· · · · · · · · · · · · · · · · · · ·	588 24- 		min	2500	15.0	SE F L 1 SE F L	20.0	
Peak	RetTime	Area	Height	Conc.	Peak	RetTime	Area	Height	Conc.
	(min)	(mV*s)	(mV)	(%)		(min)	(mV*s)	(mV)	(%)
1	17.188	30944242	1363793	49.740	1	17.375	1142500	61585	3.449
2	18.772	31267358	1230548	50.260	2	18.728	31984718	1303755	96.551
Total		62211600	2594341	100.000	Total		33127217	1365339	100.000

96.6:3.4 *er*, Chiralcel AD-H colum, hexane/*i*-PrOH = 90/10, flow rate = 0.7 mL/min, λ = 254 nm, retention time: t_{major} = 17.4 min, t_{minor} = 18.3 min.

(S,Z)-*N*-(4-fluorophenethyl)-3-(hydroxymethylene)-2-((4-methoxyphenyl)amino)-4-methyl-pentanamide (**3pn**)

Yellow oil (47.9 mg, 62% yield); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.23–7.03 (m, 1H), 7.03–6.86 (m, 5H), 6.75 (d, *J* = 8.9 Hz, 2H), 6.51 (d, *J* = 8.9 Hz, 2H), 5.84 (s, 1H), 5.07 (s, 1H), 3.75 (s, 3H), 3.72 (s, 1H), 3.31–3.19 (m, 1H), 3.01–2.77 (m, 2H), 2.75–2.67 (m, 1H), 2.60–2.48 (m, 1H), 1.13 (d, *J* = 6.7 Hz, 3H), 1.05 (d, *J* = 7.0 Hz, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 169.99, 167.85, 161.52 (d, *J*₁ = 243 Hz, Cq), 153.30, 139.14, 134.74, 134.71 (d, *J*₄ = 3 Hz, Cq), 130.27 (d, *J*₃ = 7 Hz, CH), 130.19, 120.58, 115.52, 115.20 (d, *J*₂ = 21 Hz, CH), 115.00, 72.93, 55.64, 41.40, 34.08, 27.03, 22.27, 20.08. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -116.58. HRMS (ESI) *m/z*: calcd for C₂₂H₂₆¹⁹FN₂O₄ [M+H]⁺ 369.1973, found 369.1981. Optical Rotation: [α]²⁵_D = -19.4 (c = 1.0, CH₂Cl₂). The *ee* value was determined by HPLC analysis: 95.0:5.0 *er*, Chiralcel AD-H colum, hexane/*i*-PrOH = 90/10, flow rate = 1.5 mL/min, λ = 254 nm, retention time: t_{major} = 10.1 min, t_{minor} = 35.5 min.

Ethyl *N*-(3,5-di-tert-butyl-4-hydroxybenzyl)-*N*-(4-methoxyphenyl)glycinate (**1a-BHT**)⁹ Colorless oil; ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.07 (s, 2H), 6.81 (d, *J* = 9.1 Hz, 2H), 6.73 (d, *J* = 9.2 Hz, 2H), 5.14 (s, 1H), 4.47 (s, 2H), 4.17 (q, *J* = 7.1 Hz, 2H), 3.94 (s, 2H), 3.75 (s, 3H), 1.41 (s, 18H), 1.23 (s, 3H).

Ethyl (S)-2-cyclohexyl-2-((4-methoxyphenyl)amino)acetate (4)¹⁰

Colorless oil (371 mg, 78% yield). ¹**H NMR** (400 MHz, DMSO-*d*₆) δ 6.66 (d, *J* = 9.0 Hz, 2H), 6.52 (d, *J* = 8.9 Hz, 2H), 4.04 (m, 2H), 3.63 (m, 1H), 3.60 (s, 3H), 1.83 (m, 1H), 1.73–1.51 (m, 5H), 1.12–1.11 (m, 8H). ¹³**C NMR** (100 MHz, DMSO-*d*₆) δ 173.68, 151.07, 142.25, 114.49, 113.62, 62.16, 59.93, 55.26, 40.22, 29.15, 29.13, 25.86, 25.64, 14.24.

Optical Rotation: $[\alpha]^{25}_{D} = 26.8$ (c = 1.0, CH₂Cl₂). The *ee* value was determined by **HPLC analysis:** 97.4:2.6 *er*, Chiralcel AD-H colum, hexane/*i*-PrOH = 88/12, flow rate = 1.0 mL/min, λ = 214 nm, retention time: t_{major} = 17.7 min, t_{minor} = 16.4 min.

400 T					mv 1				
350					1250				
300					1000				
250	V 1, 303 1, 303				750			V 17.718	
150			\land		500			()	
50					250			408	
0	12.5	15.0	17.5	min	0	12.5	15.0	17.5	*
Peak	RetTime	Area	Height	Conc.	Peak	RetTime	Area	Height	Conc.
	(min)	(mV*s)	(mV)	(%)		(min)	(mV*s)	(mV)	(%)
1	16.014	3908795	198740	50.261	1	16.409	420509	23480	2.574
2	17.303	3868228	181463	49.739	2	17.718	15918243	696906	97.426

(S)-2-amino-2-cyclohexylacetic acid (5)11

White powder (138 mg, 88% yield). ¹**H NMR** (600 MHz, Methanol- d_4) δ 3.75 (m, 1H), 1.93–1.86 (m, 1H), 1.81–1.75 (m, 3H), 1.65 (m, 2H), 1.27 (m, 3H), 1.18–1.08 (m, 2H). ¹³**C NMR** (150 MHz, Methanol- d_4) δ 171.18, 58.88, 40.24, 29.54, 29.28, 27.05, 26.97, 26.77.

Optical Rotation: $[\alpha]^{25}_D = 31$ (c = 1.0, MeOH).

(2R,3S)-2-Isopropyl-3-((4-methoxyphenyl)amino)butane-1,4-diol (6)¹²

Yellow oil (86 mg, 85% yiled); > 99:1 dr. ¹H NMR (600 MHz, Chloroform-*d*) δ 6.75 (d, *J* = 8.9 Hz, 2H), 6.68 (d, *J* = 8.9 Hz, 2H), 3.83–3.80 (m, 1H), 3.78–3.75 (m, 1H), 3.73 (s, 3H), 3.69 (m, 1H), 3.59 (m, 1H), 3.52 (m, 1H), 1.86 (m, 1H), 1.58 (m, 1H), 0.96 (d, *J* = 6.8 Hz, 3H), 0.89 (d, *J* = 6.9 Hz, 3H). ¹³C NMR (150 MHz, Chloroform-*d*) δ 152.66, 141.69, 141.67, 116.21, 114.87, 62.47, 61.47, 58.60, 55.66, 47.55, 27.38, 21.20, 18.925.

Optical Rotation: $[\alpha]^{25}_{D}$ = 26.3 (c = 1.0, MeOH). The *ee* value was determined by **HPLC analysis:** 96.4:3.6 *er*, Chiralcel AD-H colum, hexane/*i*-PrOH = 93/7, flow rate = 0.5 mL/min, λ = 254 nm, retention time: t_{major} = 30.5 min, t_{minor} = 28.1 min.

5. NMR spectra

Allyl (4-methoxyphenyl)glycinate (1e)

(1S,3S)-Adamantan-1-yl (4-methoxyphenyl)glycinate (1h)

3.836 3.739 3.613 3.613 3.564 3.564 3.564 2.884 2.884 2.883 2.886 MeO 0.97-001100 2000 2000 2000 2000 3.00 2.00-I 5.5 5.0 4.5 f1 (ppm) 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 6.5 4.0 7.5 7.0 6.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1.0 <153.80 <152.85 -170.81 ∼131.46 −127.50 −122.98 ∠114.17 ₹114.17 ₹1114.17 $\overbrace{77.00}^{77.32}$ ₹55.85 \$55.66 \$9.40 -25.21MeO______N___N____L 150 140 130 120 110 100 fl (ppm) 0 -10 210 200 190 180 170 160 80 70 60 50 40 30 20 10 90

N-(2-(5-methoxy-1H-indol-2-yl)ethyl)-2-((4-methoxyphenyl)amino)acetamide (**1t**)

Ethyl (S)-2-((4-methoxyphenyl)amino)-2-((R)-2-oxocyclohexyl)acetate (3aa)

Methyl (S)-2-((4-methoxyphenyl)amino)-2-((R)-2-oxocyclohexyl)acetate (3ba)

Isopropyl (S)-2-((4-methoxyphenyl)amino)-2-((R)-2-oxocyclohexyl)acetate (3ca)

Tert-butyl (S)-2-((4-methoxyphenyl)amino)-2-((R)-2-oxocyclohexyl)acetate (3da)

Allyl (S)-2-((4-methoxyphenyl)amino)-2-((R)-2-oxocyclohexyl)acetate (3ea)

Allyl (S)-2-((4-methoxyphenyl)amino)-2-((R)-2-oxocyclohexyl)acetate (3fa)

Benzyl (S)-2-((4-methoxyphenyl)amino)-2-((R)-2-oxocyclohexyl)acetate (3ga)

S66

(S)-Octan-2-yl (S)-2-((4-methoxyphenyl)amino)-2-((R)-2-oxocyclohexyl)acetate (3ia)

Methyl (S)-2-((R)-2-oxocyclohexyl)-2-(p-tolylamino)acetate (3ja)

Ethyl (S)-2-((R)-2-oxocyclohexyl)-2-(p-tolylamino)acetate (3ka)

Ethyl (S)-2-((4-bromophenyl)amino)-2-((R)-2-oxocyclohexyl)acetate (3la)

Ethyl (S)-2-((4-chlorophenyl)amino)-2-((R)-2-oxocyclohexyl)acetate (3ma)

Cinnamyl (S)-2-((4-methoxyphenyl)amino)-2-((R)-2-oxocyclohexyl)acetate (3na)

(S)-N-isopropyl-2-((4-methoxyphenyl)amino)-2-((R)-2-oxocyclohexyl)acetamide (3oa)

(S)-N-(4-fluorophenethyl)-2-((4-methoxyphenyl)amino)-2-((R)-2-oxocyclohexyl)acetamide (3pa)

(S)-N-cyclohexyl-2-((4-methoxyphenyl)amino)-2-((R)-2-oxocyclohexyl)acetamide (3qa)

Ethyl 4-((S)-2-((4-methoxyphenyl)amino)-2-((R)-2-oxocyclohexyl)acetamido)benzoate (3sa)

(S)-*N*-(2-(5-methoxy-1H-indol-2-yl)ethyl)-2-((4-methoxyphenyl)amino)-2-((R)-2-oxocyclo-hexyl)acetamid e (**3ta**)

Ethyl (2S)-2-((4-methoxyphenyl)amino)-2-((1R)-3-methyl-2-oxocyclohexyl)acetate (3ab)

Ethyl (S)-2-((R)-5,5-dimethyl-2-oxocyclohexyl)-2-((4-methoxyphenyl)amino)acetate (3ad)

Ethyl (S)-2-((4-methoxyphenyl)amino)-2-((R)-2-oxocycloheptyl)acetate (3ae)

Ethyl (S)-2-((4-methoxyphenyl)amino)-2-((R)-4-oxotetrahydro-2H-thiopyran-3-yl)acetate (3ag)

Ethyl (S)-2-((4-methoxyphenyl)amino)-2-((1R,5R)-5-methyl-2-oxocyclohexyl)acetate (3ah)

Ethyl (1R,3R)-3-((S)-2-ethoxy-1-((4-methoxyphenyl)amino)-2-oxoethyl)-4-oxocyclohexan-e-1-carbox-ylate (**3aj**)

Ethyl 2-((R)-3,3-dimethyl-9-oxo-1,5-dioxaspiro[5.5]undecan-8-yl)-2-((4-methoxyphenyl)a-mino)acetate (**3ak**)

Ethyl (2S,3R)-2-((4-methoxyphenyl)amino)-3-methyl-4-oxohexanoate (3am)

Ethyl (2S,3R)-3-formyl-2-((4-methoxyphenyl)amino)-4-methylpentanoate (3an)

Ethyl (2S,3R)-3-formyl-2-((4-methoxyphenyl)amino)octanoate (3en)

 $Benzyl~(2S,3R)-3-formyl-2-((4-methoxyphenyl)amino)-4-methylpentanoate~({\bf 3gn})$

(S,Z)-*N*-(4-fluorophenethyl)-3-(hydroxymethylene)-2-((4-methoxyphenyl)amino)-4-methylpentanamide (**3pn**)

Ethyl (S)-2-cyclohexyl-2-((4-methoxyphenyl)amino)acetate (4)

(2R,3S)-2-Isopropyl-3-((4-methoxyphenyl)amino)butane-1,4-diol (6)

6. References

[1] K.-Y. Xiang, P. Ying, T. Ying, W.-K. Su and J.-B Yu, Green Chem., 2023, 25, 2853–2862.

[2] P. Yan, R. Zeng, B. Bao, X.-M. Yang, L. Zhu, B. Pan, S.-L. Niu, X.-W. Qi, Y.-L. Li and Q. Ouyang, *Green Chem.*, 2022, **24**, 9263–9268.

[3] O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, *J. Appl. Cryst.*, 2009, **42**, 339–341.

[4] G. M. Sheldrick, ActaCryst., 2015, A71, 3-8.

[5] J. Xie, Z.-Z. Huang, Angew. Chem., 2010, 49, 10181–10185.

[6] M. Debruyne, S. Borgmans, S. Radhakrishnan, E. Breynaert, H. Vrielinck, K. Leus, A. Laemont, J. De Vos, K. S. Rawat, S.Vanlommel, H. Rijckart, H. Salemi, J. Everaert, F. V. Bussche, D. Poelman, R. Morent, N. De Geyter, P. V. D. Voort, V. V. Speybroeck and C. V. Stevens, *ACS Appl. Mater. Interfaces*, 2023, **15**, 35092–35106.

[7] X.-R. Yang, Z.-X. Xie, Y. Li and Y. Zhang, Chem. Sci., 2020, 11, 4741–4746.

[8] Z.-H. Wang, P.-S. Gao, X. Wang, J.-Q. Gao, X.-T. Xu, Z. He, C. Ma and T.-S. Mei, *J. Am. Chem. Soc.*, 2021, **143**, 15599–15605.

[9] P. Ying, T. Ying, H. Chen, K.-Y. Xiang, W.-K. Su, H.-J. Xie and J.-B. Yu, *Org. Chem. Front.*, 2024, **11**, 127–134.

[10] W. Notz, S. Watanabe, N. S. Chowdari, G. Zhong, J. M. Betancort, F. Tanaka and C.F. Barbas III, *Adv. Synth. Catal.*, 2004, **346**, 1131–1140.

[11] C. P. Decicco and P. Grover, Synlett, 1997, 5, 529-530.

[12] W. Notz, F. Tanaka, S. Watanabe, N. S. Chowdari, J. M. Turner, R. Thayumanavan and C. F. Barbas III, *J. Org. Chem.*, 2003, **68**, 9624–9634.