## **Supporting Information**

## Green method of synthesizing L-malate from D-glucose via CO<sub>2</sub> fixation using an

## ATP-free in vitro synthetic enzymatic biosystem

Lin Fan<sup>1,2</sup>, Shangshang Sun<sup>2</sup>, Zhidan Zhang<sup>3</sup>, Yanmei Qin<sup>1</sup>, Peter Ruhdal Jensen<sup>4\*</sup>, Chun You<sup>1,2\*</sup>

<sup>1</sup> Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin Airport

Economic Area, Tianjin, 300308, China

<sup>2</sup> University of Chinese Academy of Sciences Sino-Danish College, Beijing, China

<sup>3</sup> Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial

Biotechnology, Chinese Academy of Sciences, 300308 Tianjin, China.

<sup>4</sup> Microbial Biotechnology & Biorefining National Food Institute, Kemitorvet, 201, 213, 2800

Kgs. Lyngby, Denmark

\*Corresponding Authors:

Chun You, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China. Email: you\_c@tib.cas.cn

Current address of Chun You: Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027 Zhejiang, China, Email: cyou@zju.edu.cn.

Peter Ruhdal Jensen, Microbial Biotechnology & Biorefining National Food Institute, Kemitorvet, 201, 213, 2800 Kgs. Lyngby, Denmark. Email: perj@food.dtu.dk

## **Table of Contents**

| Table S1. Plasmids used in this study   | 3 |
|-----------------------------------------|---|
| Fig S1. The HPLC profiles               | 4 |
| Fig S2. The standard curves             | 4 |
| Fig S3. SDS-PAGE gel                    | 5 |
| Fig S4. Biocatalytic efficiency of MDH  | 5 |
| Fig S5. The proof-of-concept experiment | 6 |
| Fig S6. LC-MS test                      | 6 |

| Plasmid        | Features                                                                                                                                  | Ref |
|----------------|-------------------------------------------------------------------------------------------------------------------------------------------|-----|
| pET28a-ssgdh   | Kana <sup>R</sup> , gdh expression cassette containing GDH protein from Sulfolobus solfataricus, C-terminal 6×His tag                     | 34  |
| pET28a-sackdga | Kana <sup>R</sup> , kdga expression cassette containing KDGA protein from Sulfolobus sacidocaldarius, C-terminal 6×His tag                | 34  |
| pET28a-taaldh  | Kana <sup>R</sup> , aldh expression cassette containing ALDH protein from Thermoplasma acidophilum, C-terminal 6×His tag                  | 34  |
| pET28a-pudhad  | Kana <sup>R</sup> , <i>dhad</i> expression cassette containing DHAD protein from <i>Paralcaligenes ureilyticus</i> , C-terminal 6×His tag | 37  |
| pET28a-tkmdh   | Kana <sup>R</sup> , mdh expression cassette containing MDH protein from Thermococcus kodakarensis, C-terminal 6×His tag                   | 35  |



**Fig. S1** The High Performance Liquid Chromatography (HPLC) profiles of L-malate and other intermediates. Gluconate, pyruvate, glycerate, glyceraldehyde, and L-malate were measured by the HPLC (SHIMADZU, Japan) equipped with a refractive index detector. Samples were separated on a Bio-Rad Aminex HPLC organic acid column (HPX-87H 300 x 7.8 mm<sup>2</sup>) at 35 °C with a mobile phase of 5 mM H<sub>2</sub>SO<sub>4</sub> solution at a rate of 0.5 mL/min.



**Fig. S2** The standard curves of L-malate (A) and L-lactate (B). The concentration of L-malate and L-lactate from 4-10 mmol/L were determined from the height of the peaks in HPLC equipped with Bio-Rad HPX-87H column and a refractive index detector at 35 °C with a mobile phase of 5 mM

 $H_2SO_4$  solution at a rate of 0.5 mL/min.



**Fig. S3** SDS-PAGE gel analysis of five recombinant enzymes for the one-pot biosynthesis of Lmalate from D-glucose and CO<sub>2</sub>. M, protein marker. The molecular weights of GDH, DHAD, KDGA, ALDH, and MDH were approximately 41.7, 59.4, 32.5, 54.7, and 50.0 kDa, respectively.



**Fig S4** Biocatalytic efficiency of MDH. The concentration profiles of pyruvate (square), L-malate (circle), and L-lactate (triangle). The reaction was performed at 50 °C in 500 mM HEPES-NaOH buffer (pH 7.0) containing 100 mM NaHCO<sub>3</sub>, 5.21 mM pyruvate, 0.5 mM MnCl<sub>2</sub>, 2 mmol/L DTT, 15 mmol/L NH<sub>4</sub>Cl, 0.01 g/L MDH, and 2.0 mM NADH. Values shown are means of triplicate determinations.



**Fig. S5** The proof-of-concept experiment for the production of L-malate from D-glucose via HCO<sub>3</sub><sup>-</sup> fixation by an ivSEB in the aerobic state. The concentration profiles of D-glucose (square), L-malate (circle), and L-lactate (triangle). The reaction was performed at 50 °C in the aerobic state in 100 mM HEPES-NaOH buffer (pH 7.0) containing 100 mM NaHCO<sub>3</sub>, 4.5 mM D-glucose, 5 mM MgCl<sub>2</sub>, 0.5 mM MnCl<sub>2</sub>, 2 mM DTT, 50 mM NH<sub>4</sub>Cl, 1.0 U/mL GDH, 1.0 U/mL DHAD, 1.0 U/mL KDGA, 1.0 U/mL ALDH, 1.0 U/mL MDH, and 2.0 mM NAD<sup>+</sup>. Values shown are means of triplicate determinations.



**Fig. S6** High performance liquid chromatography-mass spectrometry (LC-MS) test confirmed <sup>13</sup>C-labeled products. (A) The LC-MS profiles of L-malate production from D-glucose with and without <sup>13</sup>C-labeled. (B) The LC-MS profiles of L-lactate production from D-glucose with and without <sup>13</sup>C-labeled. (B) The LC-MS profiles of L-lactate production from D-glucose with and without <sup>13</sup>C-labeled. The reaction was performed in 100 mM HEPES-NaOH buffer (pH 7.0) at 50 °C containing 5 mM D-glucose, 100 mM NaHCO<sub>3</sub>, 50 mM NH<sub>4</sub>Cl, 2 mM DTT, 5 mM MgCl<sub>2</sub>, 0.5 mM Mn<sup>2+</sup>, 2.0 mM NAD<sup>+</sup>, 1.0 U/mL GDH, 1.0 U/mL DHAD, 1.0 U/mL KDGA, 1.0 U/mL ALDH, and 1.0 U/mL MDH.