Supplementary Information

Catalytic Graphitization of Pyrolysis Oil for Anode Application in Lithium-ion Batteries

Shaikat Chandra Dey,^a Lillian Lower,^b Trevor Vook,^b Md. Nazrul Islam,^a William Joe Sagues,^b Sang-Don Han,^{c,d} Mark R. Nimlos,^e Stephen S. Kelley^a and Sunkyu Park^{a*}

^aDepartment of Forest Biomaterials, North Carolina State University, Campus Box 8005, Raleigh, NC 27695, USA. E-mail: sunkyu_park@ncsu.edu

^bDepartment of Biological and Agricultural Engineering, North Carolina State University, 3110 Faucette Dr., Raleigh, NC 27695, USA

^cDepartment of Chemistry, Sejong University, 209 Neungdong-ro, Seoul, 05006, Republic of Korea

^dMaterials, Chemical, and Computational Science Directorate, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO 80401, USA

^eBioenergy Science and Technology Directorate, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO 80401, USA

Table S1. Crystallite size (L_c, L_a) , interlayer separation (d_{002}) , and Raman intensity ratio (I_D/I_G) of biographites prepared with different iron loading.

Iron loading	L _c (Å)	L _a (Å)	d ₀₀₂ (nm)	I _D /I _G
$0.00 \times FC$	27	122	0.3422	0.98
$0.25 \times FC$	48	238	0.3384	0.98
$0.50 \times FC$	65	375	0.3359	0.99
$0.75 \times FC$	89	428	0.3350	0.81
$1.00 \times FC$	160	403	0.3364	0.62
$1.25 \times FC$	134	532	0.3359	0.72
$1.50 \times FC$	180	644	0.3353	0.41
$1.75 \times FC$	179	706	0.3345	0.42
$2.00 \times FC$	179	615	0.3352	0.38
$2.25 \times FC$	240	370	0.3354	0.52
$2.50 \times FC$	233	390	0.3347	0.20
$2.75 \times FC$	218	416	0.3350	0.34
$3.00 \times FC$	177	418	0.3355	0.43

Element (%)	Pyrolysis oil	Biographite	
C	99.817	99.861	
	(organics)		
Al	0.009	0.027	
Si	1.5 ppm	0.012	
Р	0.031	0.018	
S	0.115	0.009	
Cl	ND*	0.009	
Ca	0.009	0.007	
Ti	ND	5.5 (ppm)	
Fe	1.7 (ppm)	0.049	
Ni	ND	1.1 (ppm)	
Cu	2.8 (ppm)	1.2 (ppm)	
Zn	ND	0.3 (ppm)	
Br	ND	5.1 (ppm)	
Sn	0.002	0.003	
Те	0.003	0.004	
K	0.012	ND	
Sb	0.001	ND	
Hf	1.7 (ppm)	ND	

Table S2. Distribution of elements in raw pyrolysis oil and biographite (2.50×FC iron loading) using XRF technique.

*ND: Not Detected

Table S3. The characteristic (002) peak position of biographite and corresponding peak intensity at different temperatures (heating and cooling) calculated from the *in-situ* XRD patterns.

Temperature (°C)	(002) peak position (degrees)	(002) peak intensity (counts)***
H-600 °C*	-	-
H-700 °C	-	-
H-800 °C	-	-
H-900 °C	-	-
H-1000 °C	-	-
H-1100 °C	25.95	4584
H-1200 °C	26.03	5718
C-1100 C**	26.14	5979
C-1000 °C	26.19	6128
C-900 °C	26.22	6587
C-800 °C	26.27	6423
C-700 °C	26.27	6485

C-600 °C	26.32	6719
C-25 °C	26.37	6834

*H stands for heating stage

**C stands for cooling stage

***The (002) peak intensity values reported here included the background signal. Therefore, the actual intensities of these peaks were much smaller. The smaller peak intensity of biographite formed at 1100 °C during heating was clearly understood from **Figure S4d**.

Table S4. Biographite (2.50×FC iron loading) crystal parameters as a function of aging time (month).

No. of Exp.	Time	L _c	d ₀₀₂	I ₀₀₂ ×1000*
	(month)	(Å)	(nm)	(counts)
1.	0	233	0.3347	330
2.	6	203	0.3350	18
3.	8	193	0.3349	25
4.	9	190	0.3353	21

*Intensity of characteristic (002) peak.

Figure S1. Effect of graphitization temperature on (a) crystallite size, (b) reversible capacity, and (c) Coulombic efficiency.

Figure S2. Comparison of the XRD pattern of optimal biographite (this study) with some commercial graphite samples. Intensity (I) of the characteristic (002) peak is highlighted (insets) along with other crystal parameters (L_c , L_a , and d_{002}) of graphite.

Figure S3. EDS elemental mapping of optimal biographite showing the presence of carbon (C), oxygen (O), iron (Fe), aluminum (Al), and silicon (Si).

Figure S4. The *in-situ* XRD patterns recorded during heating at (a) 800, (b) 900, (c) 1000, and (d) 1100 °C respectively.

Figure S5. The overlay *in-situ* XRD patterns recorded during both heating and cooling.

Figure S6. Effect of aging time on the XRD patterns of biographite $(2.50 \times FC \text{ iron loading})$ at (a) month 0, (b) month 6, (c) month 8, and (d) month 9.