Supplementary data

Lead-free perovskite Cs₃Bi₂Br₉/TiO₂ composites for atmospheric

photocatalytic oxidation of sulfides

Yeye Zheng^a, Haibo Zhu^{a*}, Xinmei Xie^a, Liu Yang^a, Qiangwen Fan^{a*}, Zhang-Gao Le^a, Zongbo Xie^{a*}

^a Jiangxi Province Key Laboratory of Functional Organic Polymers, East China University of Technology, Nanchang, 330013, China.

E-mail: hbzhu@ecut.edu.cn, fanqw2019@ecut.edu.cn, zbxie@ecut.edu.cn

1. General	2
2. Experimental sections	2
2.1 Preparation of catalyst.	2
2.1.1 Preparation of Cs ₃ Bi ₂ Br ₉ nanocrystals	2
2.1.2 Preparation of Cs ₃ Bi ₂ Br ₉ /TiO ₂ heterojunction	2
2.2 Structural Characterization of the Cs ₃ Bi ₂ Br ₉ /TiO ₂ heterostructures	3
2.3 Photocatalytic oxidation of sulfide.	4
2.4 Optimization of reaction conditions.	4
2.5 The recycle experiments.	6
3. Data for the sulfoxide products.	7
4. ¹ H NMR and ¹⁹ F NMR for the sulfoxide products.	15

1. General

All commercial reagents were used directly without further purification, unless otherwise stated. Acetonitrile (ACN) was purchased from J & K chemical. DMSO- d_6 and CDCl₃ were purchased from Shanghai aladdin Biochemical Technology Co., Ltd. All Schlenk tubes and sealed vessels (50 mL) were purchased from Beijing Synthware Glass. The following abbreviations were used to describe NMR signals: s = singlet, d = doublet, t = triplet, m = mulitplet, dd = doublet of doublets, q = quartet.

2. Experimental sections

2.1 Preparation of catalyst.

2.1.1 Preparation of Cs₃Bi₂Br₉ nanocrystals

The synthesis procedures were carried out following a published method in literature with some modifcations [1]. Lead free perovskite Cs₃Bi₂Br₉ was synthesized at room temperature using an anti-solvent precipitation method. In brief, 2 mmol BiBr₃ and 3 mmol CsBr were dissolved in 5 mL DMSO and stir with a magnetic stirrer until completely dissolved. Then 1 mL of the above solution was added dropwise into 20 mL of vigorously stirred isopropanol to obtain a light-yellow suspension. The mixture was continuously stirred for 2 hours. The precipitate was filtered, washed with ethanol several times, and dried under vacuum at 80 °C overnight.

2.1.2 Preparation of Cs₃Bi₂Br₉/TiO₂ heterojunction

A series of Cs₃Bi₂Br₉/TiO₂ composite materials with different weight ratios were obtained through the anti-solvent method. Firstly, 100 mg of TiO₂ was added to 20 mL of isopropanol, and the mixture was sonicated to form a uniformly mixed solution. Then a certain amount of precursor solution was dropwise added under stirring conditions. The mixture was stirred vigorously for 2 hours. Afterwards, the precipitate was obtained by centrifugation, washed several times, and finally dried by vacuum overnight at 80 °C. A series of Cs₃Bi₂Br₉/TiO₂ composite materials with different weight ratios were obtained by adding different amounts of precursor solutions

2.2 Structural Characterization of the Cs₃Bi₂Br₉/TiO₂ heterostructures

Figure S1. (a-b) SEM image of Cs₃Bi₂Br₉. (c-d) SEM image of TiO₂. (e-f) SEM image of Cs₃Bi₂Br₉/TiO₂. (g-h) TEM images of Cs₃Bi₂Br₉/TiO₂.

Figure S2. SEM image of Cs₃Bi₂Br₉/TiO₂ and EDS mapping.

2.3 Photocatalytic oxidation of sulfide.

In a 25 mL reaction pyrex tube, **1a** (27.6 mg, 0.2 mmol, 1 equiv.) and $Cs_3Bi_2Br_9/TiO_2$ (5 mg) were dispersed in CH₃CN (2 mL), the resulting mixture was stirred under irradiation of blue LEDs (λ = 457 nm, 50 W) at room temperature. After totally conversion of the starting materials, product was extracted by using ethyl acetate, and was separated by column chromatography.

2.4 Optimization of reaction conditions.

Ĺ	S Cs ₃ Bi ₂ Br ₉ /TiO ₂ (5 mg) MeCN (2 mL), air, rt Blue LEDs (50 W) 2a	0 \$ \$ 4	O O S 3a
Entry	Variation from the "standard conditions"	Yield ^b (%)	
Liiti y	variation from the standard conditions	2a	3 a
1	none	86	0
2	without Cs ₃ Bi ₂ Br ₉ /TiO ₂	NR	0
3	without light	NR	0
4	Cs ₃ Bi ₂ Br ₉ was used	64	0
5	TiO_2 was used		2
6	5 N ₂ instead of air		0
7	7 DCM instead of MeCN		9
8	B DCE instead of MeCN		0
9	9 EtOH instead of MeCN		0
10	10 1,4-Dioxane instead of MeCN		5
11	THF instead of MeCN	17	0
12	white LEDs (18 W)	19	1
13	green LEDs (30 W)	12	0
14	CsBr	1	0
15	BiBr ₃	42	0

Table S1. Optimization of Reaction Conditions^a

^{*a*}Standard conditions: **1a** (0.2 mmol), $Cs_3Bi_2Br_9/TiO_2$ (5 mg), MeCN (2.0 mL) under air at room temperature, blue LEDs (50 W) for 24 h. ^{*b*}Isolated yield. NR, no reaction.

Table S2 Catalyst screening^a

S 1a	[Cat.] CH ₃ CN (2 mL), air Blue LEDs (50 W) 24 h, rt	O S 2a
Entry	[Cat.]	Yield (%) ^b
1	TiO ₂	NR
2	$Cs_3Bi_2Br_9$	69
3	20 wt.%Cs3Bi2Br9/TiO2	78
4	40 wt.%Cs3Bi2Br9/TiO2	86
5	60 wt.%Cs ₃ Bi ₂ Br ₉ /TiO ₂	80
6	80 wt.%Cs ₃ Bi ₂ Br ₉ /TiO ₂	63

^{*a*} Reaction condition: **1a** (0.2 mmol), Catalyst (5 mg) in CH₃CN (2 mL) at r.t. under 50 W blue LEDs for 24 h. ^{*b*} Isolated yield.

The GCMS spectrum of **3a**.

2.5 The recycle experiments.

In a 25 mL reaction pyrex tube, **1a** (27.6 mg, 0.2 mmol, 1 equiv.) and $Cs_3Bi_2Br_9/TiO_2$ (5 mg) were dispersed in CH₃CN (2 mL), the resulting mixture was stirred under irradiation of blue LEDs (λ = 457 nm, 50 W) at room temperature. After totally conversion of the starting materials, product was extracted by using ethyl acetate, and the composites could be reused up to 3 consecutive cycles with only a slightly decrease in the yields.

Figure S3. Stability and reusability experiments

Figure S4. XRD of the Cs₃Bi₂Br₉/TiO₂ photocatalyst before and after stability test.

Figure S5. Trapping experiments of active species.

3. Data for the sulfoxide products.

1-methyl-4-(methylsulfinyl)benzene

Thin-layer chromatography (petroleum ether/ethyl acetate 1:2) afforded the titled sulfoxide as a Colorless oil; ¹H NMR (500 MHz, Chloroform-*d*) δ 7.53 (d, *J* = 8.2 Hz, 2H), 7.32 (d, *J* = 8.0 Hz, 2H), 2.70 (s, 3H), 2.40 (s, 3H).

(methylsulfinyl)benzene

Thin-layer chromatography (petroleum ether/ethyl acetate 1:2) afforded the titled sulfoxide as a Colorless oil; ¹H NMR (500 MHz, Chloroform-*d*) δ 7.69 – 7.60 (m, 2H), 7.56 – 7.47 (m, 3H), 2.72 (s, 3H).

1-methoxy-4-(methylsulfinyl)benzene

Thin-layer chromatography (petroleum ether/ethyl acetate 1:2) afforded the titled sulfoxide as a; ¹H NMR (500 MHz, Chloroform-*d*) δ 7.55 (d, *J* = 8.8 Hz, 2H), 6.99 (d, *J* = 8.8 Hz, 2H), 3.81 (s, 3H), 2.66 (s, 3H).

1-methoxy-3-(methylsulfinyl)benzene

Thin-layer chromatography (petroleum ether/ethyl acetate 1:2) afforded the titled

sulfoxide as a; ¹H NMR (500 MHz, Chloroform-*d*) δ 7.42 (t, *J* = 7.9 Hz, 1H), 7.29 – 7.24 (m, 1H), 7.13 (d, *J* = 7.6 Hz, 1H), 7.02 (d, *J* = 8.1 Hz, 1H), 3.87 (s, 3H), 2.73 (s, 3H).

4-(methylsulfinyl)aniline

Thin-layer chromatography (petroleum ether/ethyl acetate 1:2) afforded the titled sulfoxide as a brown oil; ¹H NMR (500 MHz, Chloroform-*d*) δ 7.45 – 7.38 (m, 2H), 6.75 – 6.69 (m, 2H), 4.41 (s, 2H), 2.68 (s, 3H).

1-fluoro-4-(methylsulfinyl)benzene

Thin-layer chromatography (petroleum ether/ethyl acetate 1:2) afforded the titled sulfoxide as a white solid; ¹H NMR (500 MHz, Chloroform-*d*) δ 7.67 (dd, J = 8.6, 5.1 Hz, 2H), 7.28 – 7.22 (m, 2H), 2.73 (s, 3H). ¹⁹F NMR (471 MHz, Chloroform-*d*) δ - 108.56.

1-chloro-4-(methylsulfinyl)benzene

Thin-layer chromatography (petroleum ether/ethyl acetate 1:2) afforded the titled sulfoxide as a colorless oil; ¹H NMR (500 MHz, Chloroform-*d*) δ 7.58 (d, *J* = 8.2 Hz, 2H), 7.49 (d, *J* = 8.3 Hz, 2H), 2.70 (s, 3H).

1-bromo-4-(methylsulfinyl)benzene

Thin-layer chromatography (petroleum ether/ethyl acetate 1:2) afforded the titled sulfoxide as a white solid; ¹H NMR (500 MHz, Chloroform-*d*) δ 7.66 (d, *J* = 8.4 Hz, 2H), 7.51 (d, *J* = 8.4 Hz, 2H), 2.71 (s, 3H).

1-iodo-4-(methylsulfinyl)benzene

Thin-layer chromatography (petroleum ether/ethyl acetate 1:2) afforded the titled sulfoxide as a white solid; ¹H NMR (500 MHz, Chloroform-*d*) δ 7.87 (d, *J* = 8.3 Hz, 2H), 7.38 (d, *J* = 8.2 Hz, 2H), 2.71 (s, 3H).

1-chloro-2-(methylsulfinyl)benzene

Thin-layer chromatography (petroleum ether/ethyl acetate 1:2) afforded the titled sulfoxide as a colorless oil; ¹H NMR (500 MHz, Chloroform-*d*) δ 7.92 (dd, J = 7.8, 1.7 Hz, 1H), 7.51 (td, J = 7.5, 1.3 Hz, 1H), 7.42 (td, J = 7.6, 1.7 Hz, 1H), 7.37 (dd, J = 7.9, 1.2 Hz, 1H), 2.79 (s, 3H).

1-bromo-2-(methylsulfinyl)benzene

Thin-layer chromatography (petroleum ether/ethyl acetate 1:2) afforded the titled sulfoxide as a colorless oil; ¹H NMR (500 MHz, Chloroform-*d*) δ 7.91 (dd, *J* = 7.8, 1.7 Hz, 1H), 7.59 – 7.51 (m, 2H), 7.37 – 7.32 (m, 1H), 2.79 (s, 3H).

1-chloro-3-(methylsulfinyl)benzene

Thin-layer chromatography (petroleum ether/ethyl acetate 1:2) afforded the titled sulfoxide as a colorless oil; ¹H NMR (500 MHz, Chloroform-*d*) δ 7.66 – 7.61 (m, 1H), 7.49 – 7.42 (m, 3H), 2.72 (s, 3H).

1-bromo-3-(methylsulfinyl)benzene

Thin-layer chromatography (petroleum ether/ethyl acetate 1:2) afforded the titled sulfoxide as a colorless oil; ¹H NMR (500 MHz, Chloroform-*d*) δ 7.76 (t, *J* = 1.8 Hz, 1H), 7.57 (ddd, *J* = 7.9, 2.0, 1.0 Hz, 1H), 7.50 (dt, *J* = 7.8, 1.3 Hz, 1H), 7.36 (t, *J* = 7.9 Hz, 1H), 2.70 (s, 3H).

1,3-dichloro-5-(methylsulfinyl)benzene

Thin-layer chromatography (petroleum ether/ethyl acetate 1:2) afforded the titled sulfoxide as a colorless oil; ¹H NMR (500 MHz, Chloroform-*d*) δ 7.51 (s, 2H), 7.47 (s, 1H), 2.76 (s, 3H).

1-(methylsulfinyl)-4-nitrobenzene

Thin-layer chromatography (petroleum ether/ethyl acetate 1:2) afforded the titled sulfoxide as a yellow solid; ¹H NMR (500 MHz, Chloroform-*d*) δ 8.42 – 8.37 (m, 2H), 7.86 – 7.81 (m, 2H), 2.79 (s, 3H).

4-(methylsulfinyl)benzonitrile

Thin-layer chromatography (petroleum ether/ethyl acetate 1:2) afforded the titled sulfoxide as a white solid; ¹H NMR (500 MHz, Chloroform-*d*) δ 7.83 (d, *J* = 8.3 Hz, 2H), 7.77 (d, *J* = 8.0 Hz, 2H), 2.76 (s, 3H).

(4-(methylsulfinyl)phenyl)boronic acid

Thin-layer chromatography (petroleum ether/ethyl acetate 1:2) afforded the titled sulfoxide as a white solid; ¹H NMR (500 MHz, DMSO- d_6) δ 8.30 (s, 2H), 7.98 – 7.93 (m, 2H), 7.66 – 7.60 (m, 2H), 2.73 (s, 3H).

sulfinyldibenzene

Thin-layer chromatography (petroleum ether/ethyl acetate 1:2) afforded the titled sulfoxide as a white solid; 1H NMR (500 MHz, Chloroform-d) δ 7.69 – 7.61 (m, 4H), 7.49 – 7.42 (m, 6H).

4,4'-sulfinyldianiline

Thin-layer chromatography (petroleum ether/ethyl acetate 1:2) afforded the titled sulfoxide as a yellow soild; ¹H NMR (500 MHz, DMSO- d_6) δ 7.19 (d, J = 8.2 Hz, 4H), 6.59 (d, J = 8.3 Hz, 4H), 5.66 (s, 4H).

((methylsulfinyl)methyl)benzene

Thin-layer chromatography (petroleum ether/ethyl acetate 1:2) afforded the titled sulfoxide as a colorless oil; ¹H NMR (500 MHz, Chloroform-d) δ 7.39 – 7.30 (m, 3H), 7.32 – 7.24 (m, 2H), 4.01 (d, J = 12.8 Hz, 1H), 3.91 (d, J = 12.8 Hz, 1H), 2.42 (s, 3H).

(sulfinylbis(methylene))dibenzene

Thin-layer chromatography (petroleum ether/ethyl acetate 1:2) afforded the titled sulfoxide as a white solid; ¹H NMR (500 MHz, Chloroform-*d*) δ 7.41 – 7.35 (m, 6H), 7.31 – 7.28 (m, 4H), 3.96 – 3.86 (m, 4H).

(ethylsulfinyl)benzene

Thin-layer chromatography (petroleum ether/ethyl acetate 1:2) afforded the titled sulfoxide as a Colorless oil; ¹H NMR (500 MHz, Chloroform-d) δ 7.62 – 7.52 (m, 2H), 7.50 – 7.40 (m, 3H), 2.89 – 2.67 (m, 2H), 1.14 (t, J = 7.4 Hz, 3H).

(cyclopropylsulfinyl)benzene

Thin-layer chromatography (petroleum ether/ethyl acetate 1:2) afforded the titled

sulfoxide as a Colorless oil; ¹H NMR (500 MHz, Chloroform-*d*) δ 7.70 – 7.63 (m, 2H), 7.54 – 7.47 (m, 3H), 2.27 (td, *J* = 8.0, 4.0 Hz, 1H), 1.26 – 1.22 (m, 1H), 1.06 – 0.92 (m, 3H).

6-bromothiochroman-4-one 1-oxide

Thin-layer chromatography (petroleum ether/ethyl acetate 1:2) afforded the titled sulfoxide as a light yellow solid; ¹H NMR (500 MHz, Chloroform-d) δ 8.29 (s, 1H), 7.90 (d, J = 8.2 Hz, 1H), 7.76 (d, J = 8.2 Hz, 1H), 3.48 (d, J = 8.1 Hz, 3H), 2.97 – 2.89 (m, 1H).

2,2'-(sulfinylbis(methylene))difuran

Thin-layer chromatography (petroleum ether/ethyl acetate 1:2) afforded the titled sulfoxide as a brown solid; ¹H NMR (500 MHz, Chloroform-*d*) δ 7.48 – 7.34 (m, 2H), 6.51 – 6.30 (m, 4H), 4.14 – 3.85 (m, 4H).

1-(pentylsulfinyl)pentane

Thin-layer chromatography (petroleum ether/ethyl acetate 1:2) afforded the titled sulfoxide as a white solid; ¹H NMR (500 MHz, Chloroform-*d*) δ 2.73 – 2.56 (m, 4H), 1.85 – 1.69 (m, 4H), 1.53 – 1.29 (m, 8H), 0.90 (t, *J* = 7.1 Hz, 6H).

1-(isobutylsulfinyl)-2-methylpropane

Thin-layer chromatography (petroleum ether/ethyl acetate 1:2) afforded the titled sulfoxide as a white solid; ¹H NMR (500 MHz, Chloroform-*d*) δ 2.67 (dd, *J* = 12.6, 4.7

Hz, 2H), 2.38 – 2.32 (m, 2H), 2.22 (tdd, *J* = 13.5, 11.4, 6.6 Hz, 2H), 1.08 (dd, *J* = 9.3, 6.5 Hz, 12H).

4. ¹H NMR and ¹⁹F NMR for the sulfoxide products.

Reference

[1] Z. Cui, Q. Zhang, H. Fu, Q. Liu, X. Liu, Y. Wu, P. Gao, Z. Wang, Z. Zheng, H. Cheng, Y. Liu, Y. Dai, B. Huang and P. Wang, *Appl. Catal. B Environ.*, 2023, 333, 122812.