Electronic Supplementary Material (ESI) for Green Chemistry. This journal is © The Royal Society of Chemistry 2024

Supporting Information

Catalyst-free photochemical CO₂ hydrogenation to CO and CH₄

conversion to C₂H₆

Experimental Procedures

Chemicals

 H_2SO_4 (AR) and CH_3COOH (AR) were purchased from Sinopharm Chemical Reagent Co., Ltd. Ammonium acetate (99.99%) was obtained from Aladdin Chemical Reagent, Ltd. Acetylacetone (99.5%) was provided by Alfa Aesar Chemical Co. Ltd. CO_2 (99.995%), CH_4 (99.995%) and Ar (99.9995%) were provided by Air Liquid Houlding Co., Ltd., China. H_2 (99.99%) was obtained from Shanghai Chemistry Industrial Zone Pujiang Special Type Gas Co., Ltd. Deionized (DI) water was used in the all the experiments.

Performance test

The photochemical reaction was conducted in a home-made quartz reactor (220 mL) at standard room temperature, and a 172 nm-140 W Xe₂ excimer lamp was employed as the light source (ZIBOR UV. Co., Ltd.) without any extra energies.

For CO₂ hydrogenation, in a typical process, prior to illumination reaction, the reactor was evacuated by a vacuum pump, and then filled with Ar gas to attain atmospheric pressure. This evacuation-filling operation was repeated three times. Subsequently, 100 mL of CO₂/H₂ mixture with known volume ratio was introduced into the reactor. Throughout the experiment, the reactor was enveloped with aluminum foil to avoid any external light interference. The reaction was stopped after desired time. H₂O-promoted CH₄ conversion was conducted via nearly the same procedure; and the major difference was the feedstock employed.

The gaseous products such as CO, C₂H₆, H₂ and CH₄ were analyzed by a gas chromatograph (Agilent GC-8860) equipped with a thermal conductivity detector (TCD), flame ionization detector (FID) and a methanizer which contains Ni catalyst and calibrated with a standard gas mixture. The amount of H₂ was quantified on the TCD using a Molsieve 5Å column. The amount of C₂H₆ was measured on the FID using a Hayesep Q column. The amount of CO and CH₄ was quantified on the FID using a Molsieve 5Å column. The role of methanizer is to convert CO to CH₄ for FID analysis. Meanwhile, hydrocarbons such as C_3H_8 were analyzed by a gas chromatograph (Agilent GC-7890A) equipped with a TCD and FID and calibrated with a standard gas mixture. The amount of hydrocarbons such as C₃H₈ was determined on the FID using a HP-AL/S column. Meanwhile, to detect liquid products, 10 mL of H₂O was injected into the system after the reaction. Possible liquid products such as methanol, ethanol, acetic acid, and acetaldehyde were measured using an Agilent Technology 7890B gas chromatography system with a flame ionization detector using an DB-WAX-UI column. The possible product of formic acid was analyzed by HPLC (Waters 2695) equipped with Aminex HPX-87H column, UV/visible detector (WATER2489), and using 5 mM sulfuric acid as the mobile phase with a flow rate of 0.7 mL/min. The amount of HCHO was analyzed by using the acetylacetone colour-development method. Specifically, 1 mL of the as-prepared acetylacetone solution was mixed with 4 mL of the aquoeus solution with product in a glass bottle, and heated for 5 min in boiling water, then the yellow colour of the mixed solution could be investigated. Afterwards, desired amount of solution was taken out and measured by using a Shimadzu UV-2700 spectrophotometer. Through the absorbance intensity at 413 nm, the HCHO concentration was obtained. Typically, 100 mL of acetylacetone solution was first prepared by dissolving 15 g of ammonium acetate, 0.3 mL of acetic acid, and 0.2 mL of acetylacetone in water, and was stored in refrigerator with 2-6 °C.

Quantum efficiency (QE) calculation

The QE for CO evolution for CO₂ hydrogenation and C₂H₆ evolution for H₂Opromote CH₄ conversion was measured using the standard experimental setup. The system was irradiated by a 172 nm-140 W Xe₂ excimer lamp for 24 h. The average intensity of irradiation (*I*) was 0.9 mW cm², which was determined by a UIT-250(USHIO) unimeter. The irradiation area (*S*) was measured to be 19.63 cm². E_{λ} is given by hc/ λ (λ =172 nm). The QE was calculated by the following equation.

$$QE(CO) = \frac{2 \times \text{the number of evolved CO molecules}}{I(W/cm^2) \times S(cm^2) \times t(s)/E_{\lambda}(J)} \times 100\%$$

$$QE(C2H6) = \frac{2 \times \text{the number of evolved C2H6 molecules}}{I(W/cm^2) \times S(cm^2) \times t(s)/E_{\lambda}(J)} \times 100\%$$

Characterization

The temperature was recorded by an infrared thermal imaging camera (Fotrfic 315, Shanghai Thermal Imaging Technology Co., Ltd.). *In-situ* FT-IR spectra were recorded using a NICOLET iS50 FT-IR spectrometer (Thermo SCIENTIFIC, USA) equipped with a high-temperature reaction chamber and a mercury cadmium telluride (MCT) detector at a resolution of 4 cm⁻¹ and 32 scans per spectrum.

For CO₂ hydrogenation, the background spectrum was recorded after the introduction of the gas mixture (66%CO₂/33%H₂).

Simarly, for H_2O -promoted CH_4 conversion, the background spectrum was collected after introducing moist CH_4 gas into the testing chamber.

Figure S1 Infrared thermal images captured for the illumination region of the reactor.

Figure S2 Typical GC curve of the sample: (a) CO_2 hydrogenation and (b) H_2O -promoted CH_4 conversion. Reaction conditions: 172 nm-140 W Xe₂ excimer lamp, irradiation time 24 hours, ambient temperature; total volume of reaction gas 100 mL and volume ratio ($CO_2/H_2 = 2/1$) for Figure S2a; volume of reaction gas 220 mL and volume of water (1 mL) for Figure S2b.

Figure S3 Ultraviolet-visible absorption spectrum of the reaction mixture from CO₂ hydrogenation (light blue) and H₂O-promoted CH₄ conversion (red). Reaction conditions: 172 nm-140 W Xe₂ excimer lamp, irradiation time 24 hours, ambient temperature; volume of reaction gas 100 mL and volume ratio $(CO_2/H_2 = 2/1)$ for CO₂ hydrogenation; volume of reaction gas 220 mL and volume of water (1 mL) for CH₄ conversion.

Figure S4 (a) Photograph of the *in-situ* FT-IR reactor. (b) Photograph of the *in-situ* FT-IR analysis apparatus in VUV photochemistry system.

Figure S5 Photograph of the VUV photochemistry setup in Ar atmosphere.

Catalysts	Reaction condition	Reactant	Production	Time	Reference
None	140 W Xe ₂ excimer lamp	CO ₂ +H ₂	CO: 4.8 µmol	24 h	This work
None	140 W Xe ₂ excimer lamp	CH_4	$C_2H_{6:}$ 10.8 µmol	24 h	This work
None	140 W Xe ₂ excimer lamp	CH ₄ +H ₂ O	C ₂ H ₆ : 21.6 µmol	24 h	This work
None	140 W Xe ₂ excimer lamp +	CO ₂ +H ₂	CO: 8.6 µmol	24 h	This work
	oxygen-free environment				
None	140 W Xe ₂ excimer lamp +	CH ₄ +H ₂ O	C ₂ H _{6:} 40.78 µmol	24 h	This work
	oxygen-free environment				
Bismuthine (20 mg)	300 W Xe lamp	CO ₂ +H ₂ O	CO: 1.432 µmol	5 h	1
Ti_3C_2 dots (1 mg)	150 W Xe lamp +300 °C	CO ₂ +H ₂	CO: 0.143 µmol h ⁻¹	/	2
rh-In ₂ O _{3-x} (OH) _y	130 W Xe lamp +270 °C	$\rm CO_2+H_2$	CO: 22 µmol h-1	/	3
Au-ZnO (15 mg)	5.5 ns pulsed 532 nm laser	$\rm CO_2 + H_2$	CO: 0.015 µmol	5 h	4
$Pt/B_4C/C_3N_4(6\ mg)$	300 W Xe lamp	$\rm CO_2 + H_2$	CH ₄ : 0.04 μmol	8 h	5
Ru/MnO _x	300 W Xe lamp +200 °C	$\rm CO_2+H_2$	CH ₄ : 10 mmol	4 h	6
Graphdiyne/In ₂ O ₃ (5 mg)	150 W Xe lamp (20 sun)	$\rm CO_2 + H_2$	CO: 72 µmol	4 h	7
Bi_2WO_6 (300 mg)	450 W Hg lamp + 55 °C	CH ₄ +H ₂ O	C ₂ H ₆ : 0.75 µmol	0.5 h	8
Pt/TiO ₂ (75 mg)	UV light	CH ₄ +H ₂ O	C ₂ H ₆ : 23.67 µmol	6 h	9
Pd/TiO ₂ (75 mg)	UV light	CH ₄ +H ₂ O	C ₂ H ₆ : 12.38 µmol	6 h	10
BiVO ₄ bipyramids (205	350 W Xe lamp	CH ₄ +H ₂ O	CH3OH: 22.94 µmol	1 h	11
mg)					
Ga ³⁺ -modified	150 W high pressure Hg	CH_4	C ₂ H ₆ : 20.9 µmol	5 h	12
microporous titanosilicate	lamp				
(200 mg)					
Ag-HPW/TiO ₂ (100 mg)	400 W Xe lamp	CH_4	C ₂ H ₆ : 14.4 µmol	7 h	13

Table S1 Representative studies on the CO_2 hydrogenation and CH_4 transformation.

Supplementary References

1. Wang, B.; Chen, H.; Zhang, W.; Liu, H.; Zheng, Z.; Huang, F.; Liu, J.; Liu, G.; Yan, X.; Weng, Y.-X.; Li, H.; She, Y.; Chu, P. K.; Xia, J., Semimetallic bismuthene with edge-rich dangling bonds: Broad-spectrum-driven and edge-confined electron enhancement boosting CO₂ hydrogenation reduction. *Advanced Materials* **2024**, 2312676.

2. Ramírez-Grau, R.; Cabrero-Antonino, M.; García, H.; Primo, A., MXene dots as photocatalysts for CO₂ hydrogenation. *Applied Catalysis B: Environmental* **2024**, *341*, 123316.

3. Yan, T.; Wang, L.; Liang, Y.; Makaremi, M.; Wood, T. E.; Dai, Y.; Huang, B.; Ali, F. M.; Dong, Y.; Ozin, G. A., Polymorph selection towards photocatalytic gaseous CO₂ hydrogenation. *Nature Communications* **2019**, *10* (1), 2521.

4. Wang, C.; Ranasingha, O.; Natesakhawat, S.; Ohodnicki, P. R.; Andio, M.; Lewis, J. P.; Matranga, C., Visible light plasmonic heating of Au–ZnO for the catalytic reduction of CO₂. *Nanoscale* **2013**, *5* (15), 6968-6974.

5. Zhang, X.; Wang, L.; Du, Q.; Wang, Z.; Ma, S.; Yu, M., Photocatalytic CO₂ reduction over B₄C/C₃N₄ with internal electric field under visible light irradiation. *Journal of Colloid and Interface Science* **2016**, *464*, 89-95.

6. Zhai, J.; Xia, Z.; Zhou, B.; Wu, H.; Xue, T.; Chen, X.; Jiao, J.; Jia, S.; He, M.; Han, B., Photo-thermal coupling to enhance CO_2 hydrogenation toward CH_4 over Ru/MnO/Mn₃O₄. *Nature Communications* **2024**, *15* (1), 1109.

 Li, W.; Zhang, Y.; Wang, Y.; Ran, W.; Guan, Q.; Yi, W.; Zhang, L.; Zhang, D.; Li, N.;
Yan, T., Graphdiyne facilitates photocatalytic CO₂ hydrogenation into C₂₊ hydrocarbons. *Applied Catalysis B: Environmental* 2024, *340*, 123267.

8. Murcia-López, S.; Villa, K.; Andreu, T.; Morante, J. R., Partial oxidation of methane to methanol using bismuth-based photocatalysts. *ACS Catalysis* **2014**, *4* (9), 3013-3019.

9. Yu, L.; Shao, Y.; Li, D., Direct combination of hydrogen evolution from water and methane conversion in a photocatalytic system over Pt/TiO₂. *Applied Catalysis B: Environmental* **2017**, *204*, 216-223.

10. Yu, L.; Li, D., Photocatalytic methane conversion coupled with hydrogen evolution from water over Pd/TiO₂. *Catalysis Science & Technology* **2017**, *7* (3), 635-640.

11. Zhu, W.; Shen, M.; Fan, G.; Yang, A.; Meyer, J. R.; Ou, Y.; Yin, B.; Fortner, J.; Foston, M.; Li, Z.; Zou, Z.; Sadtler, B., Facet-dependent enhancement in the activity of bismuth vanadate microcrystals for the photocatalytic conversion of methane to methanol. *ACS Applied Nano Materials* **2018**, *1* (12), 6683-6691.

12. Li, L.; Cai, Y.-Y.; Li, G.-D.; Mu, X.-Y.; Wang, K.-X.; Chen, J.-S., Synergistic effect on the photoactivation of the methane C-H Bond over Ga³⁺-modified ETS-10. *Angewandte Chemie International Edition* **2012**, *51* (19), 4702-4706.

13. Yu, X.; Zholobenko, V. L.; Moldovan, S.; Hu, D.; Wu, D.; Ordomsky, V. V.; Khodakov, A. Y., Stoichiometric methane conversion to ethane using photochemical looping at ambient temperature. *Nature Energy* **2020**, *5* (7), 511-519.