Supporting information

Reactive Direct Air Capture of CO₂ to C-C Coupled Products using Multifunctional Materials

Shazia Sharmin Satter, Johnny Saavedra Lopez, Michael L. Hubbard, Yuan Jiang, Robert A. Dagle, Jotheeswari Kothandaraman*

Pacific Northwest National Laboratory, Advanced Energy Systems, 902 Battelle Blvd, Richland, WA 99352, USA; Email: jotheeswari.kothandaraman@pnnl.gov

S1. Experimental

S1.1 Chemicals

High surface area γ -Al₂O₃ was supplied by Saint Gobin Norpro. Fe(NO₃)₃.9H₂O, Co(NO₃)₂.6H₂O K₂CO₃, and glucose were purchased from Sigma Aldrich. Activated carbon (AC), darco G-60 was received from Fisher Scientific. Fe₂O₃ was purchased from Thermo Scientific Chemicals.

S1.2 Preparation of Sorbents and Sorbent-Catalytic Materials

25 wt% K_2CO_3/Al_2O_3 and K_2CO_3/AC were synthesized using wet impregnation method by mixing the Al_2O_3 or AC to an aqueous solution of K_2CO_3 followed by stirring at room temperature for 10 h. The samples were dried in an oven at 105 °C followed by calcination at 300 °C for 2 h for K_2CO_3/Al_2O_3 .¹

The Fe₂O₃-K₂CO₃/Al₂O₃ (Fe-KA) was prepared by simple physical mixing in a mortar-pestle, keeping the mole ratio of Fe₂O₃: K₂CO₃ = 1:1.

The Fe/C was synthesized following the hydrothermal synthesis method² by mixing Fe(NO₃)₃.9H₂O with glucose in 1:1 mole ratio in deionized water. After stirring for 1 h, the mixture was heated at 150 °C for 24 h in a closed vessel. The resulting solid was filtered and washed with 750 mL H₂O and 75 mL ethanol followed by drying at 120 °C for 10 h. 25 wt% of K₂CO₃ was impregnated on Fe/C following the similar method to K₂CO₃/Al₂O₃, denoted as K₂CO₃/Fe/C. Prior to CO₂ capture, the K₂CO₃/Fe/C was pretreated under H₂ (60 mL/min) for 10 h at 400 °C to ensure carbide formation. 40 wt% of Al_2O_3 and 35 wt% of Fe/C was mixed with 100 mL of water followed by impregnation of 25 wt% K_2CO_3 and stirring for 10 h. The samples were dried in an oven at 110 °C to evaporate the water. The samples were denoted as $K_2CO_3/Fe/C/Al_2O_3$.

The Fe-Co/K₂CO₃/Al₂O₃ (Fe-Co/KA) and Fe/K₂CO₃/Al₂O₃ (Fe/KA) were synthesized by wet impregnation method³. The Fe(NO₃)₃.9H₂O and Co(NO₃)₂.6H₂O were dissolved in water and 25wt% of K₂CO₃/Al₂O₃ was added to the solution. The mixture was stirred at 60 °C for 4 h followed by drying at 100 °C overnight. The sample was calcined at 500 °C for 4 h. The calcined sample was placed in a Parr reactor, pressurized with 250 psi of CO₂ and left for 16 h at room temperature to convert any K₂O formed during the reaction back to K₂CO₃. 12.4 wt% Fe and 2.6 wt% Co was impregnated. The resulting sample is named as Fe-Co/K₂CO₃/Al₂O₃ (Fe-Co/KA). 12.4 wt% Fe/K₂CO₃/Al₂O₃ (Fe/KA) was also synthesized is the similar way.

S1.3 Catalyst Characterization

Powder X-ray diffraction (XRD) patterns were recorded using an X-ray diffractometer, Rigaku Smartlab SE diffractometer CuK α radiation (40 kV, 44 mA). N₂ adsorption–desorption experiments were conducted at –196°C (Quadrasorb automated area and pore size analyzer). Specific surface areas and pore diameters were estimated with the Brunauer–Emmett–Teller (BET) equation and Barrett-Joyner-Halenda (BJH) method, respectively. The samples were heated under vacuum at 120 °C for 4 h to remove any physisorbed water (Masterprep multi-zone flow/vacuum degasser). Temperature program desorption (TPD) (Micromeritics AutoChem II) was carried out under the flow of He (10 mL/min) for both fresh and spent samples from 40 to 500 °C (5 °C/min). FTIR spectra of the samples were collected using a DRIFTS cell and Nicolet is50 FTIR Spectrometer using an MCT detector.

S1.4 CO₂ Capture and Catalytic Evaluation

The investigation on integrated CO_2 capture and hydrogenation was performed using the experimental setup shown in Scheme S1. The setup consists of three MFCs connected to a fixed bed flow reactor and an evaporator for introducing water vapor. 2 g of sorbent or sorbent-catalyst (sorb-cat) in powder form was used for each run. The materials were either pretreated at 200 °C for 1 h under N₂ flow (100 mL/min.) or 400 °C under H₂ flow at 60 mL/min flow rate for 5 h. Integrated CO_2 capture and conversion involves two key steps:

1. CO_2 capture was performed at 25 °C in presence of 0.5 mol% H₂O vapor. The carbonation reaction was carried out by co-feeding 400 ppm of CO_2 at 1200 mL/min along with 0.5 mol% H₂O vapor at 25 °C over the sorbent or sorb-cat bed for 4 h. The CO_2 adsorbed was analyzed by CO_2 analyzer, Model 906 equipped with an NDIR sensor. In a different set of reaction, the target material was first pre-saturated with 0.5 or 1.0 mol% of H₂O vapor for 2 h followed by cofeeding CO_2 (400 ppm, 1200 mL/min) (in N₂) with H₂O vapor (0.5 mol%) for 4 h.

2. Reduction of the captured CO_2 was carried out under H_2 flow of 60 mL/min, 1.0 MPa and at 320 and 360 °C. The product gases were analyzed by four-channel Inficon micro-GC fusion with a TCD detector.

Scheme S1: Set-up for direct air capture (DAC)

The calculation of the molar quantity of the CO_2 adsorbed, *denoted as* n_{CO2} per gram of sorbent, was performed by integrating the molar concentration curve (derived from CO_2 ppm vs. time data, as shown in Figure S2) over the CO_2 capture time (F_{CO2} , 4h), and then divided by the mass of the sorbent (*W*), *as* shown in the equation below:

$$\int_{r_{CO2}}^{t_4} F_{CO2}(t)d$$
(1)

DAC and Conversion:

The CO₂ conversion (X_{CO2}) and the selectivity (S) of each product (x) were calculated using the following equations:

$$X_{CO2} = \frac{n_{total \, products}}{n_{CO2 \, adsorbed}} \times 100\%$$
(2)
$$S_x = \frac{n_x}{n_{total \, products}} \times 100\%$$
(3)

where n is the number of moles of the components identified from the outlet gases.

Gas phase CO₂ Conversion:

The CO_2 conversion (X_{CO2}) and the selectivity (S) of each product (x) were calculated using the following equations:

$$X_{\rm CO2} = \frac{n_{total \, products}}{n_{inlet \, CO2}} \times 100\% \tag{4}$$

S2. Results

Figure S1: (A) Nitrogen adsorption-desorption isotherm of Al_2O_3 and K_2CO_3/Al_2O_3 (B) Wide angle XRD of fresh and CO_2 captured K_2CO_3/Al_2O_3 (C) TPD of fresh and CO_2 captured K_2CO_3/Al_2O_3 .

XRD of the CO₂ captured sample in Figure S1B shows the characteristic narrow diffraction peaks for KHCO₃ (ICDD PDF-2 #13-5503). The peaks for dawsonite in the CO₂ captured sample is broader compared to the fresh one, which indicates that the introduction of 400 ppm CO₂ through the sample in presence of water vapor gives rise to formation

of more dawsonite. Small, broad peaks were also visible confirming the presence of $K_2CO_3 \cdot 2KHCO_3 \cdot 1.5H_2O$ (ICDD PDF-2 #20-0886).^{4, 5}

	SA (m²/g)	PV (cm ³ /g)	Average Diameter (nm)
Al ₂ O ₃	182.4	0.6001	11.4
K ₂ CO ₃ /Al ₂ O ₃	99.19	0.3262	10.09

Figure S2: (A) CO₂ capture profile for K_2CO_3/Al_2O_3 pre-saturated with 0.5 mol% H₂O followed by co-feeding CO₂ with H₂O vapor, (B) Comparison of CO₂ capture profile for K_2CO_3/Al_2O_3 pre-saturated with 0.5 and 1.0 mol% of H₂O vapor.

Amount of material: 2 g; Pretreatment conditions: $N_2 = 100 \text{ mL/min}$, 200 °C, 1 h; CO₂ capture conditions: CO₂ = 400 ppm in N_2 (flow rate = 1200 mL/min), H₂O vapor = 0.5 mol%, 25 °C, 4 h.

Figure S3: Comparison of CO₂ capture capacity in wt% for K₂CO₃/Al₂O₃ under different conditions. Amount of material: 2 g; Pretreatment conditions: N₂ = 100 mL/min, 200 °C, 1 h; CO₂ capture conditions: CO₂ = 400 ppm in N₂ (flow rate = 1200 mL/min), H₂O vapor = 0.5 mol%, 25 °C, 4 h.

For the H₂O vapor-pretreated samples, K_2CO_3/Al_2O_3 was first saturated with 0.5 and 1.0 mol% H₂O vapor for 2 h followed by co-feeding CO₂ (400 ppm in N₂) with H₂O vapor (0.5 and 1.0 mol%) for 4 h. For the co-fed experiment, 0.5 mol% H₂O vapor was co-fed with 400 ppm of CO₂ over K_2CO_3/Al_2O_3 for 6 h.

Figure S4: CO₂ capture profile in molar flow concentration versus time for K_2CO_3/Al_2O_3 and K_2CO_3/AC . Amount of material (K_2CO_3/Al_2O_3 or K_2CO_3/AC): 2 g; Pretreatment conditions: $N_2 = 100$ mL/min, 200 °C, 1 h; CO₂ capture conditions: CO₂ = 400 ppm in N_2 (flow rate = 1200 mL/min), H_2O vapor = 0.5 mol%, 25 °C, 4 h

Table S2: CO₂ Sorption Capacity of the Sorb-Cat materials.

Materials	Pretreatment Conditions	CO₂ Captured (µmol/g)	K₂CO₃ (µmol/g)	CO₂ Desorbed (μmol/g)
K ₂ CO ₃ /Al ₂ O ₃	N ₂ , 200 °C, 1 h	1487	1820	N/A
K ₂ CO ₃ /Al ₂ O ₃	H ₂ , 400 °C, 5h	1862	1820	N/A
Fe ₂ O ₃ -KA (PM)	N ₂ , 200 °C, 1 h	591	1750	1082
Fe ₂ O ₃ -KA (PM)	H ₂ , 400 °C, 5 h	1420	1750	1220

Amount of material: 2 g; CO₂ capture conditions: CO₂ = 400 ppm in N₂ (flow rate = 1200 mL/min), H₂O vapor = 0.5 mol%, 25 °C, 4 h; Hydrogenation: H₂ = 60 mL/min, 1.0 MPa, 320 °C for 2.5 h (5 °C/min), followed by heating to 360 °C (5 °C/min) for 2 h.

Table S3: Comparison of the CO_2 capture capacity of K_2CO_3/AI_2O_3 and Fe/KA for two cycles.

Entry	Material		Pretreatment Condition	CO₂ Capture Capacity (µmol/g)	Capture Capacity (wt%)
	Fresh K ₂ CO ₃ /Al ₂ O ₃ ^a	Cycle 1	N ₂ (100 mL/min), 200 °C, 1 h	1487	6.5
1	Spent K ₂ CO ₃ /Al ₂ O ₃ ^a	Cycle 2	N ₂ (100 mL/min), 200 °C, 1 h	1203	5.3
	K ₂ CO ₃ /Al ₂ O ₃	Cycle 1	H ₂ , 400 °C, 5h	1862	8.2
2	Fe/KA ª	Cycle 1	H ₂ (60 mL/min), 400 °C, 5 h	1645	7.4
	Fe/KA (spent) ª	Cycle 2	$\rm H_2$ (60 mL/min), 320 °C for 2.5 h and 400 °C for 2.5 h	1276	5.6
3	K_2CO_3/Al_2O_3 (unmodified			~ 826	3.6
	Al ₂ O ₃)		Ar (100 mL/min), 200 °C, 1 h		
	K_2CO_3/AI_2O_3-750 (Thermally modified AI_2O_3)	Literature ⁴		~ 938	4.1

Amount of material: 2 g; CO₂ capture conditions for entries 1 and 2: CO₂ = 400 ppm in N₂ (flow rate = 1200 mL/min), H₂O vapor = 0.5 mol%, 25 °C, 4 h.

Figure S5: (A) CO_2 capture followed by hydrogenation of captured CO_2 over Fe/KA, (B) N_2 adsorption-desorption isotherm of K_2CO_3/Al_2O_3 , Fe/KA-Fresh and Fe/KA-Spent samples.

Fe/KA: 2 g; Pretreatment conditions: $H_2 = 60 \text{ mL/min}$, 400 °C, 5 h; CO₂ capture conditions: CO₂ = 400 ppm in N₂ (flow rate = 1200 mL/min), H₂O vapor = 0.5 mol%, 25 °C, 4 h; Hydrogenation: H₂ = 60 mL/min, 1.0 MPa, 320 °C for 2.5 h (5 °C/min), followed by heating to 360 °C (5 °C/min) for 2 h.

Figure S6: FTIR spectrum of spent samples of Fe/KA for DAC and gas phase CO₂ reactions.

Figure S7: Hydrogenation of CO₂ captured in H₂/CO pretreated Fe/KA (Table 2) at 320 °C. Amount of material: 2 g; Pretreatment conditions: H₂/CO (2:1) = 60 mL/min, 400 °C, 3 h, followed by H₂ = 60 mL/min, 400 °C, 5 h; CO₂ capture conditions: CO₂ = 400 ppm in N₂ (flow rate = 1200 mL/min), H₂O vapor = 0.5 mol%, 25 °C, 4 h; Hydrogenation: H₂ = 60 mL/min, 1.0 MPa, 320 °C for 2.5 h (5 °C/min). The selectivity of CO is <5% during the hydrogenation.

References:

(1) C. Zhao, X. Chen, C. Zhao, Energy Fuels 2009, 23, 4683-4687.

(2) Y. Han, C. Fang, X. Ji, J. Wei, Q. Ge, J. Sun, ACS Catal. 2020, 10, 12098-12108.

(3) T. Numpilai, N. Chanlek, Y. Poo-Arporn, C. K. Cheng, N. Siri-Nguan, T. Sornchamni, M. Chareonpanich, P. Kongkachuichay, N. Yigit, G. Rupprechter, J. Limtrakul, T. Witoon *ChemCatChem* 2020, **12**, 3306-3320.

(4) J. V. Veselovskaya, A. I Lysikov, O. V. Netskina, D. V. Kuleshov, A. G. Okunev, *Ind. Eng. Chem. Res.* 2020, **59**, 7130-7139.

(5) J. V. Veselovskaya, V. S. Derevschikov, T. Y. Kardash, O. A. Stonkus, T. A. Trubitsina, A. G. Okunev, Int. J. Greenhouse Gas Control, 2013, **17**, 332-340.