Electronic Supplementary Information (ESI)

Table S1 the hydrogenation performance of nitrobenzene or halogenated nitrobenzene over metal-free carbon

	materials catalysts									
Catalysts	Substrate	Product	Hydrogen	T or $P_{H2}(^{\circ}C \text{ or }$	t(h)	Yield	Ref.			
			source	MPa)		(%)				
graphite	nitrobenzene	aniline	$N_2H_4 \bullet H_2O$	/	2	95.0	1			
C ₆₀	nitrobenzene	aniline	H_2	150/5	4	10.0	2			
AC	3-nitrostyrene	3-aminostyrene	$N_2H_4 \bullet H_2O$	100	2	21.1	3			
AC-H ₂ O ₂	3-nitrostyrene	3-aminostyrene	$N_2H_4\bullet H_2O$	100	2	56.3	3			
C ₆₀ -EDAC	ρ-CNB	ρ-CAN	$N_2H_4 \bullet H_2O$	100	2	99.0	4			
C ₆₀ -EDAC	o-CNB	o-CAN	$N_2H_4\bullet H_2O$	100	2	99.0	4			
NC-950	ρ-CNB	ρ-CAN	$N_2H_4 \bullet H_2O$	90	4	93.4	5			
CNS-900	o-CNB	o-CAN	H_2	140/5	24	100.0	6			
NSHC	ρ-CNB	ρ-CAN	$N_2H_4 \bullet H_2O$	100	4	93.1	7			
NSHC	ρ-bromonitrobenzene	ρ-bromoaniline	$N_2H_4 \bullet H_2O$	100	4	98.0	7			
NSHC	p-iodonitrobenzene	ρ-iodoaniline	$N_2H_4 \bullet H_2O$	100	4	93.0	7			
NPG	ρ-CNB	ρ-CAN	NaBH4	35	2	98.5	8			
NPG	ρ-bromonitrobenzene	ρ-bromoaniline	NaBH4	35	2	85.1	8			
g-C3N4	m-CNB	m-CAN	$N_2H_4 \bullet H_2O$	90 (visible-light)	18	88.0	9			
BNC	ρ-CNB	ρ-CAN	$N_2H_4 \bullet H_2O$	80	10	98.7	10			
NC-700	ρ-CNB	ρ-CAN	$N_2H_4 \bullet H_2O$	100	2.5	83.2	11			
NC-700	o-CNB	o-CAN	$N_2H_4 \bullet H_2O$	100	2	90.8	11			
NC-700	m-CNB	m-CAN	$N_2H_4 \bullet H_2O$	100	2	92.5	11			
ONPC	m-CNB	m-CAN	$N_2H_4 \bullet H_2O$	80	4	96.3	12			
ONPC	ρ-bromonitrobenzene	ρ-bromoaniline	$N_2H_4 \bullet H_2O$	80	4	90.2	12			
ONPC	ρ-iodonitrobenzene	ρ-iodoaniline	$N_2H_4 \bullet H_2O$	80	4	52.8	12			
PNC	ρ-CNB	ρ-CAN	$N_2H_4 \bullet H_2O$	Xenon lamp	24	95.7	13			
N-CNT ₉₀₀	nitrobenzene	aniline	H_2	50/3	15	<1.0	14			
N-CNT ₉₀₀	nitrobenzene	aniline	H_2	120/3	18	95.0	14			
P-CNT ₉₀₀	ρ-CNB	ρ-CAN	H_2	50/3	15	97.0	14			
P-CNT900	ρ-bromonitrobenzene	ρ-bromoaniline	H_2	50/3	15	94.0	14			
P-CNT ₉₀₀	p-iodonitrobenzene	p-iodoaniline	H_2	50/3	15	94.0	14			
OZG-800	nitrobenzene	aniline	H_2	170/3	26	94.1	15			
CN-900	nitrobenzene	aniline	НСООН	160	12	68.5	16			

Fig. S1 SEM image (a-c) and EDS element analysis (de) of yeasts after adding water.

Fig. S2 TG-DSC curve of yeast.

Fig. S3 SEM images and macropore size distribution of the catalysts (Y-NPC-800 °C (a-c, c1); Y-NPC-900 °C (d-f, f1); Y-NPC-950 °C (g-i, i1)).

Samples	$S_{BET}\left(m^2g^{\text{-}1}\right)$	Total pore volume ^a	BJH desorption average pore size (nm)
		(cm^3g^{-1})	
Y-NPC-800 °C	226	0.13	4.5
Y-NPC-900 °C	255	0.16	4.7
Y-NPC-950 °C	355	0.23	4.8

Table S2 Surface area (S_{BET}), pore volume and average pore size values of the samples

^a Single point adsorption total pore volume of pores less than 196.2 nm diameter at P/Po 0.99.

Samulas	20 (°)	d-	FWHM	20(°)	d-	FWHM
Samples	20()	spacing of (002) (nm)	(nm)	20()	spacing of (100) (nm)	(nm)
Y-NPC-800 °C	25.056	0.355	0.655	44.497	0.206	0.281
Y-NPC-900 °C	25.311	0.352	0.555	43.433	0.203	0.185
Y-NPC-950 °C	24.577	0.361	0.512	43.425	0.208	0.687

Table S3 Crystal plane spacing and full width at half maximum (FWHM) of the samples¹⁷

Fig. S4 CO₂-TPD profiles associated with the samples and CO₂-TPD profiles with MS of the samples (a-c).

Fig. S5 FTIR spectra of Y-NPC-900 °C.

Table S4 Elemental analysis of the samples by XPS

Atomic Content%	С	0	Ν	Р	N-Q	P-O	P-C	P-N
Y-NPC-800 °C	80.09	14.87	4.39	0.65	2.23	0.12	0.46	0.07
Y-NPC-900 °C	87.30	9.16	3.17	0.37	1.68	0.09	0.15	0.13
Y-NPC-950 °C	88.24	9.20	2.36	0.24	1.25	0.05	0.11	0.08

Fig. S6 Structures of C, N-C, P-C and NP-C (a-d) contain 50 carbon atoms, 1 nitrogen atom and 1 phosphorus atom. Carbon: brown, nitrogen: light blue, and phosphorus: purple.

Fig. S7 Optimized free molecules for $H_2(a)$, N_2H_4 (b)and ρ -CNB(c); adsorption model of H_2 , N_2H_4 , ρ -CNB molecules over C-C (a1, a2, a3), N-C (b1, b2, b3), P-C (c1, c2, c3) and NP-C (d1, d2, d3), respectively.

Table S5 Adsorption energy of H ₂ over C-C, N-C, P-C and NP-C					
System	*	H ₂	*H ₂	$\Delta E_{ads} (eV)$	
С	-462.31	-6.77	-469.14	-0.06	
N-C	-460.20	-6.77	-467.05	-0.08	
P-C	-453.72	-6.77	-462.40	-1.91	

-6.77

NP-C

-452.24

Table S6 Adsorption energy of N2H4 over C-C, N-C, P-C and NP-C

-461.99

-2.98

System	*	N_2H_4	$N_{2}H_{4}$	$\Delta E_{ads} (eV)$
С	-462.31	-30.18	-492.70	-0.21
N-C	-460.20	-30.18	-490.70	-0.32
P-C	-453.72	-30.18	-486.02	-2.12
NP-C	-452.24	-30.18	-485.71	-3.29

System	*	ρ-CNB	*ρ-CNB	$\Delta E_{ads}(eV)$
С	-462.31	-90.16	-553.11	-0.64
N-C	-460.20	-90.16	-551.06	-0.70
P-C	-453.72	-90.16	-546.40	-2.52
NP-C	-452.24	-90.16	-544.93	-2.53

Table S7 Adsorption energy of $\rho\text{-}CNB$ over C-C, N-C, P-C and NP-C

Table S8 Catalytic transfer hydrogenation performance of catalyst^a

$CI \longrightarrow NO_2 \xrightarrow{N_2H_4 \cdot H_2O} CI \longrightarrow NH_2$									
Entry	Catalyst	m	$\mathbf{S}_{\mathrm{BET}}$	T(°C)	ρ-CNB	ρ-CAN	PR ^b (molg ⁻	PR^{b}/S_{BET}	$PR^{b}/S_{BET}P$ -
		_{Catalyst} (mg)	$(m^2 \cdot g^{-1})$		Con.(%)	Sel.(%)	¹ h ⁻¹)	$(\text{molh}^{-1}\text{m}^{-2})$	N ^c (molh ⁻¹ m ⁻
									²)
1 ¹¹				100	1.2	99			
2 ¹¹	NC-700	40	601	100	100	83.2	4.2×10 ⁻³	6.9×10 ⁻⁶	/
3 ¹¹	Graphite	40	/	100	30.2	>99	1.1×10-3	/	/
4 ¹¹	CNTs	40	/	100	27.7	>99	9.9×10 ⁻⁴	/	/
5 ¹¹	g-C ₃ N ₄	40	/	100	42.5	>99	1.5×10-3	/	/
6	CSs	40	4.3	100	12.8	>99	6.4×10 ⁻⁴	1.4×10 ⁻⁴	/
7	Y-NPC-800 °C	40	226	100	46.7	91.8	2.1×10 ⁻³	0.9×10 ⁻⁵	1.3×10 ⁻⁴
8	Y-NPC-900 °C	40	255	100	100	>99.0	5.0×10 ⁻³	2.0×10 ⁻⁵	1.5×10 ⁻⁴
9	Y-NPC-950 °C	40	354	100	75.4	98.4	3.8×10 ⁻³	1.0×10 ⁻⁵	1.3×10 ⁻⁴
10	Y-NPC-900 °C	40	255	90	96.0	>99.0	4.8×10 ⁻³	1.9×10 ⁻⁵	1.5×10 ⁻⁴
11	Y-NPC-900 °C	40	255	80	90.0	>99.0	4.5×10 ⁻³	1.8×10 ⁻⁵	1.4×10 ⁻⁴
12	Y-NPC-900 °C	40	255	60	44.6	>99.0	3.0×10 ⁻³	1.2×10 ⁻⁵	9.2×10 ⁻⁵
13	Y-NPC-900 °C	20	255	100	79.2	>99.0	7.9×10 ⁻³	3.0×10 ⁻⁵	2.3×10 ⁻⁴
14 ^{18d}	1.36%Pd/CSs	0.53	/	80	100	86.2	1.1×10 ⁻²	/	/

^a Reaction conditions: 0.5 mmol reactant, 5 mmol hydrazine hydrate (N₂H₄•H₂O, 85 wt.%), 40 mg Y-NPC-900 °C, 4 mL solvent (V _{ethanol}/V _{water} = 1/3), 100 °C, 2.5 h.

^b Production rate per catalyst weight (PR) = mole of converted substrate $\times \rho$ -CAN Sel. (%)/ g catalyst \times h reaction time (mol g ⁻¹h⁻¹).

^c The P-N content is in Table S4.

^d Reaction conditions: substrate (1 mmol), hydrazine hydrate (10 mmol), 1.36 wt.% Pd (5 \times 10⁻⁴ mmol), solvent (ethanol/H₂O: 1 mL/1 mL), air, 1.5 h.

Entry	Substrate	Product	Con. (%)	Sel. (%)
1		Cl NH ₂	96.7	>99.9
2	NO ₂	NH ₂	99.3	>99.9
3	Br NO ₂	Br NH ₂	98.0	97.1
4	Br NO ₂	Br NH ₂	83.1	98.9
5	NO ₂	NH ₂	82.5	97.2
6		I NH2	100	80.2

Table S9 The catalytic performance of Y-NPC-900 °C for the transfer hydrogenation of halonitrobenzenes

Reaction conditions: 0.5 mmol reactant, 5 mmol hydrazine hydrate (N₂H₄•H₂O, 85 wt.%), 40 mg Y-NPC-900 °C, 4 mL solvent (V _{ethanol}/V _{water} = 1/3), 100 °C, 2.5 h.

References

- 1. D. H. S. Byung Hee Ha, Sung Yun Cho, *Tetrahedron Letters*, 1985, 26, 6233-6234.
- 2. L. Pacosová, C. Kartusch, P. Kukula and J. A. van Bokhoven, ChemCatChem, 2010, 3, 154-156.
- 3. S.-i. Fujita, H. Watanabe, A. Katagiri, H. Yoshida and M. Arai, *Journal of Molecular Catalysis A: Chemical*, 2014, **393**, 257-262.
- 4. Y. Sun, C. Cao, C. Liu, J. Liu, Y. Zhu, X. Wang and W. Song, *Carbon*, 2017, **125**, 139-145.
- 5. C. Liao, B. Liu, Q. Chi and Z. Zhang, ACS applied materials & interfaces, 2018, 10, 44421-44429.
- 6. X. S. Peng Zhang, Chang Yu, Jianzhou Gui, and Jieshan Qiu, ACS Sustainable Chem. Eng., 2017, 5, 7481-7485.
- S. Liu, L. Cui, Z. Peng, J. Wang, Y. Hu, A. Yu, H. Wang, P. Peng and F. F. Li, *Nanoscale*, 2018, 10, 21764-21771.
- J. Xi, Q. Wang, J. Liu, L. Huan, Z. He, Y. Qiu, J. Zhang, C. Tang, J. Xiao and S. Wang, *Journal of Catalysis*, 2018, 359, 233-241.
- 9. G. Xiao, P. Li, Y. Zhao, S. Xu and H. Su, Chemistry-An Asian Journal, 2018, DOI: 10.1002/asia.201800515.
- Y. Zhang, Y. Zhai, M. Chu, L. Huo, H. Wang and Y. Gao, Asian Journal of Organic Chemistry, 2018, 7, 1107-1112.
- 11. X. Hu, Y. Long, M. Fan, M. Yuan, H. Zhao, J. Ma and Z. Dong, *Applied Catalysis B: Environmental*, 2019, **244**, 25-35.
- 12. Q. Wei, F. Qin, Q. Ma and W. Shen, *Carbon*, 2019, 141, 542-552.
- H. Zhang, C. Zhang, Y. Zhang, P. Cui, Y. Zhang, L. Wang, H. Wang and Y. Gao, *Applied Surface Science*, 2019, 487, 616-624.
- 14. X. Chen, Q. Shen, Z. Li, W. Wan, J. Chen and J. Zhang, ACS applied materials & interfaces, 2020, 12, 654-666.
- 15. D. Han, Y. Liu, Y. Lv, W. Xiong, F. Hao, H. Luo and P. Liu, *Carbon*, 2023, 203, 347-356.
- 16. Z. Xia, B. Wang, J. Li, F. Zhang, L. Chen and Y. Li, New Journal of Chemistry, 2023, 47, 5621-5624.
- 17. G. Pari, S. Darmawan and B. Prihandoko, *Procedia Environmental Sciences*, 2014, 20, 342-351.
- 18. Y.-M. Lu, H.-Z. Zhu, W.-G. Li, B. Hu and S.-H. Yu, Journal of Materials Chemistry A, 2013, 1, 3783.