Octadecyl Acrylate-Based Self-Supporting Elastic Phase Change

Framework Materials for the Enhancement of Photovoltaic

Conversion Efficiency

Yongqiang Qian^{†a, b, c}, Lei Tan^{†a}, Wentao He^a, Liling Liao^a, Yongjia Wu^a, Yiyang

Chen^a, Dan Li^a, Xu Zhang^a, Guxia Wang^d, Yen Wei^{a,e}, Shengwei Guo^{*a, b, c} a. School of Materials Science and Engineering, North Minzu University, Yinchuan 750021, China

b. International Scientific and Technological Cooperation Base of Industrial Solid

Waste Cyclic Utilization and Advanced Materials, Yinchuan 750021, China

c. Key Laboratory of Polymer Materials and Manufacturing Technology, North Minzu University, Yinchuan 750021, China

d. School of Chemistry and Chemical Engineering, North Minzu University, Yinchuan 750021, China

e. Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China

Entery	Crosslinking Alkyl length	Molar ratio of A18/ADA	Solvent phase/ (wt%)
POT1	C14	9:1	DMAc/80
POT1	C14	9:1	DMAc/80
POT2	C14	8:2	DMAc/80

Table S1. The formulation of synthesized SS-PCAs and PCGs

†These authors contributed equally.

*Corresponding author: shengwei@nun.edu.cn (S. W. Guo)

POT2'	C14	8:2	THF/80
POT3	C14	7:3	DMAc/80
POD2	C22	8:2	DMAc/80
POT1/EI8	C14	9:1	EI/80
POT2/EI9 ^a	C14	8:2	EI/90
POT2/EI8	C14	8:2	EI/80
POT2/EI7	C14	8:2	EI/70
POT3/EI8	C14	7:3	EI/80
POD2/EI9 ^a	C22	8:2	EI/90
POD2/EI8	C22	8:2	EI/80

^a adsorption preparation;

Figure 1S. The corresponding peak position and integral area according to ¹H CMR and ¹³C NMR of TDA, DDA, POT2 and POD2.

						543
Table S2.	Component	Group C	Contributions t	o Hansen	Solubility]	Parameters ^[1]
1.0010 2.	e empenene.	or on p		• • • • • • • • •	~~~~~~	

Structure group	$F_{d,i} (J^{1/2} cm^{3/2}/mol)$	$F_{p,i} (J^{1/2} cm^{3/2}/mol)$	$E_{h,i}$ (J/mol)
-CH ₃	303	0	0
-CH ₂ -	270	0	0
=СН-	176	0	0
-COO-	669	0	5230

Sample No.	Ta do (°C)	Tb dp (°C)	Mass loss (%)	
PA18	384	414	98	
TD	212	238	98	
TDA	403	429	99	
EI	192	226	97	
POT2	392	418	100	
POT2/EI8	199/380	229/418	98	

Table S3. Thermal stabilities of TD, TDA, EI, POT2 and POT2/EI8

^a: The onset decomposition temperature; ^b: The fastest decomposition temperature.

Figure 2S. (a) TG and (b) DTG curves of POTx and PODx.

POT2/E18、POT1、POT2、POT3 and POD2 are placed on a 100 ° C heating table and digital photos are added over time

Figure 3S. Form-stability test of POTx and POT2/EI8 performed by heating

Enterv	ΔH_{m}	Ta mo	Tb mp	ΔH_{c}	Tc co	Td cp
	(J/g)	(°C)	(°C)	(J/g)	(°C)	(°C)
POT2	56	21	38	58	35	29
POT2-100 thermal cycles	54	22	39	56	34	28
POT2/EI8	170	23	37	165	32	26
POT2/EI8-100 thermal cycles	168	23	38	162	31	27

Table S4. DSC data of POT2, POT2/EI8 and the corresponding after 100 thermal cycles

^a: Onset temperature of the melting peak. ^b: Peak temperature of the melting peak.

^c: Onset temperature of the crystallization peak. ^d: Peak temperature of the crystallization peak.

Figure 4S. The image of thermal management system for polycrystalline silicon photovoltaic cells.

[1] a)J.-F. Li, Z.-L. Xu, H. Yang, C.-P. Feng, J.-H. Shi, *Journal of Applied Polymer Science* **2008**, 107, 4100; b)HANSEN C M., *Boca Raton: CRC Press* **2007**.