Supporting Information to: "Catalytic synthesis of carboxylic acids from oxygenated substrates using CO₂ and H₂ as C1 building block"

Matilde V. Solmi, ^a Jeroen T. Vossen, ^{a,b} Marc Schmitz, ^a Andreas J. Vorholt, ^b Walter Leitner*, ^{a,b} ^a Institute for Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany.

^b Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34–36, 45470 Mülheim an der Ruhr, Germany.

* walter.leitner@cec.mpg.de

8 Tables

13 Figures

1 Scheme

22 Pages

Supporting Data for Screening Experiments for Various Substrates

Entry	Solvent	Volume (ml)	Acidic additive (mol mol _{Rh} ⁻¹)	Temperature (°C)	CO2 pressure (bar)	Yield (%)
1	Acetic acid	1	3.5	140	20	45
2	Acetic acid	2	3.5	140	20	67
3	Acetic acid	3	3.5	140	20	8
4	Toluene	1	3.5	140	20	30
5	Toluene	2	3.5	140	20	30
6	Toluene	3	3.5	140	20	14
7	Water	2	3.5	140	20	7
8	Xylene	1	3.5	140	20	32
9 a)	Dioxane	1	3.5	140	20	2
10 ^{b)}	Acetonitrile	2	3.5	140	20	2
11 ^{c)}	Neat	1	-	140	20	1
12	Acetic acid	1	-	140	20	46
13	Toluene	1	-	140	20	29
14	Acetic acid	2	3.5	160	10	62
15	Acetic acid	2	3.5	160	30	75

Table S1: Hydrocarboxylation of 2-BuOH with CO₂ and H₂: influence of different reaction parameters.

If not specified, conversion is over 99%, VA:2-MBA ratio is about 2:1 and MB around or above 80%.

Reaction conditions: 1.88 mmol 2-BuOH, 46 μ mol [RhCl(CO)₂]₂, 2.5 mol mol_{Rh}⁻¹ of CHI₃ and 5 mol mol_{Rh}⁻¹ of PPh₃, 10 bar of H₂.

a) Conversion = 90%. Solid and unknown products formed.

b) Conversion = 35%;

c) MB = 17%. High amount of not quantified secondary products were identified with GC-MS as ethers. Reaction time = 66h.

Entry	Rh precursor	CHI ₃ (mol mol _{Rh} ⁻¹)	PPh ₃ (mol mol _{Rh} ⁻¹)	Yield (%) (<i>n:iso</i> ratio)
1	[Rh(CO) ₂ Cl] ₂	2.5	5	77 (1.8)
2	[Rh(COD)Cl] ₂	2.5	5	33 (3.1)
3	RhCl(PPh ₃) ₃	2.5	2	58 (2.4)
4	[HRh(CO)(PPh ₃) _{3]}	2.5	2	1 (-)
5	Rh ₂ (OAc) ₄	2.5	5	52 (2)
6	RhI ₃	2.5	5	4 (1)
7	[Rh(CO) ₂ Cl] ₂	0	5	0 (-)
8	[Rh(CO) ₂ Cl] ₂	9.3	5	7 (1)
9	[Rh(CO) ₂ Cl] ₂	2.5	0	2 (1)
10	[Rh(CO) ₂ Cl] ₂	2.5	10	48 (1.5)
Reaction con	ditions: 1.88 mmol of substra	tte, 92 μm Rh, 2 ml of acetic	e acid, 3.5 mol mol _{Rh} ⁻¹ p-Ts	$OH \cdot H_2O$, 20 bar CO_2 ,

Table S2: Hydrocarboxylation of 2-BuOH with CO₂ and H₂: influence of CHI₃, PPh₃ and Rh precursor.

10 bar H₂, 160 °C. Conversion is always >99%.

Entry	Solvent	Volume (ml)	Acidic additive (mol mol _{Rh} ⁻¹)	Temperature (°C)	H ₂ pressure (bar)	CO ₂ pressure (bar)	Yield (%)
4	Toluene	1	3.5	140	10	20	39
5	Toluene	2	3.5	140	10	20	28
6	Toluene	3	3.5	140	10	20	19
7 ^[a]	Water	2	3.5	140	10	20	6
8	Xylene	1	3.5	140	10	20	37
9 ^[b]	Dioxane	1	3.5	140	10	20	3
10 ^[c]	Acetonitrile	2	3.5	140	10	20	2
11 ^[d]	Neat (66h)	1	-	140	10	20	1.5
12	Toluene	1	-	140	10	20	33
13	Toluene	1	3.5	160	10	20	31
14	Acetic acid	1	-	160	20	10	60
15	Acetic acid	1	-	160	20	30	48

Table S3: Hydrocarboxylation of 1-BuOH with CO₂ and H₂: influence of different reaction parameters.

If not specified, conversion is over 99%, VA:2-MBA ratio is about 2:1 and MB around or above 80%.

Reaction conditions: 1.88 mmol 1-BuOH, 46 μ mol [RhCl(CO)₂]₂, 2.5 mol mol_{Rh}⁻¹ of CHI₃ and 5 mol mol_{Rh}⁻¹ of PPh₃. [a] Conversion = 57%.

[b] Conversion = 85%; solid and unknown products formed.

[c] Conversion = 43%.

[d] High amount of not quantified secondary products were identified with GC-MS as ethers. Reaction time = 66h.

Entry	Rh precursor	$CHI_3 (mol mol_{Rh}^{-1})$	$PPh_3 (mol mol_{Rh}^{-1})$	Conv. (%)	Yield (%) (<i>n:iso</i> ratio)
1	[Rh(CO) ₂ C]] ₂	2.5	5	>99	65
-	[()2]2		-		(2.1)
2	[Rh(COD)C1] ₂	2.5	5	99	19
					(3.8)
3	RhCl(PPh ₃) ₃	2.5	2	99	41
					(2.4)
4	[HRh(CO)(PPh ₃) ₃]	2.5	2	99	1
					(-)
5	Rh ₂ (OAc) ₄	2.5	5	99	39
					(2.5)
6	RhI ₃	2.5	5	98	22
					(1)
7	$[Rh(CO)_2Cl]_2$	0	5	98	U ()
					(-)
8	$[Rh(CO)_2Cl]_2$	9.3	5	99	(1 2)
					2
9	$[Rh(CO)_2Cl]_2$	2.5	0	>99	2 (-)
					44
10	$[Rh(CO)_2Cl]_2$	2.5	10	99	(1.8)

Table S4: Hydrocarboxy	ylation of 1-BuOH with CO	2 and H ₂ : influence of CHI	3, PPh ₃ and Rh precursor.
------------------------	---------------------------	---	---------------------------------------

Table S5: Product distributions as yield, conversion and mass balance obtained as a result of the transformation of 1-BuOH, 2-BuOH, 2-butanone and butanal. Conditions used according to the optimization for the different classes of oxygenated compounds as shown in the manuscript.

Yield (%)	1-BuOH	2-BuOH	2-Butanone	Butanal	1,4-Butandiol
2-Methylbutanoic Acid	21	27	17	13	11
Valeric Acid	45	50	37	32	31
Acids (Sum)	66	77	54	45	42
1-Iodobutane	2	0	0	1	0.2
2-Iodobutane	1	1	1		0.2
Iodobutane (Sum)	3	1	1	1	0.4
n- or iso-butyl acetate	6	3	0.4	2	1
Butane	8	7	0.7	8	6
Butene	1	4	2	2	2
CONVERSION	>99	>99	98	>99	>99
MB	84	93	60	58	51

Butane and butene are always linear. Butenes are 1-butene and 2-butene.

Figure S1: Time profile of the reaction of 2-butanone to VA and 2-MBA. Reaction conditions: 1.88 mmol of 2-Butanone, 92 μ mol Rh, 2 ml of acetic acid, 2.5 mol mol_{Rh}⁻¹ of CHI₃, 5 mol mol_{Rh}⁻¹ of PPh₃, 3.5 mol mol_{Rh}⁻¹ *p*-TsOH•H₂O, 20 bar CO₂, 20 bar H₂, 160 °C.

Yield (%)	1-Hexanol	2-Hexanol	2-Hexanone	1-Iodohexane
Heptanoic Acid	42	43	43	11
2-Methyl Hexanoic Acid	17	18	26	4
2-Ethyl Pentanoic Acid	5	5	6	1
Acids (sum)	64	66	75	16
Hexyl acetate	5	1	0	2
1-Iodohexane	2	0.2	0.3	8
2-Iodohexane and 3-Iodohexane	0.4	0.5	3	2
Iodohexane (sum)	2	1	3	10
Hexane	7	6	8	16 + gas phase ^[a]
Hexene	1	1	1	16 + gas phase ^[a]
CONVERSION	>99	>99	>99	92
MB	79	73	82	47

Table S6: Product distributions as yield, conversion and mass balance obtained as a result of the transformation of 1-hexanol, 2-hexanol, 2-hexanone and 1-iodohexane. Conditions used according to the optimization for the different classes of oxygenated compounds as shown in the manuscript.

[a] Hexanes and hexenes in the gas phase have not been quantified. Hexane and hexenes are linear. Hexenes are 1-hexene, 2-hexene and 3-hexene.

Supporting Data for the Reaction Pathway

Figure S2: Influence of different amount of CHI_3 on the carboxylic acids yield using the optimized conditions for primary alcohols and secondary alcohols. CO and H_2O were used instead of CO_2 and H_2 as explained above.

Figure S3: Influence of different amounts of PPh₃ on the carboxylic acids yield using the optimized conditions for primary and secondary alcohols. CO and H_2O were used instead of CO_2 and H_2 and the yields were calculated on a total amount of alcohol of 0.5 as explained in the manuscript.

 Table S7: rWGSR activity in different reaction conditions.

	CO_2 + H ₂	[Rh] CO	+ H ₂ O	
Conditions	Absolute amount of CO produced (mmol)	Yield of CO with [Rh] (%)	Yield of CO without [Rh] (%)	Yield of CO without CO ₂ (%)
Primary alcohols ^[a]	0.7	3.11	0.77	0.22
Secondary alcohols ^[b]	0.6	2.58	0.08	0.35

[a] Reaction conditions: 92 μ mol [RhCl(CO)₂]₂, 1 ml of acetic acid, 2.5 mol/mol_{Rh} of CHI₃, 5 mol mol_{Rh}⁻¹ of PPh₃, 20 bar CO₂, 20 bar H₂, 160 °C, 16 h.

[b] Reaction conditions: 92 µmol [RhCl(CO)₂]₂, 2 ml of acetic acid, 3.5 mol/mol_{Rh} *p*-TsOH•H₂O, 2.5 mol mol_{Rh}⁻¹ of CHI₃, 5 mol mol_{Rh}⁻¹ of PPh₃, 20 bar CO₂, 10 bar H₂, 160 °C, 16 h.

Every result was reproduced at least twice. The maximum error obtained was of $\pm 0.51\%$. Yields were calculated on the total amount of CO₂ pressurized in the reactor (22.7 mmol).

Figure S4: Comparison of the effect of the variation of CHI_3 amount on the different reaction steps (namely rWGSR and hydroxycarbonylation with $CO + H_2O$) and on the total reaction (hydrocarboxylation with $CO_2 + H_2$) using 1-BuOH at optimized conditions.

Figure S5: Comparison of the effect of the variation of PPh₃ amount on the different reaction steps (namely *r*WGSR and hydroxycarbonylation with $CO + H_2O$) and on the total reaction (hydroxycarbonylation with $CO_2 + H_2$) using 1-BuOH or primary alcohols optimized conditions.

Figure S6: Comparison of the effect of the variation of CHI_3 amounts on different reaction steps (*r*WGSR and hydroxycarbonylation) and on the overall reaction (hydrocarboxylation) using 2-BuOH under optimized conditions. The percentage variation is shown in the graph, considering 100% as the yield obtained in the optimized reaction conditions reported in the manuscript.

Figure S7: Comparison of the effect of the variation of PPh_3 amount on the different reaction steps (*r*WGSR and hydroxycarbonylation) and on the overall reaction (hydroxycarbonylation) using 2-BuOH under optimized conditions.

Figure S8: Quantitative ¹³C-NMR of the reaction mixture obtained from 2-BuOH, ¹³CO (2 bar), H₂O (12 μ l), CO₂ (20 bar) and H₂ (10 bar) after 2 h (top) and 16 h (bottom). The other reaction conditions were: 1.88 mmol of substrate, 46 μ mol [RhCl(CO)₂]₂, 2 ml of acetic acid, 2.5 mol mol_{Rh}⁻¹ of CHI₃, 5 mol mol_{Rh}⁻¹ of PPh₃, 3.5 mol mol_{Rh}⁻¹, *p*-TsOH•H₂O 160 °C.

Table S8: NMR study: Ratio between the integrals of the signals obtained in the quantitative ¹³C-NMR of the reaction mixtures obtained from the hydroxycarbonylation with *r*WGSR (CO₂ and H₂) and hydroxycarbonylation (¹³CO and H₂O) of cyclohexanol, 1-BuOH and 2-BuOH. The ratio is obtained using the areas of the carboxyl carbons and the nearby carbons as indicated in the table. The reaction conditions applied are the one optimized reported in the manuscript with the addition of ¹³CO (2 bar) and H₂O (12 \Box L). [a] C(AA₂)H₃ - C(AA1)OOH: AA₁ and AA₂ refer to the carbon atoms of acetic acid.

Re	eaction	Reaction time (h)	Area ₁ /Area ₂	Area ₃ /Area ₄	Area _{AA1} /Area _{AA2} [a]
OH	4 3 2 1 0H	2	27	-	2
	5	16	24	-	2
	О 2 1 ОН	2	78	168	2
∕∕~он —	 0ОН	16	90	102	4
	О 2 1 ОН	2	38	41	2
∕∕уон —	 0ОН	16	25	34	2

In the case of butanols, due to isomerization processes, the ¹³C-NMR becomes more complex. Through HMBC and HSQC techniques the reference peaks of the products were assigned. Some of the assigned peaks result to be very small (comparable with the noise) and partially overlapped with other signals. For these reasons, the analysis of the integrals of these signals results not as precise as the one done for the cyclohexane carboxylic acid. However, from the analysis of the NMR spectra the same conclusions obtained for cyclohexanol can be drawn. The ¹³CO is incorporated in the product already after 2 h of reaction time.

Figure S9: Competitive reactions between 1-hexene and 1-iodobutane over the first 5 h of the reaction course. The data shows just the results for the formed acids. Reaction conditions: 0.95 mmol of 1-iodobutane and 0.95 mmol of 1-hexene, 92 μ m Rh, 1 ml of acetic acid, 5 mol mol_{Rh}⁻¹ of PPh₃, 20 bar CO₂, 20 bar H₂, 160 °C.

Figure S10: Pressure uptake registered for 2-butanone and 2-butanol. The value showed are elaborated and the results of the total pressure uptake normalized by removing the pressure drop due to the system without catalyst (blank value) and the pressure drop due to *r*WGSR activity (presence of the catalyst but no substrate used). Reaction conditions: 1.88 mmol substrate, 92 μ m Rh, 3.5 eq. *p*-TsOH•H₂O, 2.5 eq. CHI₃, 5 eq. PPh₃, 2 ml acetic acid, 20 bar CO₂, 20 bar H₂, 160 °C

2-Butanone (K)
LIQUID
or + CO₂ + H₂
$$[Rh]$$
 $\sim \sim COOH$ + $\sim \sim GAS$ GAS GAS $VA + 2-MBA (P)$ Butane (B)
LIQUID
OH
2-BuOH (A)
LIQUID
 $\Delta p_{th} = \frac{(2 \times n_{KorA} \times Y_P) \times R \times T}{V} + \frac{[n_{KorA}(X_K + Y_B)] \times R \times T}{\Delta p_{HC}}$

- $\Delta p_{HC} = \text{Pressure drop due to hydrocarboxylation (formation of P)}$
- $\Delta p_{H} = \text{Pressure drop due to hydrogenation (formation of B and of A in the case of Ketones)}$
- $\Delta p_{th} = \text{Pressure drop due to hydrocarboxylation and hydrogenation}$
- $n_i = \text{mol of reagent A or K}$
- $Y_i = yield of product P or by-product B$
- $X_{K} =$ conversion of reagent K
- R = universal gas constant (8.314 kg m² s⁻² mol⁻¹ K⁻¹)
- T = temperature (433 K)
- V = volume of the reactor occupied by gases (9.5 \cdot 10⁻⁶ m³)

Scheme 1: Reaction scheme and equation used for calculating the theoretical pressure drop in the transformation of 2-BuOH and 2-Butanone into carboxylic acids. The theoretical pressure drop was calculated with the assumption of the ideal gas law. Reaction conditions: 1.88 mmol substrate, 92 μ mol Rh, 3.5 eq. p-TsOH•H₂O, 2.5 eq. CHI₃, 5 eq. PPh₃, 2 ml acetic acid, 20 bar.

Experimental

General considerations

All reactions were performed and compounds handled under inert gas atmosphere (Argon 4.8 *Messer*, Germany) if not stated otherwise, using the Schlenk technique or were handled in a glovebox (*MBraun LabMaster SP*).

Solvents and Chemicals

Acetic acid and other solvents used were dried and stored over molecular sieves (4 Å), then degassed by bubbling argon through a frit for at least 1 h. All liquid substrates were degassed by at least three freeze-pump-thaw cycles and stored over molecular sieves (4 Å) under argon. Cyclohexane oxide was stored under argon and the molecular sieves used for drying were removed after maximum 24 h. Deionized water was taken from a reverse-osmosis purification system (*Werner EasyPure II*) and degassed by bubbling argon with a frit for at least 1 h. Water contents of all organic solvents and substrates were measured by a Karl-Fischer titration (*Metrohm 756 F Coulometer*). All reagents were commercially supplied and used as received, unless stated otherwise.

Mass Spectrometry

Mass spectroscopy measurements were performed on a *Varian 1200L Quadrupole Ms/ms* using the ESI ionization method. Detected masses are given in m/z and correlated to calculated masses of the respective species.

Gas Chromatography

GC analyses of the liquid phases were performed on a *Trace GC Ultra* (*ThermoScientific*) using a packed *CP-WAX-52-CB* column (length = 60 m, diameter = 0.25 mm) and a flame ionization detector (FID) or mass spectroscopy detector (MS). Analysis of butane and butene gases were performed on a *Sichromat* using a capillary *PLOT Al*₂*O*₃ column (length = 50 m) equipped with an FID. GC analysis of CO, CO₂ and H₂ gases were performed on a *HP6890* using a capillary *Chem Carbon ST* column (length = 2 m) and a thermal conductivity detector (TCD). Examples of the different types of chromatograms are reported in the SI (Figure S11–Figure S13).

Liquid substances were analysed using (\pm) -1-phenylethanol and/or *n*-dodecane as standard. Acetone was used as a solvent for the work-up procedure (for cyclohexanol reactions acetone was substituted by dichloromethane). The correction factors were calculated preparing solutions with known amounts of substances and standard. The gaseous substances were quantified using ethane as standard. As for the liquid samples, the correction values were obtained from self-made gas solutions with known amounts of gases.

NMR Analysis

NMR measurements were conducted on a *Bruker AVIII-300* spectrometer (300 MHz) at ambient temperature. The ²H-NMR measurements were conducted on a *Bruker AVIII HD-600* spectrometer (600 MHz) at ambient temperature. For ¹H, ²H and ¹³C chemical shifts are given in ppm relative to tetramethyl silane. For ³¹P{¹H} NMR spectra, chemical shifts are given in ppm relative to H₃PO₄.

Autoclave Reactions

The catalytic runs were performed in 10 ml stainless steel autoclaves. The autoclaves were equipped with glass inlets in which the reactions took place. The autoclaves containing iodoform (CHI₃), triphenylphosphine (PPh₃) and *para*-toluensulfonic acid monohydrate (*p*-TsOH·H₂O) were evacuated at high vacuum for at least one hour and then charged with an argon atmosphere. Stock solutions of the catalyst precursor were prepared and transferred to the autoclave, which was then pressurized with CO₂ and H₂ (or CO, ¹³CO and D₂ in the labelling experiment). The mixture was heated and stirred for the desired reaction time after which the autoclave was cooled down and the pressure relieved. The obtained reaction mixture was analysed *via* gas chromatography with a flame ionization detector (GC FID) and a mass spectroscopy detector (GC MS).

Catalytic tests were repeated two or more times. The corresponding error bars are shown in the graphs or tables or indicated in the text. Errors for side-products are not indicated for simplicity reasons, but they are usually around $\pm 2\%$.

Design of Experiment (DoE)

The Design of Experiment was done using the *Design-Expert 8* software. We used the *Box-Behnken* model since it does not require the measurement of any point outside the selected thresholds. The *DoE* was used optimize the reaction conditions for the highest yield of carboxylic acids. Therefore, a *response surface method* was chosen. This method allowed an estimation of the interactions and quadratic effects between parameters, and give an idea of the shape of the investigated response surface.^[71] A quadratic model was chosen for the data elaboration.

The reactions were prepared as explained in the previous section "Autoclave reactions" and the reaction mixtures were analysed *via* gas chromatography.

Preliminary Experiments

In a general procedure, 2.5 mol mol_{Rh}^{-1} of CHI₃, 5 mol mol_{Rh}^{-1} of PPh₃ and 3.5 mol mol_{Rh}^{-1} *p*-TsOH•H₂O were weighted and inserted in the autoclave. The autoclave was evacuated and refilled with Argon as explained in the Experimental part of the paper. Following, 1.88 mmol of substrate, 92 µmol Rh and 1 ml of acetic acid were added. The autoclave was pressurized with 20 bar CO₂ and 10 bar H₂. The reaction was carried out for 16 h at 140 °C.

Examples for GC Chromatograms

Figure S11: Example of liquid phase chromatogram obtained from the reaction mixture of 1-BuOH. The same products were detected for 2-BuOH, Butanone, Butanal and 1,4-Butandiol. Traces of propionic acid is present in the reaction mixture probably due to the reduction of acetic acid to ethanol which could hydrocarboxylated to propionic acid. The first signal is associated with acetone which was used as solvent for the analysis.

Figure S12: Example of the gas phase chromatogram obtained from the reaction mixture of 1-BuOH. The same products were detected for 2-BuOH, Butanone, Butanal and 1,4-Butandiol. Methane is present in the mixture as product of the hydrogenation of CHI₃, as well as product of the decarbonylation of acetic acid.

Figure S13: Example of gas phase chromatogram obtained from the *r*WGSR.