Supporting Information

S-alkylation of cysteine-containing peptides using thianthenium salts as alkyl source in flow

Hao Lv,^{a,§} Jie Liu,^{a,§} Long-Zhou Qin,^a Hao Sun,^a Jian Wang,^a Shan-Shan Zhu,^a Xiu Duan,^a Xin Yuan,^{*a} Jiang-Kai Qiu^{*a,b} and Kai Guo^{*a,b}

^{*a*} Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China, Fax:(+86)-25-5813-91926; phone:(+86)-25-5813-9926; e-mail: guok@njtech.edu.cn, qiujiangkai@njtech.edu.cn.

^b State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211800, P. R. China.

Table of contents

le of contents	1
General Information	2
General procedure	3
Optimization of reaction conditions	4
NMR Spectra	7
Cpoies of NMR Spectra	.23
	le of contents General Information General procedure Optimization of reaction conditions NMR Spectra Cpoies of NMR Spectra

1. General Information

All commercially available reagents and solvents used in this study were purchased from Alfa Aesar, Sigma Aldrich or Energy Chemical and used without further purification. Thin layer chromatography (TLC) was measured on EMD preloaded plates (silica gel 60 F254) and was visualized under ultraviolet light (254 nm and 365 nm). Column chromatography was performed with silica gel (200-300 mesh).

All new compounds were characterized by ¹H, ¹³C and ¹⁹F NMR spectroscopy and mass spectrometry. NMR spectra were recorded on a Bruke Avance operating for ¹H NMR at 400 MHz, ¹³C NMR at 100 MHz, and ¹⁹F NMR at 376 MHz. Chemical shifts (δ) were reported in ppm referenced to Tetramethylsilane (TMS) as internal standard. NMR spectra uses the following abbreviations to describe the multiplicity: s = single, d = doublet, t = triplet, q = quartet, m = multiplet, dd = double doublet, td = triple doublet. Coupling constants (*J*) were reported in hertz (Hz). Known products were characterized by comparing to the corresponding ¹H NMR, ¹³C NMR and ¹⁹F NMR from literature. NMR data was processed using the MestReNova 9.0.1 software package. High resolution mass spectra were obtained on Agligent Technologies 6520 Accurate Series Q-TOF equipped with ESI. Coil was used commercially available PFA (perfluoroalkoxyalkane) tube with an inner diameter of 0.6 mm.

2. General procedure

Methyl (tert-butoxycarbonyl)-L-phenylalanyl-L-cysteinate **1a** (0.4 mmol, 1.0 eq.) was dissolved in DMSO (2.0 mL) and then added Et₃N (0.6 mmol, 1.5 eq.). A second reaction solution was to dissolve the thianthrenium salts **2a** (0.48 mmol, 1.2 eq.) in DMSO (2.0 mL). The two solutions were transferred into two 5 mL BD plastic syringes and introduced into the microreactor (a high purity perfluoroalkoxyalkane, PFA capillary tubing, ID = 600 μ m) through syringe pump. The two liquid streams were merged with a Y-Mixer before entering the reactor. The flow rate was set to 0.1 mL/min (0.05 mL/min per syringe), thus resulting in 14 min residence time (volume of reactor = 1.4 mL). After reaching steady state, the reaction sample was collected in a glass vial. Solution remaining in the microreactor was then discharged with DMSO (2.0 mL×2) via syringe pump, and was also collected in the same glass vial. After the reaction completed, diluted with DCM and water, and extracted with DCM (10.0 mL) for three times, combined organic layers were washed with brine, dried over MgSO4 and concentrated in vacuo. Purification by flash column chromatography afforded the desired product **3a**.

Supplementary Figure 1. The reaction equipment

3. Optimization of reaction conditions

Entry ^a	bases	Yield (%) ^b
1	DMAP	60
2	Et ₃ N	94
3	TBD	92
4	DIPEA	90
5	TMG	92
6	DBU	86
7	DABCO	17
8	TMEDA	50
9	Pyridine	N.D.
10	Cs_2CO_3	90
11	None	N.D.

^a Standard condition: **1a** (1.0 eq., 0.4 mmol), **2a** (1.2 eq., 0.48 mmol), base (1.5 eq., 0.6 mmol), DCM (4.0 mL). Stirred at room temperature for 12 hours. ^b Isolated yield is based on **1a**.

Supplementary Table 2 Screening of solvents

Entry ^a	Solvents	Yield(%) ^b
1	CH ₃ OH	90
2	THF	92
3	CH ₃ CN	90
4	DCE	78
5	Acetone	88
6	DMSO	95
7	DMF	90
8	DMA	89
9	H_2O	73

^a Standard condition: **1a** (1.0 eq., 0.4 mmol), **2a** (1.2 eq., 0.48 mmol), Et₃N (1.5 eq., 0.6 mmol), Solvent (4.0 mL). Stirred at room temperature for 12 hours. ^b Isolated yield is based on **1a**.

Supplementary Table 3 Screening of amounts of 2a

^a Standard condition: **1a** (1.0 eq., 0.4 mmol), **2a** (**x** equiv), Et₃N (1.5 eq., 0.6 mmol), Solvent (4.0 mL). Stirred at room temperature for 12 hours. ^b Isolated yield is based on **1a**.

Supplementary Table 4 Screening of reaction time

^a Standard condition: 1a (1.0 eq., 0.4 mmol), 2a (1.2 eq., 0.48 mmol), Et₃N (1.5 eq., 0.6 mmol), Solvent (4.0 mL). Stirred at room temperature for \mathbf{x} hours. ^b Isolated yield is based on $\mathbf{1a}$.

Suj	pp	lementary	Table 5	Screer	ning	of f	low	rate
-----	----	-----------	---------	--------	------	------	-----	------

Entry ^a	Rate (mL/min)	Residue time (min)	Yield (%) ^b
1	0.05	14.0	96
2	0.075	9.33	88
3	0.1	7.0	82
4	0.15	4.67	76
5	0.2	3.5	68
6	0.4	1.75	58

^a Standard condition: 1a (1.0 eq., 0.4 mmol) and Et₃N (1.5 eq., 0.6 mmol) was dissolved in DMSO (2.0

mL); **2a** (1.2 eq., 0.48 mmol) was dissolved in DMSO (2.0 mL). The solution was transferred into syringe and introduced into microreactor through syringe pump.^b Isolated yield is based on **1a**.

Supplementary Table 6 Screening of flow solvent

Entry ^a	Solvents	Yield (%) ^b
1	CH ₃ OH	/
2	THF	89
3	CH ₃ CN	88
4	DCE	80
5	Acetone	85
6	DMSO	96
7	DMF	87
8	DMA	82
9	DMSO/H ₂ O(4:1)	88
10	DMSO/H ₂ O(7:3)	82
11	DMSO/H ₂ O(3:2)	78
12	DMSO/H ₂ O(1:1)	69
13	H_2O	/

^a Standard condition: **1a** (1.0 eq., 0.4 mmol) and Et₃N (1.5 eq., 0.6 mmol) were dissolved in Solvents (2.0 mL); **2a** (1.2 eq., 0.48 mmol) was dissolved in Solvents (2.0 mL). The solution was transferred into syringe and introduced into microreactor through syringe pump (PFA tube, ID = 600 μ m) for 14 min. ^b Isolated yield is based on **1a**.

Supplementary Table 7 Screening of flow pipe diameter

^a Standard condition: **1a** (1.0 eq., 0.4 mmol) and Et_3N (1.5 eq., 0.6 mmol) was dissolved in DMSO (2.0 mL); **2a** (1.2 eq., 0.48 mmol) was dissolved in DMSO (2.0 mL). The solution was transferred into syringe and introduced into microreactor through syringe pump for 14 min. ^b Isolated yield is based on **1a**.

Product	Isolated yield (%) ^a (in batch)	Time ^a (in batch)	Space time yield (mol/L·h) ^a (in batch)	Isolated yield (%) ^b (in flow)	Time ^b (in flow)	Space time yield (mol/L·h) ^b (in flow)
3 a	95	12 h	8.3*10 ⁻³	96	14 min	6.1*10 ⁻¹
4 a	87	12 h	8.3*10 ⁻³	92	14 min	6.1*10 ⁻¹
5a	81	12 h	8.3*10 ⁻³	85	14 min	6.1*10 ⁻¹

Supplementary Table 8 The comparison between batch and flow

^a Reaction condition: **1a** (0.2 mmol), **2a** (0.24 mmol), Et₃N (0.3 mmol), Solvent (2.0 mL). Stirred in the seal reaction tube (25 mL) at room temperature

^bReaction conditions: the reaction was carried out in the microfluidic chip reactor (1.4 mL) with a flow rate of 0.05mL/min at room temperature

4. NMR Spectra

Methyl N-((tert-butoxycarbonyl)-L-phenylalanyl)-S-phenethyl-L-cysteinate (3a)

White solid (Flow:186.6 mg, 96% yield; Batch:184.7 mg, 95% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.31 – 7.25 (m, 4H), 7.24 – 7.16 (m, 6H), 6.69 (d, *J* = 7.2 Hz, 1H), 4.99 (s, 1H), 4.78 – 4.70 (m, 1H), 4.47 – 4.33 (m, 1H), 3.71 (s, 3H), 3.13 – 3.02 (m, 2H), 2.97 – 2.89 (m, 2H), 2.86 – 2.79 (m, 2H), 2.77 – 2.69 (m, 2H), 1.40 (s, 9H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 171.1, 170.7, 155.4, 140.0, 136.5, 129.3, 128.7, 128.5(3), 128.5(0), 127.0, 126.5, 80.3, 52.6, 52.0, 38.2, 36.1, 34.2, 34.0, 28.3. HRMS (ESI) m/z: calcd for C₂₆H₃₄N₂O₅SNa [M+Na]⁺: 509.2081, found: 509.2076.

Methyl N-((tert-butoxycarbonyl)glycyl)-S-phenethyl-L-cysteinate (3b)

Light yellow oil (Flow:112.5 mg, 71% yield; Batch:109.3mg, 69% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.23-7.18 (m, 2H), 7.15 – 7.03 (m, 4H), 5.36 (t, *J* = 5.5 Hz, 1H), 4.77 – 4.71 (m, 1H), 3.81 – 3.70 (m, 2H), 3.65 (s, 3H), 2.95 – 2.84 (m, 2H), 2.80 – 2.74 (m, 2H), 2.72 – 2.66 (m, 2H), 1.37 (s, 9H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 171.1, 169.6, 156.1, 140.0, 128.5, 126.5, 80.2, 52.7, 51.9, 44.2, 36.1, 34.1, 34.0, 28.3. HRMS (ESI) m/z: calcd for C₁₉H₂₈N₂O₅SNa [M+Na]⁺: 419.1611, found: 419.1615.

Methyl N-((tert-butoxycarbonyl)-L-alanyl)-S-phenethyl-L-cysteinate (3c)

Colorless oil (Flow:137.6 mg, 84% yield; Batch:137.7mg, 81% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.22 – 7.18 (m, 2H), 7.14 – 7.08 (m, 3H), 7.02 (s, 1H), 5.25 – 5.09 (m, 1H), 4.74 – 4.68 (m, 1H), 4.16 (s, 1H), 3.65 (s, 3H), 2.95 – 2.84 (m, 2H), 2.79 – 2.74 (m, 2H), 2.71 – 2.66 (m, 2H), 1.36 (s, 9H), 1.27 (d, *J* = 7.1 Hz, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 172.8, 171.1, 155.4, 140.1, 128.5, 126.4, 80.0, 52.6, 51.9, 50.0, 36.1, 34.1, 34.0, 28.3, 18.3. HRMS (ESI) m/z: calcd for C₂₀H₃₀N₂O₅SNa [M+Na]⁺: 433.1768, found: 433.1771.

Methyl N-((tert-butoxycarbonyl)-L-valyl)-S-phenethyl-L-cysteinate (3d)

Colorless oil (Flow:151.6 mg, 87% yield; Batch:144.6mg, 83% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.23 – 7.18 (m, 2H), 7.14 – 7.08 (m, 3H), 6.87 (d, *J* = 7.3 Hz, 1H), 5.16 (d, *J* = 8.5 Hz, 1H), 4.75 – 4.69 (m, 1H), 4.01 – 3.88 (m, 1H), 3.64 (s, 3H), 2.93 – 2.86 (m, 2H), 2.79 – 2.74 (m, 2H), 2.72 – 2.66 (m, 2H), 2.11 – 2.01 (m, 1H), 1.36 (s, 9H), 0.90 (d, *J* = 6.8 Hz, 3H), 0.84 (d, *J* = 6.8 Hz, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 171.7, 171.1, 155.8, 140.0, 128.5, 126.4, 79.8, 52.6, 51.8, 36.1, 34.1, 34.0, 31.0, 28.3, 19.2, 17.7. HRMS (ESI) m/z: calcd for C₂₂H₃₄N₂O₅SNa [M+Na]⁺: 461.2081, found: 461.2082.

Methyl N-((tert-butoxycarbonyl)-L-leucyl)-S-phenethyl-L-cysteinate (3e)

Colorless oil (Flow: 166.6 mg, 92% yield; Batch: 159.4mg, 88% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.22 – 7.17 (m, 2H), 7.14 – 7.08 (m, 3H), 7.04 (d, *J* = 5.9 Hz, 1H), 5.05 (d, *J* = 7.4 Hz, 1H), 4.74 – 4.66 (m, 1H), 4.11 (s, 1H), 3.64 (s, 3H), 2.95 – 2.85 (m, 2H), 2.79 – 2.74 (m, 2H), 2.71 – 2.65 (m, 2H), 1.64 – 1.53 (m, 2H), 1.43 – 1.39 (m, 1H), 1.36 (s, 9H), 0.85 (dd, *J* = 6.2, 3.3 Hz, 6H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 173.0, 171.2, 155.7, 140.1, 128.5(0), 128.4(7), 126.4, 79.7, 53.0, 52.5, 52.1, 41.2, 36.0, 33.9, 33.9, 28.3, 24.6, 23.0, 22.0. HRMS (ESI) m/z: calcd for C₂₃H₃₆N₂O₅SNa [M+Na]⁺: 475.2237, found: 475.2240.

Methyl N-((tert-butoxycarbonyl)-L-isoleucyl)-S-phenethyl-L-cysteinate (3f)

Colorless oil (Flow: 161.8 mg, 89% yield; Batch: 165.4mg, 91% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.22 – 7.18 (m, 2H), 7.14 – 7.08 (m, 3H), 6.86 (d, *J* = 7.2 Hz, 1H), 5.14 (d, *J* = 8.4 Hz, 1H), 4.75 – 4.69 (m, 1H), 4.02 – 3.92 (m, 1H), 3.65 (s, 3H), 2.92 – 2.87 (m, 2H), 2.79 – 2.74 (m, 2H), 2.72 – 2.65 (m, 2H), 1.85 – 1.75 (m, 1H), 1.48 – 1.41 (m, 1H), 1.36 (s, 9H), 1.11 – 1.01 (m, 1H), 0.88 – 0.80 (m, 6H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 171.9, 171.3, 140.2, 128.5(0), 128.4(7), 126.4, 79.6, 59.1, 52.5, 51.9, 37.4, 36.0, 33.9, 28.3, 24.7, 15.4, 11.4. HRMS (ESI) m/z: calcd for C₂₃H₃₆N₂O₅SNa [M+Na]⁺: 475.2237, found: 475.2239.

Methyl (S)-3-((tert-butoxycarbonyl)amino)-4-(((R)-1-methoxy-1-oxo-3-(phenethyl thio) propan -2-yl)amino)-4-oxobutanoate (3g)

Colorless oil (Flow: 157.4 mg, 84% yield; Batch: 148mg, 79% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.27 (d, J = 7.2 Hz, 1H), 7.22 – 7.18 (m, 2H), 7.12 (t, J = 7.4 Hz, 3H), 5.69 (d, J = 8.1 Hz, 1H), 4.71 – 4.65 (m, 1H), 4.55 – 4.45 (m, 1H), 3.65 (s, 3H), 3.59 (s, 3H), 2.92 – 2.85 (m, 3H), 2.80

-2.75 (m, 2H), 2.72 -2.59 (m, 3H), 1.38 (s, 9H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 172.1, 170.8, 170.7, 155.5, 140.1, 128.5, 126.4, 80.5, 52.6, 52.1(2), 52.0(7), 50.6, 36.1, 35.8, 34.0, 33.9, 28.3. HRMS (ESI) m/z: calcd for C₂₂H₃₂N₂O₇SNa [M+Na]⁺: 491.1822, found: 491.1823.

Methyl (S)-4-((tert-butoxycarbonyl)amino)-5-(((R)-1-methoxy-1-oxo-3-(phenethyl thio) propan -2-yl)amino)-5-oxopentanoate (3h)

Colorless oil (Flow: 167.2 mg, 87% yield; Batch: 159.5mg, 83% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.23 – 7.18 (m, 2H), 7.17 – 7.07 (m, 4H), 5.39 (d, *J* = 7.4 Hz, 1H), 4.73 – 4.66 (m, 1H), 4.27 – 4.10 (m, 1H), 3.65 (s, 3H), 3.59 (s, 3H), 2.94 – 2.85 (m, 2H), 2.80 – 2.75 (m, 2H), 2.72 – 2.66 (m, 2H), 2.45 – 2.35 (m, 2H), 2.12 – 2.02 (m, 1H), 1.92 – 1.81 (m, 1H), 1.36 (s, 9H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 173.7, 171.7, 171.0, 155.6, 140.0, 128.4(8), 128.4(6), 126.4, 79.8, 53.5, 52.6, 52.0, 51.8, 36.0, 33.8, 30.1, 28.3, 27.9. HRMS (ESI) m/z: calcd for C₂₃H₃₄N₂O₇SNa [M+Na]⁺: 505.1979, found: 505.1979.

Methyl N-((tert-butoxycarbonyl)-L-seryl)-S-phenethyl-L-cysteinate (3i)

Colorless oil (Flow: 115.8 mg, 68% yield; Batch: 107.3mg, 63% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.31 (s, 1H), 7.24 – 7.19 (m, 2H), 7.16 – 7.08 (m, 3H), 5.56 (d, *J* = 7.1 Hz, 1H), 4.76 – 4.66 (m, 1H), 4.17 (s, 1H), 3.94 (s, 1H), 3.67 (s, 3H), 3.63 – 3.56 (m, 1H), 3.26 (s, 1H), 2.98 – 2.84 (m, 2H), 2.80 – 2.75 (m, 2H), 2.73 – 2.66 (m, 2H), 1.38 (s, 9H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 171.3, 171.1, 155.9, 140.0, 128.5(3), 128.4(9), 126.5, 80.5, 63.0, 55.3, 52.8, 52.0, 36.0, 34.0, 33.9, 28.3. HRMS (ESI) m/z: calcd for C₂₀H₃₀N₂O₆SNa [M+Na]⁺: 449.1717, found: 449.1716.

Methyl N-((tert-butoxycarbonyl)-L-threonyl)-S-phenethyl-L-cysteinate (3j)

Colorless oil (Flow: 141.2 mg, 80% yield; Batch: 134.1mg, 76% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.56 – 7.48 (m, 1H), 7.30 – 7.25 (m, 2H), 7.22 – 7.15 (m, 3H), 5.76 – 5.67 (m, 1H), 4.84 – 4.75 (m, 1H), 4.31 (s, 1H), 4.21 (d, *J* = 7.1 Hz, 1H), 3.82 (d, *J* = 10.5 Hz, 1H), 3.73 (s, 3H), 3.03 – 2.98 (m, 1H), 2.94 – 2.89 (m, 1H), 2.87 – 2.82 (m, 2H), 2.80 – 2.74 (m, 2H), 1.45 (s, 9H), 1.19 (d, *J* = 6.2 Hz, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 171.2, 171.1, 156.2, 140.0, 128.5, 126.5, 80.3, 67.2, 58.6, 52.7, 51.9, 36.0, 34.0, 33.8, 28.3, 18.2. HRMS (ESI) m/z: calcd for C₂₁H₃₂N₂O₆SNa [M+Na]⁺: 463.1873, found: 463.1873.

Methyl N-((tert-butoxycarbonyl)-L-methionyl)-S-phenethyl-L-cysteinate (3k)

Colorless oil (Flow: 165.6 mg, 88% yield; Batch: 158.1mg, 84% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.23 – 7.19 (m, 2H), 7.16 – 7.05 (m, 4H), 5.32 (d, *J* = 7.5 Hz, 1H), 4.74 – 4.68 (m, 1H), 4.36 – 4.19 (m, 1H), 3.66 (s, 3H), 2.93 – 2.87 (m, 2H), 2.80 – 2.75 (m, 2H), 2.72 – 2.67 (m, 2H), 2.51 (t, *J* = 7.2 Hz, 2H), 2.05 – 1.98 (m, 4H), 1.91 – 1.83 (m, 1H), 1.36 (s, 9H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 171.7, 171.0, 155.5, 140.0, 128.5, 126.4, 80.0, 53.3, 52.7, 51.9, 36.0, 33.9, 31.8, 30.0, 28.3, 15.2. HRMS (ESI) m/z: calcd for C₂₂H₃₄N₂O₅S₂Na [M+Na]⁺: 493.1801, found: 493.1801.

Methyl N-((tert-butoxycarbonyl)-L-tyrosyl)-S-phenethyl-L-cysteinate (31)

Colorless oil (Flow: 171.4 mg, 85% yield; Batch: 159.3mg, 79% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.82 (s, 1H), 7.29-7.24 (m, 2H), 7.21-7.14 (m, 3H), 7.07-6.95 (m, 3H), 6.74 (d, *J* = 7.2 Hz, 2H), 5.28 (s, 1H), 4.74 (s, 1H), 4.38 (s, 1H), 3.67 (s, 3H), 3.01 – 2.88 (m, 4H), 2.84 – 2.79 (m, 2H), 2.76 – 2.68 (m, 2H), 1.40 (s, 9H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 172.0, 170.9, 155.7, 155.6, 140.1, 130.4, 128.5, 127.3, 126.5, 115.7, 80.5, 56.0, 52.8, 52.1, 37.6, 36.0, 34.0, 33.9, 28.3. HRMS (ESI) m/z: calcd for C₂₆H₃₄N₂O₆SNa [M+Na]⁺: 525.2030, found: 425.2024.

Methyl N-((tert-butoxycarbonyl)-L-tryptophyl)-S-phenethyl-L-cysteinate (3m)

Light yellow oil (Flow: 189.2 mg, 90% yield; Batch: 185mg, 88% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.34 (s, 1H), 7.53 (d, *J* = 7.8 Hz, 1H), 7.23 – 7.17 (m, 3H), 7.16 – 7.11 (m, 1H), 7.09 – 6.98 (m, 4H), 6.92 (s, 1H), 6.63 (d, *J* = 7.5 Hz, 1H), 5.14 (s, 1H), 4.63 – 4.54 (m, 1H), 4.41 (s, 1H), 3.54 (s, 3H), 3.27 – 3.16 (m, 1H), 3.13 – 3.06 (m, 1H), 2.76 – 2.63 (m, 4H), 2.52 – 2.44 (m, 2H), 1.34 (s, 9H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 171.8, 170.8, 155.6, 140.2, 136.4, 128.6, 127.5, 123.6, 122.1, 119.6, 118.8, 111.4, 110.0, 80.3, 55.2, 52.7, 52.1, 36.0, 34.1, 34.0, 28.4. HRMS (ESI) m/z: calcd for C₂₈H₃₅N₃O₅SNa [M+Na]⁺: 548.2190, found: 548.2186.

Methyl *N*-(*N*²-acetyl-*N*⁶-(tert-butoxycarbonyl)-L-lysyl)-*S*-phenethyl-L-cysteinate (3n)

White solid (Flow: 192.4 mg, 94% yield; Batch: 169.9mg, 83% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.31 – 7.27 (m, 2H), 7.23 – 7.17 (m, 3H), 7.03 (d, *J* = 7.5 Hz, 1H), 6.37 (d, *J* = 7.0 Hz, 1H), 4.78 – 4.71 (m, 2H), 4.53 – 4.47 (m, 1H), 3.75 (s, 3H), 3.14 – 3.05 (m, 2H), 3.00 – 2.94 (m, 2H), 2.88 – 2.82 (m, 2H), 2.79 – 2.74 (m, 2H), 2.01 – 1.95 (m, 4H), 1.88 – 1.81 (m, 1H), 1.70 – 1.63 (m, 1H), 1.52 – 1.47 (m, 2H), 1.43 (s, 9H), 1.38 – 1.35 (m, 1H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 171.7, 171.0, 170.3, 156.2, 140.0, 128.5, 126.5, 79.1, 52.9, 52.7, 51.9, 39.9, 36.0, 33.9(8), 33.9(6), 31.9, 29.6, 28.5, 23.1, 22.3. HRMS (ESI) m/z: calcd for C₂₅H₃₉N₃O₆SNa [M+Na]⁺: 532.2452, found: 532.2456.

Methyl *N*-((*S*)-2-((tert-butoxycarbonyl)amino)-4-phenylbutanoyl)-*S*-phenethyl-L- cysteinate (30) Colorless oil (Flow: 172.6 mg, 86% yield; Batch: 162.6mg, 81% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.29 – 7.24 (m, 4H), 7.22-7.15 (m, 6H), 6.86 (d, J = 7.2 Hz, 1H), 5.09 (d, J = 8.0 Hz, 1H), 4.80 – 4.75 (m, 1H), 4.22 – 4.08 (m, 1H), 3.73 (s, 3H), 3.01 – 2.93 (m, 2H), 2.87 – 2.82 (m, 2H), 2.79 – 2.73 (m, 2H), 2.69 (t, J = 7.8 Hz, 2H), 2.20 – 2.12 (m, 1H), 1.94 – 1.88 (m, 1H), 1.44 (s, 9H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 171.8, 171.0, 155.5, 140.9, 140.0, 128.5(3), 128.5(1), 128.4(6), 126.5, 126.2, 80.2, 54.2, 52.7, 51.9, 36.1, 34.1(4), 34.0(7), 34.0, 31.7, 28.3. HRMS (ESI) m/z: calcd for C₂₇H₃₆N₂O₅SNa [M+Na]⁺: 523.2237, found: 523.2254.

Methyl N-(tert-butoxycarbonyl)-L-alanyl-L-phenylalanyl-S-phenethyl-L-cysteinate (4a)

White solid (Flow: 205.6 mg, 92% yield; Batch: 194.4mg, 87% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.30 – 7.22 (m, 4H), 7.22 – 7.14 (m, 6H), 7.13 – 7.06 (m, 1H), 6.98 (d, *J* = 7.0 Hz, 1H), 5.24 (s, 1H), 4.84 – 4.76 (m, 1H), 4.75 – 4.67 (m, 1H), 4.19 (s, 1H), 3.69 (s, 3H), 3.08 (d, *J* = 5.8 Hz, 2H), 2.95 – 2.78 (m, 4H), 2.75 – 2.68 (m, 2H), 1.41 (s, 9H), 1.27 (d, *J* = 6.8 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 172.7, 170.8, 170.7, 155.5, 140.1, 136.3, 129.4, 128.6, 128.5, 126.9, 126.4, 80.1, 54.1, 52.6, 52.1, 50.3, 38.2, 36.0, 34.0, 33.9, 28.4, 18.5. HRMS (ESI) m/z: calcd for C₂₉H₃₉N₃O₆SNa [M+Na]⁺: 580.2452, found: 580.2456.

Methyl N-(tert-butoxycarbonyl)-L-valyl-L-phenylalanyl-S-phenethyl-L-cysteinate (4b)

White solid (Flow: 208.2 mg, 89% yield; Batch: 187.1mg, 80% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.30 – 7.13 (m, 10H), 7.10 – 7.00 (m, 1H), 6.90 (d, *J* = 7.0 Hz, 1H), 5.24 (d, *J* = 7.9 Hz, 1H), 4.88 – 4.77 (m, 1H), 4.75 – 4.66 (m, 1H), 3.98 (s, 1H), 3.69 (s, 3H), 3.06 (d, *J* = 6.3 Hz, 2H), 2.91 – 2.77 (m, 4H), 2.72 (d, *J* = 6.5 Hz, 2H), 2.15 – 2.01 (m, 1H), 1.43 (s, 9H), 0.89 (d, *J* = 6.4 Hz, 3H), 0.82 (d, *J* = 5.5 Hz, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 171.7, 170.7(2), 170.6(6), 155.9, 140.1, 136.3, 129.4, 128.6, 128.5, 126.9, 126.4, 79.9, 60.0, 54.1, 52.6, 52.0, 38.4, 36.0, 34.0, 33.9, 30.8, 28.4, 19.3, 17.7. HRMS (ESI) m/z: calcd for C₃₁H₄₃N₃O₆SNa [M+Na]⁺: 608.2765, found: 608.2772.

Methyl *N*-(tert-butoxycarbonyl)-L-phenylalanyl-L-phenylalanyl-*S*-phenethyl-L- cysteinate (4c) White solid (Flow: 210.2 mg, 83% yield; Batch: 212.7mg, 84% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.28 – 7.12 (m, 14H), 7.11 – 7.07 (m, 2H), 6.88 (d, J = 7.8 Hz, 1H), 5.23 (d, J = 6.6 Hz, 1H), 4.81 (q, J = 6.9 Hz, 1H), 4.69 (q, J = 5.9 Hz, 1H), 4.43 (s, 1H), 3.68 (s, 3H), 3.08 – 2.94 (m, 4H), 2.92 – 2.84 (m, 2H), 2.83 – 2.78 (m, 2H), 2.74 – 2.68 (m, 2H), 1.35 (s, 9H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 171.4, 170.8, 170.5, 155.5, 140.1, 136.7, 136.2, 129.5, 129.4, 128.6(4), 128.5(8), 128.5, 126.9, 126.4, 80.1, 55.7, 54.1, 52.6, 52.2, 38.4, 38.3, 36.1, 34.0, 33.9, 28.3. HRMS (ESI) m/z: calcd for C₃₅H₄₃N₃O₆SNa [M+Na]⁺: 656.2765, found: 656.2768.

Methyl N-(tert-butoxycarbonyl)-L-valyl-L-alanyl-S-phenethyl-L-cysteinate (4d)

White solid (Flow: 189.0 mg, 93% yield; Batch: 176.8mg, 87% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.31 – 7.25 (m, 3H), 7.23 – 7.16 (m, 3H), 6.93 (d, *J* = 6.8 Hz, 1H), 5.34 (d, *J* = 8.8 Hz, 1H), 4.81 – 4.74 (m, 1H), 4.68 – 4.59 (m, 1H), 4.06 – 3.96 (m, 1H), 3.74 (s, 3H), 2.95 (d, *J* = 5.7 Hz, 2H), 2.87 – 2.81 (m, 2H), 2.79 – 2.73 (m, 2H), 2.15 – 2.06 (m, 1H), 1.44 (s, 9H), 1.39 (d, *J* = 7.0 Hz, 3H), 0.94 (d, *J* = 6.8 Hz, 3H), 0.90 (d, *J* = 6.8 Hz, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 172.1, 171.6, 171.0, 156.0, 140.1, 128.5, 126.4, 79.8, 59.8, 52.6, 52.0, 48.8, 36.0, 34.0, 33.9, 31.1, 28.3, 19.4, 18.5, 17.8. HRMS (ESI) m/z: calcd for C₂₅H₃₉N₃O₆SNa [M+Na]⁺: 532.2452, found: 532.2455.

Methyl N-(tert-butoxycarbonyl)glycyl-L-prolyl-S-phenethyl-L-cysteinate (4e)

Colorless oil (Flow: 155.6 mg, 79% yield; Batch: 149.7mg, 76% yield, d:r = 1:4.3). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.52 (d, *J* = 7.7 Hz, 1H), 7.31 – 7.25 (m, 2H), 7.22 – 7.16 (m, 3H), 5.62 – 5.49 (m, 1H), 4.78 – 4.70 (m, 1H), 4.64 – 4.56 (m, 1H), 4.01 – 3.91 (m, 1H), 3.85 – 3.78 (m, 1H), 3.73 (s, 3H), 3.49 – 3.30 (m, 2H), 3.03 – 2.89 (m, 2H), 2.88 – 2.81 (m, 2H), 2.79 – 2.72 (m, 2H), 2.34 – 2.25 (m, 1H), 2.13 – 2.03 (m, 1H), 1.99 – 1.86 (m, 2H), 1.46 – 1.40 (m, 9H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 171.1, 170.9, 168.6, 155.8, 140.1, 128.5, 126.4, 79.6, 59.9, 52.6, 52.2, 46.2, 43.0, 36.1, 34.0, 33.9, 28.3, 27.7, 24.7. HRMS (ESI) m/z: calcd for C₂₄H₃₅N₃O₆SNa [M+Na]⁺: 516.2139, found: 516.2144.

Methyl N-(tert-butoxycarbonyl)-L-valyl-L-prolyl-S-phenethyl-L-cysteinate (4f)

Colorless oil (Flow: 177.6 mg, 83% yield; Batch: 171.2mg, 80% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.44 (d, *J* = 7.6 Hz, 1H), 7.31 – 7.26 (m, 2H), 7.22 – 7.17 (m, 3H), 5.33 (d, *J* = 9.3 Hz, 1H), 4.76 – 4.70 (m, 1H), 4.64 – 4.58 (m, 1H), 4.32 – 4.25 (m, 1H), 3.73 (s, 3H), 3.69 (d, *J* = 4.2 Hz, 1H), 3.59 – 3.52 (m, 1H), 2.98 – 2.90 (m, 2H), 2.87 – 2.82 (m, 2H), 2.80 – 2.74 (m, 2H), 2.29 (d, *J* = 9.5 Hz, 1H), 2.05 – 1.90 (m, 4H), 1.43 (s, 9H), 1.00 (d, *J* = 6.7 Hz, 3H), 0.92 (d, *J* = 6.7 Hz, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 172.4, 171.1, 171.0, 155.8, 140.1, 128.5, 128.4, 126.4, 79.5, 59.9, 56.7, 52.5, 52.1, 47.5, 36.0, 34.1, 33.9, 31.4, 28.3, 27.5, 25.0, 19.6, 17.4. HRMS (ESI) m/z: calcd for C₂₇H₄₁N₃O₆SNa [M+Na]⁺: 558.2608, found: 558.2611.

Methyl N-(tert-butoxycarbonyl)-L-phenylalanyl-L-valyl-S-phenethyl-L-cysteinate (4g)

White solid (Flow: 201.3 mg, 86% yield, Batch: 191.9mg, 82% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.31 (d, J = 7.6 Hz, 1H), 7.27 – 7.22 (m, 4H), 7.20 – 7.14 (m, 6H), 6.97 (d, J = 7.4 Hz, 1H), 5.39 (d, J = 7.3 Hz, 1H), 4.81 – 4.75 (m, 1H), 4.53 – 4.42 (m, 2H), 3.72 (s, 3H), 3.13-3.07 (m, 1H), 3.04 – 2.98 (m, 1H), 2.94 (d, J = 5.6 Hz, 2H), 2.86 – 2.80 (m, 2H), 2.78 – 2.73 (m, 2H), 2.16 – 2.06 (m, 1H), 1.37 (s, 9H), 0.92 (dd, J = 12.8, 6.8 Hz, 6H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 171.6, 171.1, 170.9, 155.6, 140.1, 136.8, 129.4, 128.6, 128.5, 126.8, 126.4, 80.0, 58.4, 55.8, 52.6, 52.0, 38.1, 36.1, 34.0, 33.9, 31.2, 28.3, 19.0, 18.1. HRMS (ESI) m/z: calcd for C₃₁H₄₃N₃O₆SNa [M+Na]⁺: 608.2765, found: 608.2771.

Methyl N-(tert-butoxycarbonyl)-L-valyl-L-methionyl-S-phenethyl-L-cysteinate (4h)

White solid (Flow: 193.6 mg, 85% yield; Batch: 184.5mg, 81% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.48 (d, *J* = 7.7 Hz, 1H), 7.33 – 7.25 (m, 3H), 7.22 – 7.16 (m, 3H), 5.46 (d, *J* = 8.5 Hz, 1H), 4.79 (q, *J* = 5.9 Hz, 2H), 4.05 (d, *J* = 7.2 Hz, 1H), 3.73 (s, 3H), 2.95 (d, *J* = 5.7 Hz, 2H), 2.87 – 2.81 (m, 2H), 2.80 – 2.73 (m, 2H), 2.58 (t, *J* = 7.2 Hz, 2H), 2.13 – 1.99 (m, 6H), 1.44 (s, 9H), 0.95 – 0.89 (dd, *J* = 10.9, 6.8 Hz, 6H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 171.9, 171.0, 170.9, 155.9, 140.0, 128.5, 126.4, 79.7, 59.9, 52.6, 52.0, 36.0, 33.9, 31.7, 31.0, 29.8, 28.4, 19.3, 18.0, 15.1. HRMS (ESI) m/z: calcd for C₂₇H₄₃N₃O₆S₂Na [M+Na]⁺: 592.2485, found: 592.2490.

Methyl *N*-(tert-butoxycarbonyl)-L-tryptophyl-L-methionyl-*S*-phenethyl-L-cysteinate (4i) White solid (Flow: 241.4 mg, 92% yield; Batch: 228.3mg, 87% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.59 (s, 1H), 7.61 (d, J = 7.8 Hz, 1H), 7.32 (d, J = 8.0 Hz, 1H), 7.27 (t, J = 7.2 Hz, 3H), 7.21 – 7.13 (m, 4H), 7.09 (t, J = 7.4 Hz, 1H), 7.03 (s, 1H), 6.98 – 6.89 (m, 1H), 5.29 (d, J = 7.0 Hz, 1H), 4.71 – 4.59 (m, 2H), 4.53 – 4.41 (m, 1H), 3.70 (s, 3H), 3.34 – 3.16 (m, 2H), 2.94 – 2.79 (m, 4H), 2.76 – 2.70 (m, 2H), 2.37 (t, J = 6.5 Hz, 2H), 1.99 – 1.84 (m, 5H), 1.41 (s, 9H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 172.0, 170.9, 170.8, 155.7, 140.1, 136.3, 128.5, 127.5, 126.5, 123.5, 122.2, 119.7, 118.8, 111.4, 110.1, 80.3, 55.4, 52.7, 52.4, 52.0, 36.0, 33.9, 33.8, 30.8, 29.6, 28.4, 28.1, 14.9. HRMS

Methyl N-(tert-butoxycarbonyl)-L-tyrosyl-L-methionyl-S-phenethyl-L-cysteinate (4j)

(ESI) m/z: calcd for C₃₃H₄₃N₃O₆S₂Na [M+Na]⁺: 679.2594, found: 679.2597.

White solid (Flow: 230.4 mg, 91% yield; Batch: 222.8mg, 88% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.73 (s, 1H), 7.45 (d, J = 7.0 Hz, 1H), 7.29 – 7.13 (m, 6H), 6.98 (d, J = 8.1 Hz, 2H), 6.75 (d, J = 8.1 Hz, 2H), 5.39 – 5.26 (m, 1H), 4.79 – 4.67 (m, 2H), 4.43 – 4.28 (m, 1H), 3.71 (s, 3H), 2.96 (s, 4H), 2.86 – 2.80 (m, 2H), 2.79 – 2.73 (m, 2H), 2.51 (t, J = 6.8 Hz, 2H), 2.01 (d, J = 13.3 Hz, 5H), 1.39 (s, 9H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 172.0, 171.1, 170.9, 155.8, 155.6, 140.0,

130.4, 128.5, 127.4, 126.5, 115.7, 80.5, 56.0, 52.7, 52.3, 52.1, 37.4, 36.0, 33.9, 33.8, 31.3, 29.7, 28.3, 15.1. HRMS (ESI) m/z: calcd for C₃₁H₄₃N₃O₇S₂Na [M+Na]⁺: 656.2435, found: 656.2437.

Methyl N-(tert-butoxycarbonyl)-L-phenylalanyl-L-methionyl-S-phenethyl-L-cys teinate (4k)

White solid (Flow: 229.6 mg, 93% yield; Batch: 219.7mg, 89% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.39 (d, J = 7.8 Hz, 1H), 7.29 – 7.24 (m, 4H), 7.22 – 7.20 (m, 1H), 7.20 – 7.14 (m, 6H), 5.29 (d, J = 6.7 Hz, 1H), 4.79 – 4.71 (m, 2H), 4.51 – 4.39 (m, 1H), 3.72 (s, 3H), 3.11 – 3.01 (m, 2H), 2.95 (d, J = 5.3 Hz, 2H), 2.87 – 2.82 (m, 2H), 2.79 – 2.73 (m, 2H), 2.51 (t, J = 7.3 Hz, 2H), 2.05 (s, 3H), 2.03 – 1.94 (m, 2H), 1.38 (s, 9H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 171.5, 170.9, 170.8, 155.5, 140.0, 136.6, 129.4, 128.6, 128.5, 126.9, 126.4, 80.1, 55.7, 52.6, 52.2, 52.0, 38.2, 36.1, 33.9, 31.5, 29.7, 28.3, 15.1. HRMS (ESI) m/z: calcd for C₃₁H₄₃N₃O₆S₂Na [M+Na]⁺: 640.2485, found: 640.2490.

Methyl N-(tert-butoxycarbonyl)-L-valyl-L-tryptophyl-S-phenethyl-L-cysteinate (41)

White solid (Flow: 234.6 mg, 94% yield; Batch: 234.6mg, 94% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.49 (s, 1H), 7.65 (d, J = 7.5 Hz, 1H), 7.31 – 7.24 (m, 3H), 7.20 (d, J = 7.2 Hz, 1H), 7.16 – 7.06 (m, 4H), 7.02 (s, 1H), 6.93 – 6.83 (m, 2H), 5.18 (d, J = 7.3 Hz, 1H), 4.88 – 4.76 (m, 1H), 4.65 – 4.58 (m, 1H), 4.06 – 3.94 (m, 1H), 3.62 (s, 3H), 3.35 – 3.26 (m, 1H), 3.18 – 3.09 (m, 1H), 2.81 – 2.75 (m, 4H), 2.65 – 2.57 (m, 2H), 2.18 – 2.07 (m, 1H), 1.40 (s, 9H), 0.90 (d, J = 6.7 Hz, 3H), 0.80 (d, J = 6.6 Hz, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 171.6, 171.2, 170.7, 156.0, 140.1, 136.3, 128.5(4), 128.5(1), 127.5, 126.5, 123.8, 122.1, 119.6, 118.7, 111.4, 109.9, 80.0, 60.1, 53.8, 52.5, 52.2, 36.0, 34.0, 33.9, 30.8, 28.3, 28.1, 19.3, 17.5. HRMS (ESI) m/z: calcd for C₃₃H₄₄N₄O₆SNa [M+Na]⁺: 647.2874, found: 647.2878.

Methyl N-((tert-butoxycarbonyl)-L-phenylalanyl)-S-(4-fluorophenethyl)-L-cysteinate (5a)

White solid (Flow: 171.0 mg, 85% yield; Batch: 162.9mg, 81% yield).¹H NMR (400 MHz, Chloroform-*d*) δ 7.29 – 7.24 (m, 2H), 7.23 – 7.18 (m, 3H), 7.15 – 7.09 (m, 2H), 6.99 – 6.93 (m, 2H), 6.87 (d, J = 7.2 Hz, 1H), 5.16 (d, J = 8.0 Hz, 1H), 4.78 – 4.70 (m, 1H), 4.51 – 4.34 (m, 1H), 3.70 (s, 3H), 3.14 – 3.00 (m, 2H), 2.97 – 2.86 (m, 2H), 2.82 – 2.76 (m, 2H), 2.74 – 2.65 (m, 2H), 1.39 (s, 9H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 171.3, 170.8, 161.6 (d, J = 242.7 Hz, 1C), 155.4, 136.5, 135.7 (d, J = 3.0 Hz, 1C), 130.0, 129.9, 129.3, 128.6, 127.7, 126.9, 80.2, 55.7, 52.6, 52.0, 38.3, 35.2, 34.1, 34.0, 28.3. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ 116.60. HRMS (ESI) m/z: calcd for C₂₆H₃₃FN₂O₅SNa [M+Na]⁺: 527.1986, found: 527.1991.

Methyl S-(4-bromophenethyl)-N-((tert-butoxycarbonyl)-L-phenylalanyl)-L-cysteinate (5b)

White solid (Flow: 209.8 mg, 93% yield; Batch: 196.3mg, 87% yield).¹H NMR (400 MHz, Chloroform-*d*) δ 7.40 (d, J = 8.3 Hz, 2H), 7.30 – 7.25 (m, 2H), 7.23 – 7.18 (m, 3H), 7.05 (d, J = 8.3 Hz, 2H), 6.81 (d, J = 7.5 Hz, 1H), 5.09 (d, J = 7.9 Hz, 1H), 4.78 – 4.70 (m, 1H), 4.48 – 4.35 (m, 1H), 3.70 (s, 3H), 3.13 – 3.02 (m, 2H), 2.97 – 2.87 (m, 2H), 2.81 – 2.74 (m, 2H), 2.74 – 2.65 (m, 2H), 1.39 (s, 9H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 171.3, 170.7, 155.4, 139.0, 136.5, 131.6, 130.3, 129.3, 128.7, 127.0, 120.3, 80.2, 55.7, 52.7, 52.0, 38.3, 35.4, 34.2, 33.7, 28.3. HRMS (ESI) m/z: calcd for C₂₆H₃₃BrN₂O₅SNa [M+Na]⁺: 587.1186, found: 587.1178.

Methyl *N*-((tert-butoxycarbonyl)-L-phenylalanyl)-*S*-(4-iodophenethyl)-L-cysteinate (5c)

White solid (Flow: 209.4 mg, 86% yield; Batch: 202.1mg, 83% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.60 (d, J = 8.1 Hz, 2H), 7.30 – 7.25 (m, 2H), 7.24 – 7.18 (m, 3H), 6.92 (d, J = 8.1 Hz, 2H), 6.77 (d, J = 7.0 Hz, 1H), 5.10 – 5.00 (m, 1H), 4.78 – 4.69 (m, 1H), 4.47 – 4.35 (m, 1H), 3.70 (s, 3H), 3.13 – 3.01 (m, 2H), 2.97 – 2.86 (m, 2H), 2.79 – 2.74 (m, 2H), 2.73 – 2.65 (m, 2H), 1.39 (s, 9H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 171.2, 170.7, 155.3, 139.6, 137.5, 136.5, 130.6, 129.3, 128.7, 127.0, 91.7, 80.2, 55.7, 52.7, 52.0, 38.3, 35.5, 34.2, 33.7, 28.3. HRMS (ESI) m/z: calcd for C₂₆H₃₃IN₂O₅SNa [M+Na]⁺: 635.1047, found: 635.1051.

Methyl N-((tert-butoxycarbonyl)-L-phenylalanyl)-S-(4-cyanophenethyl)-L-cysteinate (5d)

White solid (Flow: 121.9 mg, 60% yield; Batch: 136.1mg, 67% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.58 (d, *J* = 7.7 Hz, 2H), 7.33 – 7.26 (m, 4H), 7.25 – 7.17 (m, 3H), 6.69 (s, 1H), 5.00 (s, 1H), 4.78 – 4.69 (m, 1H), 4.47 – 4.28 (m, 1H), 3.71 (s, 3H), 3.13 – 3.01 (m, 2H), 2.99 – 2.86 (m, 4H), 2.82 – 2.70 (m, 2H), 1.40 (s, 9H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 171.3, 170.7, 155.4, 145.5, 136.4, 132.3, 129.4, 129.3, 128.7, 127.0, 118.9, 110.3, 80.2, 55.7, 52.7, 52.0, 38.3, 35.9, 34.2, 33.2, 28.2. HRMS (ESI) m/z: calcd for C₂₆H₃₃FN₂O₅SNa [M+Na]⁺: 527.1986, found: 527.1991. HRMS (ESI) m/z: calcd for C₂₇H₃₃N₃O₅SNa [M+Na]⁺: 534.2033, found: 534.2045.

Methyl *N*-((tert-butoxycarbonyl)-L-phenylalanyl)-*S*-(2-(thiophen-2-yl)ethyl)-L- cysteinate (5e) White solid (Flow: 148.2 mg, 75% yield; Batch: 144.2mg, 73% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.30 – 7.25 (m, 2H), 7.23 – 7.18 (m, 3H), 7.14 – 7.10 (m, 1H), 6.93 – 6.89 (m, 1H), 6.85 – 6.69 (m, 2H), 5.10 (d, J = 7.8 Hz, 1H), 4.78 – 4.71 (m, 1H), 4.49 – 4.36 (m, 1H), 3.71 (s, 3H), 3.13 – 3.00 (m, 4H), 2.98 – 2.89 (m, 2H), 2.78 – 2.72 (m, 2H), 1.40 (s, 9H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 171.2, 170.7, 155.3, 142.5, 136.5, 129.4, 128.7, 126.9, 126.9, 125.1, 123.8, 80.2, 55.7, 52.7, 52.1, 38.3, 34.2(1), 34.1(6), 30.3, 28.3. HRMS (ESI) m/z: calcd for C₂₄H₃₂N₂O₅S₂Na [M+Na]⁺: 515.1645, found: 515.1653.

Methyl N-((tert-butoxycarbonyl)-L-phenylalanyl)-S-ethyl-L-cysteinate (5f)

White solid (Flow: 146.0 mg, 89% yield; Batch: 142.7mg, 87% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.23 – 7.18 (m, 2H), 7.17 – 7.12 (m, 3H), 6.82 (d, *J* = 7.3 Hz, 1H), 5.14 (d, *J* = 8.0 Hz, 1H), 4.67 (q, *J* = 5.4 Hz, 1H), 4.46 – 4.29 (m, 1H), 3.65 (s, 3H), 3.07 – 2.94 (m, 2H), 2.90 – 2.80 (m, 2H), 2.41 (q, *J* = 7.4 Hz, 2H), 1.32 (s, 9H), 1.12 (t, *J* = 7.4 Hz, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 171.3, 170.9, 155.3, 136.6, 129.4, 128.6, 126.9, 80.0, 55.6, 52.6, 52.0, 38.3, 33.5, 28.3, 26.4, 14.6. HRMS (ESI) m/z: calcd for C₂₀H₃₀N₂O₅SNa [M+Na]⁺: 433.1768, found: 433.1770.

Methyl N-((tert-butoxycarbonyl)-L-phenylalanyl)-S-octadecyl-L-cysteinate (5g)

White solid (Flow: 227.0 mg, 90% yield; Batch: 216.7mg, 87% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.29 – 7.24 (m, 2H), 7.23 – 7.18 (m, 3H), 6.89 (d, *J* = 7.5 Hz, 1H), 5.21 (d, *J* = 8.0 Hz, 1H), 4.74 (d, *J* = 7.1 Hz, 1H), 4.52 – 4.36 (m, 1H), 3.71 (s, 3H), 3.15 – 3.01 (m, 2H), 2.96 – 2.85 (m, 2H), 2.45 (t, *J* = 7.4 Hz, 2H), 1.54 – 1.48 (m, 2H), 1.40 (s, 9H), 1.33 – 1.21 (m, 30H), 0.88 (t, *J* = 6.8 Hz, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 171.2, 170.9, 155.3, 136.6, 129.4, 128.5, 126.8, 80.0, 55.6, 52.5, 52.0, 38.4, 34.0, 32.6, 31.9, 29.6(9), 29.6(5), 29.6, 29.5(2), 29.4(9), 29.3, 29.2, 28.8, 28.2, 22.7, 14.1. HRMS (ESI) m/z: calcd for C₃₆H₆₂N₂O₅SNa [M+Na]⁺: 657.4272, found: 657.4279.

Methyl *N*-((tert-butoxycarbonyl)-L-phenylalanyl)-*S*-(3-iodopropyl)-L-cysteinate (5h)

White solid (Flow: 186.6 mg, 85% yield; Batch: 173.4mg, 79% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.31 – 7.26 (m, 2H), 7.25 – 7.19 (m, 3H), 6.90 (d, *J* = 6.8 Hz, 1H), 5.18 (d, *J* = 8.0 Hz, 1H), 4.78 – 4.72 (m, 1H), 4.54 – 4.34 (m, 1H), 3.74 (s, 3H), 3.23 (t, *J* = 6.7 Hz, 2H), 3.14 – 3.01 (m, 2H), 2.99 – 2.87 (m, 2H), 2.57 (t, *J* = 6.9 Hz, 2H), 2.03 – 1.96 (m, 2H), 1.40 (s, 9H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 171.3, 170.7, 155.3, 136.5, 129.4, 128.6, 126.9, 80.2, 55.6, 52.7, 52.1, 38.3, 34.0, 33.0, 32.6, 28.3, 4.8. HRMS (ESI) m/z: calcd for C₂₁H₃₁IN₂O₅SNa [M+Na]⁺: 573.0891, found: 573.0897.

Methyl S-(5-bromopentyl)-N-((tert-butoxycarbonyl)-L-phenylalanyl)-L-cysteinate (5i)

Light yellow solid (Flow :187.2 mg, 88% yield; Batch: 180.8mg, 85% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.31 – 7.26 (m, 2H), 7.25 – 7.19 (m, 3H), 6.86 (d, *J* = 7.4 Hz, 1H), 5.15 (d, *J* = 7.9 Hz, 1H), 4.77 – 4.69 (m, 1H), 4.50 – 4.34 (m, 1H), 3.73 (s, 3H), 3.39 (t, *J* = 6.7 Hz, 2H), 3.14 – 3.01 (m, 2H), 2.97 – 2.86 (m, 2H), 2.48 (t, *J* = 6.8 Hz, 2H), 1.88 – 1.81 (m, 2H), 1.60 – 1.47 (m, 4H), 1.40 (s, 9H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 171.2, 170.8, 155.3, 136.5, 129.3, 128.6, 126.9, 80.1, 55.6, 52.6, 52.0, 38.3, 34.0, 33.5, 32.3, 32.2, 28.5, 28.3, 27.2. HRMS (ESI) m/z: calcd for C₂₃H₃₅BrN₂O₅SNa [M+Na]⁺: 553.1342, found: 553.1363.

Methyl N-((tert-butoxycarbonyl)-L-phenylalanyl)-S-(3-methoxypropyl)-L-cysteinate (5j)

Colorless oil (Flow: 155.6 mg, 86% yield; Batch: 152mg, 84% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.30 – 7.25 (m, 2H), 7.24 – 7.19 (m, 3H), 7.00 (d, *J* = 6.9 Hz, 1H), 5.32 (d, *J* = 8.2 Hz, 1H), 4.81 – 4.73 (m, 1H), 4.46 (s, 1H), 3.72 (s, 3H), 3.44 – 3.38 (m, 2H), 3.31 (s, 3H), 3.18 – 3.11 (m, 1H), 3.04 – 2.97 (m, 1H), 2.96 – 2.85 (m, 2H), 2.59 – 2.51 (m, 2H), 1.82 – 1.73 (m, 2H), 1.39 (s, 9H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 171.3, 170.8, 155.4, 136.7, 129.3, 128.5, 126.8, 80.0, 70.8, 58.5, 55.5, 52.5, 52.2, 38.2, 33.9, 29.5, 29.3, 28.2. HRMS (ESI) m/z: calcd for C₂₂H₃₄N₂O₆SNa [M+Na]⁺: 477.2030, found: 477.2033.

Methyl *S*-(3-(benzyloxy)propyl)-*N*-((tert-butoxycarbonyl)-L-phenylalanyl)-L- cysteinate (5k) Light yellow solid (Flow: 182.2 mg, 86% yield; Batch: 175.8mg, 83% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.34 – 7.24 (m, 7H), 7.22 – 7.18 (m, 3H), 6.91 (d, J = 6.7 Hz, 1H), 5.21 (d, J = 7.4 Hz, 1H), 4.77 – 4.71 (m, 1H), 4.48 (s, 2H), 4.43 (s, 1H), 3.69 (s, 3H), 3.51 (t, J = 6.1 Hz, 2H), 3.15 – 2.99 (m, 2H), 2.96 – 2.87 (m, 2H), 2.57 (t, J = 7.3 Hz, 2H), 1.86 – 1.78 (m, 2H), 1.39 (s, 9H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 171.3, 170.8, 155.4, 138.3, 136.6, 129.4, 128.6, 128.4, 127.7, 127.6, 126.9, 80.1, 73.0, 68.5, 55.6, 52.6, 52.1, 38.3, 34.0, 29.7, 29.4, 28.3. HRMS (ESI) m/z: calcd for C₂₈H₃₈N₂O₆SNa [M+Na]⁺: 553.2343, found: 553.2346.

Ethyl (6*S*,9*R*)-6-benzyl-9-(methoxycarbonyl)-2,2-dimethyl-4,7-dioxo-3-oxa-11-thia-5,8- diazahep tadecan-17-oate (5l)

White solid (Flow: 94.7 mg, 45% yield; Batch: 111.5mg, 53% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.32 – 7.27 (m, 2H), 7.25 – 7.20 (m, 3H), 6.75 (d, *J* = 7.4 Hz, 1H), 5.18 – 5.02 (m, 1H), 4.77 – 4.70 (m, 1H), 4.47 – 4.35 (m, 1H), 4.16 – 4.08 (q, *J* = 7.1 Hz, 2H), 3.73 (s, 3H), 3.15 – 3.02 (m, 2H), 2.97 – 2.86 (m, 2H), 2.47 (t, *J* = 7.2 Hz, 2H), 2.29 (t, *J* = 7.4 Hz, 2H), 1.66 – 1.58 (m, 2H),

1.57 – 1.51 (m, 2H), 1.41 (s, 9H), 1.39 – 1.32 (m, 2H), 1.25 (t, J = 7.1 Hz, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 173.6, 171.1, 170.8, 155.3, 136.5, 129.3, 128.6, 126.9, 80.2, 60.3, 55.6, 52.6, 52.0, 38.2, 34.1(1), 34.0(8), 32.4, 29.0, 28.3, 28.1, 24.4, 14.2. HRMS (ESI) m/z: calcd for C₂₆H₄₀N₂O₇SNa [M+Na]⁺: 547.2448, found: 547.2458.

Methyl N-((tert-butoxycarbonyl)-L-phenylalanyl)-S-cyclopentyl-L-cysteinate (5m)

White solid (Flow: 117.2 mg, 65% yield; Batch: 110mg, 61% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.32 – 7.27 (m, 2H), 7.26 – 7.20 (m, 3H), 6.71 (d, *J* = 7.3 Hz, 1H), 5.12 – 4.98 (m, 1H), 4.78 – 4.71 (m, 1H), 4.47 – 4.36 (m, 1H), 3.73 (s, 3H), 3.14 – 3.01 (m, 3H), 2.98 – 2.90 (m, 2H), 1.98 – 1.90 (m, 2H), 1.76 – 1.66 (m, 2H), 1.59 – 1.51 (m, 2H), 1.47 – 1.38 (m, 11H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 171.1, 179.8, 155.3, 136.5, 129.4, 128.6, 126.9, 80.2, 55.6, 52.6, 52.0, 44.1, 38.4, 33.7(4), 33.7(1), 33.6(7), 28.3, 24.7. HRMS (ESI) m/z: calcd for C₂₃H₃₄N₂O₅SNa [M+Na]⁺: 473.2081, found: 473.2089.

Methyl S-(2-((3R,5R,7R)-adamantan-1-yl)ethyl)-N-((tert-butoxycarbonyl)-L-phenyl alanyl) -L-cysteinate (5n)

Colorless oil (Flow: 204.5 mg, 94% yield; Batch: 193.6mg, 89% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.31 – 7.27 (m, 2H), 7.25 – 7.20 (m, 3H), 6.76 (d, *J* = 7.4 Hz, 1H), 5.13 – 5.01 (m, 1H), 4.77 – 4.70 (m, 1H), 4.48 – 4.35 (m, 1H), 3.73 (s, 3H), 3.14 – 3.03 (m, 2H), 2.97 – 2.86 (m, 2H), 2.45 – 2.38 (m, 2H), 1.94 (s, 2H), 1.72 – 1.66 (m, 3H), 1.64 – 1.58 (m, 3H), 1.45 (s, 6H), 1.41 (s, 9H), 1.32 – 1.24 (m, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 171.2, 170.9, 155.3, 136.5, 129.4, 128.6, 126.9, 80.2, 55.6, 52.6, 51.9, 44.2, 42.2, 38.3, 37.0, 34.1, 32.7, 28.6, 28.3, 26.6. HRMS (ESI) m/z: calcd for C₃₀H₄₄N₂O₅SNa [M+Na]⁺: 567.2864, found: 567.2873.

5. Cpoies of NMR Spectra

¹H NMR Spectrum of Compound **3a** (400 MHz, CDCl₃)

¹H NMR Spectrum of Compound **3b** (400 MHz, CDCl₃)

¹H NMR Spectrum of Compound **3j** (400 MHz, CDCl₃)

¹H NMR Spectrum of Compound **3m** (400 MHz, CDCl₃)

¹H NMR Spectrum of Compound 4i (400 MHz, CDCl₃)

¹H NMR Spectrum of Compound **5a** (400 MHz, CDCl₃)

¹³C NMR Spectrum of Compound **5c** (100 MHz, CDCl₃)

¹³C NMR Spectrum of Compound **5e** (100 MHz, CDCl₃)

¹³C NMR Spectrum of Compound **5f** (100 MHz, CDCl₃)

¹³C NMR Spectrum of Compound **5h** (100 MHz, CDCl₃)

¹³C NMR Spectrum of Compound **5i** (100 MHz, CDCl₃)

¹³C NMR Spectrum of Compound 5k (100 MHz, CDCl₃)

¹³C NMR Spectrum of Compound **51** (100 MHz, CDCl₃)

¹³C NMR Spectrum of Compound **5m** (100 MHz, CDCl₃)

¹³C NMR Spectrum of Compound **5n** (100 MHz, CDCl₃)