Supporting Information

Electrochemically Driven Cross-Electrophile Esterification of Alkyl Halides

Yu Liu^[a], Shentong Xie^[a], Yuqing Yin^[a], Ming Lu^[b], Pengcheng Wang^{*[b]} and Renyi Shi^{*[a]}

[a] School of Chemical Engineering and Technology

Xi'an Jiaotong University Xi'an 710049 (P. R. China)

E-mail: renyi.shi@xjtu.edu.cn

[b] School of Chemical Engineering Nanjing University of Science & Technology Nanjing 210094 (P. R. China)

E-mail: <u>alexwpch@njust.edu.cn</u>

1. General Analytical	S 2
2. General Reagent Information	S2
3. General Procedure for Electrochemically Driven Cross-Electrophile Esterification of Alkyl	
Halides	S3
4. Large Scale Reaction Procedure	S4
5. Optimization of Electrochemically Driven Cross-Electrophile Esterification of Alkyl Halides S6	
6. Control Experiments	S7
7. Cyclic Voltammetry	S 10
8. Analytical Data of Substrates and Products	S11
9. NMR Spectra of Substrates and Products	S28
10. References	S87

General Analytical Information

Nuclear Magnetic Resonance spectra were recorded on a Bruker Avance 400 MHz instruments at ambient temperature. All ¹H NMR spectra were measured in part per million (ppm) relative to the signals of tetramethylsilane (TMS, 0.00 ppm) added into the deuterated chloroform (CDCl₃, 7.30 ppm) unless otherwise stated. Data for ¹H NMR were reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, quint = quintet, m = multiplet, dd = doublet of doublets, dt = doublet of triplets, td = triplet of doublets), coupling constants, and integration. All ¹³C NMR spectra were reported in ppm relative to tetramethylsilane (0.00 ppm) unless otherwise stated, and were obtained with complete ¹H decoupling. All GC analyses were performed on a Perkin-Elmer Clarus 400 GC system with an FID detector. High-resolution mass spectra were obtained with an AB Triple 5600 mass spectrometer by ESI on a TOF mass analyzer.

General Reagent Information

Unless otherwise noted, all chemicals used in the preparations of starting materials and in the electrochemically driven cross-electrophile esterification of alkyl halides were commercially available and were used as received without further purifications or prepared according to previous work. Solvents transferred to the glove box without exposure to air. Anhydrous dimethylacetamide (DMA) (99.8% purity) were purchased from China National Pharmaceutical Group Corporation.

General Procedure for Electrochemically Driven Cross-Electrophile Esterification of Alkyl Halides

Figure S1 Hand-made electrochemical cell

Figure S2 Electrochemical reactor

An oven-dried 20 mL re-sealable screw-cap test tube equipped with a Teflon-coated magnetic stir bar was charged with ^{*n*}Bu₄NOAc (0.2 M) in the glove. Then DMA (4 mL), THF (2 mL), alkyl halides (0.5 mmol), alkyl halides (4.5eq), were added into the tube in turn. All these procedures were conducted in the glovebox. Screw the vial cap with electrode (Zn anode (16 mm X 20 mm), graphite felt cathode (16 mm X 20 mm)) onto the vial to finger tight and adapt the electrochemical cell. Then removed from the glove box. The reaction mixture was stirred and electrolyzed at a constant current (20 mA) at room temperature for 5h. After electrolysis, the product was extracted from the crude reaction mixture with ethyl acetate (4 X 30 mL). The organic layers were combined, and washed with brine (60 mL). Dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The product was purified by silica gel column chromatography, using petroleum ether /EA = 120/1 (v/v) as an eluent.

Large Scale Reaction Procedure

Figure S3 Scale reaction set-up

An oven-dried 100 mL three-necked flask equipped with a Teflon-coated magnetic stir bar was charged with "Bu₄NOAc (0.2 M) in the glove. Then 40 mL DMA and 20 mL THF, 3-methoxybenzyl chloride **1a** (10 mmol), ClCOOPr **2a** (45 mmol) were added into the three-necked flask in turn. All these procedures were conducted in the glovebox. Screw the vial cap with electrode onto the vial to finger tight and adapt the electrochemical cell. Then removed from the glove box. The reaction mixture was stirred and electrolyzed at a constant current (100 mA) at room temperature for 12 h.

After electrolysis, the product was extracted from the crude reaction mixture with ethyl acetate (3 X 80 mL). The organic layers were combined, and washed with brine (160 mL). Dried over Na_2SO_4 , filtered, and concentrated under reduced pressure. The product was purified by silica gel column chromatography, using petroleum ether /EA = 120/1 (v/v) as an eluent.

An oven-dried 100 mL three-necked flask equipped with a Teflon-coated magnetic stir bar was charged with "Bu₄NOAc (0.2 M) in the glove. Then 40 mL DMA and 20 mL THF, benzyl chloride **1b** (15 mmol), ClCOOPr **2a** (45 mmol) were added into the three-necked flask in turn. All these procedures were conducted in the glovebox. Screw the vial cap with electrode onto the vial to finger tight and adapt the electrochemical cell. Then removed from the glove box. The reaction mixture was stirred and electrolyzed at a constant current (100 mA) at room temperature for 12 h. After electrolysis, the product was extracted from the crude reaction mixture with ethyl acetate (3 X 80 mL). The organic layers were combined, and washed with brine (160 mL). Dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The product was purified by silica gel column chromatography, using petroleum ether /EA = 120/1 (v/v) as an eluent.

An oven-dried 100 mL three-necked flask equipped with a Teflon-coated magnetic stir bar was charged with "Bu₄NOAc (0.2 M) in the glove. Then 40 mL DMA and 20 mL THF, chlorodiphenylmethane **1ak** (10 mmol), CICOOPr **2a** (45 mmol) were added into the three-necked flask in turn. All these procedures were conducted in the glovebox. Screw the vial cap with electrode onto the vial to finger tight and adapt the electrochemical cell. Then removed from the glove box. The reaction mixture was stirred and electrolyzed at a constant current (100 mA) at room temperature for 12h. After electrolysis, the product was extracted from the crude reaction mixture with ethyl acetate (3 X 80 mL). The organic layers were combined, and washed with brine (160 mL). Dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The product was purified by silica gel column chromatography, using petroleum ether /EA = 120/1 (v/v) as an eluent.

Optimizations of Electrochemically Driven Cross-Electrophile Esterification of Benzyl halides

Table 1. Screening of the Reaction Conditions

MeO		0. _{npr}
1a	2a	3a
entry	deviation from standard conditions	yield 3a [%]
1	none	68 (78) ^c
2^b	Zn powder	0
3	I = 10 mA	59
4	I = 15 mA	56
5	I = 25 mA	53
6	I = 30 mA	50
7	t= 4 h	53
8	t= 6h	58
9	Fe instead of Zn	61
10	Mg instead of Zn	30
11	Cu instead of Zn	25
12	Pt instead of graphite felt	31
13	Fe instead of graphite felt	42
14	Cu instead of graphite felt	36
15	Zn instead of graphite felt	58
16	ⁿ Bu ₄ NBr instead of ⁿ Bu ₄ NOAc	43
17	ⁿ Bu ₄ NI instead of ⁿ Bu ₄ NOAc	24
18	ⁿ Bu ₄ NCl instead of ⁿ Bu ₄ NOAc	0
19	ⁿ Bu ₄ NPF ₆ instead of ⁿ Bu ₄ NOAc	0
20	Et ₄ NCl instead of ⁿ Bu ₄ NOAc	0
21	DMA instead of DMA/THF	45
22	NMP instead of DMA/THF	28
23	DMA/1,4-Dioxane of DMA/THF	57
24	DMA/THF 3:3 instead of DMA/THF 4:2	53
25	DMA/THF 5:1 of DMA/THF 4:2	43
26	0.1 M "Bu4NOAc	35
27	0.3 M "Bu ₄ NOAc	65
28	2 eq 2a	22
29	3 eq 2a	51
30	5 eq 2a	63
31	Without "Bu4NOAc	0
32	Without current	0

^aReaction condition : 0.5 mmol **1a**, 4.5 eq **2a**, 0.2 M ^{*n*}Bu₄NOAc, DMA/THF = 4 ml:2 ml, Zn anode, graphite felt cathode, undivided cell, constant current of 20 mA, rt, 5h. Conversion was measured by GC using naphthalene as an internal standard. ^bNo electrode and electrolyte, 3 equiv. Zn powder. ^c Isolated yield.

Control Experiments

In order to gain a better understanding of the reaction's mechanism, we conducted several control experiments.

Eq. 1 followed the General Procedure, with adding free radical inhibitor, TEMPO. After reaction, no product was detected.

Eq. 2 followed the General Procedure using (chloro(cyclopropyl)methyl)benzene (0.5 mmol) and propyl chlorocarbonate (4.5 eq) as the substrate. After purification, the yield of **3aq** is 32%, **5** is 38%, **6** is 6%

Eq. 3 followed the General Procedure using (R)-(1-chloroethyl)benzene (41% ee) (0.5 mmol) and isopropyl chlorocarbonate (4.5 eq) as the substrate. After purification, the yield of 3ar is 32%.

Eq. 4 followed the General Procedure using (chloromethyl)benzene (0.5 mmol) and propyl chlorocarbonate (1 eq) as the substrate. Add catalyst NiCl₂ dme (10% mmol) and ligand bpy (15% mmol), After purification, the yield of **3a** is nd.

Eq. 5 Standard reaction without current, adding 3eq zinc powder reaction at 40 $^\circ C$ for 12h reaction will not occur.

Eq. 6 followed the General Procedure using (chloromethyl)benzene (0.5 mmol) and propyl chlorocarbonate (4.5 eq) as the substrate. Add catalyst NiCl₂·dme (10% mmol) and ligand bpy (15% mmol), After purification, the yield of **3a** is 23%.

Propyl 2-cyclopropyl-2-phenylacetate The product was purified by silica gel column chromatography, using PE/EA = 120/1 (v/v) as an eluent.

¹H NMR (400 MHz, CDCl₃) δ 7.26 – 7.19 (m, 4H), 4.09 (t, *J* = 6.7 Hz, 2H), 3.63 (s, 2H), 2.68 (q, *J* = 7.6 Hz, 2H), 1.69 (h, *J* = 7.2 Hz, 2H), 1.27 (t, *J* = 7.6 Hz, 3H), 0.96 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 171.97, 143.01, 131.38, 129.19, 128.07, 66.44, 41.06, 28.52, 21.98, 15.62, 10.39.

(cyclopropylmethyl)benzene and (E)-but-1-en-1-ylbenzene The product was purified by silica gel column chromatography, using PE/EA = 120/1 (v/v) as an eluent. According to the spectrum, (cyclopropylmethyl)benzene : (E)-but-1-en-1-ylbenzene=7:1.

¹H NMR (400 MHz, CDCl₃) δ 7.38 – 7.23 (m, 41H), 6.38 (d, *J* = 16.0 Hz, 1H), 6.27 (dt, *J* = 15.8, 6.3 Hz, 1H), 2.55 (d, *J* = 6.9 Hz, 14H), 2.23 (p, *J* = 7.4, 6.9 Hz, 2H), 1.09 (t, *J* = 7.5 Hz, 3H), 1.09 – 0.99 (m, 7H), 0.59–0.55 (m, 14H), 0.20 (q, *J* = 5.0 Hz, 14H).

¹³C NMR (101 MHz, CDCl₃) δ 142.15(major), 137.92(minor), 132.63(minor), 128.76(major), 128.45(major), 128.33(minor), 128.21(minor), 126.73(minor), 125.88(major), 125.80(minor), 40.33(majo r), 26.05(minor), 13.64(minor), 11.83(major), 4.64(major).

Cyclic Voltammetry

Cyclic voltammograms in solvent (10 mL) by using glassy carbon as the working electrode, Pt wire as the counter electrode and Ag/AgCl as the reference electrode under N_2 at room temperature. NMP (10mL) containing 0.1 M ^{*n*}Bu₄NBr was poured into the electro chemical cell in all experiments. The scan rate was 100 mV s⁻¹.

Figure S4: Cyclic voltammograms recorded on a glassy carbon electrode at 100 mVs-1 in: black: NMP (10 mL), *n*Bu₄NBr (1 mol); **1a**: NMP (10 mL), *n*Bu₄NBr (1 mol), 3-methoxybenzyl chloride (0.1 mmol); **2a**: NMP (10 mL), *n*Bu₄NBr (1 mol), propyl chlorocarbonate (0.1 mmol); **1a**+**2a**: NMP

(10 mL), ^{*n*}Bu₄NBr (1 mol); **1a**: NMP (10 mL), ^{*n*}Bu₄NBr (1 mol), 3-methoxybenzyl chloride (0.1 mmol), propyl chlorocarbonate (0.1 mmol).

Analytical Data of Substrates and Products

MeO

1-(4-(tert-butyl)phenyl)-2-(4-fluorophenyl)ethan-1-one Light yellow liquid (81.1 mg, 78% yield). The product was purified by silica gel column chromatography, using petroleum ether /EA = 120/1 (v/v) as an eluent.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.29 – 7.25 (m, 1H), 6.92 – 6.83 (m, 3H), 4.09 (t, *J* = 6.7 Hz, 2H), 3.83 (s, 3H), 3.63 (s, 2H), 1.72 – 1.63 (m, 2H), 0.95 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 171.61, 159.66, 135.61, 129.52, 121.62, 114.82, 112.63, 66.51, 55.20, 41.52, 21.96, 10.38.

HRMS (ESI) m/z: $[M + Li]^+$ Calcd for $C_{12}H_{16}LiO_3^+$ 215.1254; Found 215.1239.

propyl 2-phenylacetate^[1] Light yellow liquid (47.2 mg, 53% yield). The product was purified by silica gel column chromatography, using petroleum ether /EA = 120/1 (v/v) as an eluent.

¹H NMR (400 MHz, CDCl₃) δ 7.39 – 7.29 (m, 5H), 4.09 (t, *J* = 6.7 Hz, 2H), 3.66 (s, 2H), 1.68 (h, *J* = 7.2 Hz, 2H), 0.95 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 171.75, 134.21, 129.27, 128.56, 127.05, 66.49, 41.49, 21.97, 10.38.

propyl 2-(o-tolyl)acetate Light yellow liquid (63.4 mg, 66% yield). The product was purified by silica gel column chromatography, using petroleum ether /EA = 120/1 (v/v) as an eluent.

¹H NMR (400 MHz, CDCl₃) δ 7.26 – 7.18 (m, 4H), 4.10 (t, *J* = 6.7 Hz, 2H), 3.68 (s, 2H), 2.37 (s, 3H), 1.69 (h, *J* = 6.9 Hz, 2H), 0.95 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 171.66, 136.84, 132.96, 130.33, 130.17, 127.36, 126.13, 66.44, 39.31, 21.99, 19.64, 10.38.

propyl 2-(m-tolyl)acetate Light yellow liquid (50.9 mg, 53% yield). The product was purified by silica gel column chromatography, using petroleum ether /EA = 30/1 (v/v) as an eluent.

¹H NMR (400 MHz, CDCl₃) δ 7.29 – 7.11 (m, 4H), 4.10 (t, *J* = 6.7 Hz, 2H), 3.63 (s, 2H), 2.39 (s, 3H), 1.74 – 1.64 (m, 2H), 0.96 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 171.86, 138.18, 134.09, 130.03, 128.45, 127.80, 126.28, 66.46, 41.41, 21.98, 21.40, 10.39.

) N

propyl 2-(p-tolyl)acetate Light yellow liquid (56.6 mg, 59% yield). The product was purified by silica gel column chromatography, using petroleum ether /EA = 120/1 (v/v) as an eluent.

¹H NMR (400 MHz, CDCl₃) δ 7.23 – 7.16 (m, 4H), 4.08 (t, *J* = 6.7 Hz, 2H), 3.62 (s, 2H), 2.37 (s, 3H), 1.68 (h, *J* = 7.2 Hz, 2H), 0.95 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 171.96, 136.64, 131.14, 129.25, 129.12, 66.44, 41.06, 21.97, 21.12, 10.39.

propyl 2-(2,5-dimethylphenyl)acetate Light yellow liquid (63.9 mg, 62% yield). The product was purified by silica gel column chromatography, using petroleum ether /EA = 120/1 (v/v) as an eluent.

¹H NMR (400 MHz, CDCl₃) δ 7.12 – 7.02 (m, 3H), 4.10 (t, *J* = 6.7 Hz, 2H), 3.64 (s, 2H), 2.34 (d, *J* = 10.4 Hz, 6H), 1.69 (h, *J* = 7.2 Hz, 2H), 0.96 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 171.81, 135.53, 133.63, 132.69, 130.91, 130.22, 128.04, 66.42, 39.26, 22.00, 20.93, 19.15, 10.39.

HRMS (ESI) m/z: $[M + Li]^+$ Calcd for $C_{13}H_{18}LiO_2^+$ 213.1461; Found 213.1466.

propyl 2-mesitylacetate Light yellow liquid (59.4 mg, 54% yield). The product was purified by silica gel column chromatography, using petroleum ether /EA = 120/1 (v/v) as an eluent.

¹H NMR (400 MHz, CDCl₃) δ 6.93 (s, 2H), 4.10 (t, *J* = 6.7 Hz, 2H), 3.71 (s, 2H), 2.34 (d, *J* = 16.7 Hz, 9H), 1.69 (h, *J* = 7.1 Hz, 2H), 0.97 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 171.68, 137.02, 136.44, 128.91, 128.75, 66.34, 35.14, 22.03, 20.96, 20.28, 10.43.

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for $C_{14}H_{20}NaO_2^+$ 243.1356; Found 243.1368.

,0~ Ĭ

propyl 2-(4-ethylphenyl)acetate Light yellow liquid (55.6 mg, 54% yield). The product was purified by silica gel column chromatography, using petroleum ether /EA = 120/1 (v/v) as an eluent.

¹H NMR (400 MHz, CDCl₃) δ 7.26 – 7.19 (m, 4H), 4.09 (t, *J* = 6.7 Hz, 2H), 3.63 (s, 2H), 2.68 (q, *J* = 7.6 Hz, 2H), 1.69 (h, *J* = 7.2 Hz, 2H), 1.27 (t, *J* = 7.6 Hz, 3H), 0.96 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 171.97, 143.01, 131.38, 129.19, 128.07, 66.44, 41.06, 28.52, 21.98, 15.62, 10.39.

propyl 2-(4-isopropylphenyl)acetate Light yellow liquid (63.8 mg, 58% yield). The product was purified by silica gel column chromatography, using petroleum ether /EA = 120/1 (v/v) as an eluent.

¹H NMR (400 MHz, CDCl₃) δ 7.29 – 7.22 (m, 4H), 4.10 (t, *J* = 6.7 Hz, 2H), 3.64 (s, 2H), 2.93 (h, *J* = 6.9 Hz, 1H), 1.70 (h, *J* = 7.2 Hz, 2H), 1.29 (d, *J* = 7.0 Hz, 6H), 0.97 (t, *J* = 7.5 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 171.98, 147.61, 131.51, 129.19, 126.64, 66.44, 41.03, 33.80, 24.04, 21.99, 10.40.

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for $C_{14}H_{20}NaO_2^+$ 243.1356; Found 243.1351.

propyl 2-(4-(tert-butyl)phenyl)acetate Light yellow liquid (73.7 mg, 63% yield). The product was purified by silica gel column chromatography, using petroleum ether /EA = 120/1 (v/v) as an eluent.

¹H NMR (400 MHz, CDCl₃) δ 7.41 – 7.27 (m, 4H), 4.11 (t, *J* = 6.7 Hz, 2H), 3.65 (s, 2H), 1.70 (h, *J* = 7.1 Hz, 2H), 1.37 (s, 9H), 0.97 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 171.96, 149.86, 131.16, 128.93, 125.51, 66.44, 40.92, 34.49, 31.39, 21.99, 10.41.

HRMS (ESI) m/z: $[M + Li]^+$ Calcd for $C_{15}H_{22}LiO_2^+$ 241.1774; Found 241.1792.

propyl 2-(2-fluorophenyl)acetate Light yellow liquid (51.0 mg, 52% yield). The product was purified by silica gel column chromatography, using petroleum ether /EA = 120/1 (v/v) as an eluent.

¹H NMR (400 MHz, CDCl₃) δ 7.32 – 7.26 (m, 2H), 7.16 – 7.07 (m, 2H), 4.11 (t, *J* = 6.7 Hz, 2H), 3.71 (d, *J* = 1.2 Hz, 2H), 1.68 (hept, *J* = 6.9 Hz, 2H), 0.94 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 170.85, 161.08 (d, J = 246.4 Hz), 131.45 (d, J = 4.0 Hz), 129.02 (d, J = 8.1 Hz), 124.10 (d, J = 3.7 Hz), 121.56 (d, J = 15.8 Hz), 115.36 (d, J = 21.7 Hz), 66.65, 34.59 (d, J = 3.2 Hz), 21.93, 10.31.

¹⁹F NMR (377 MHz, CDCl₃) δ -117.27.

HRMS (ESI) m/z: $[M + NH_4]^+$ Calcd for $C_{11}H_{17}FNO_2^+$ 214.1238; Found 214.1246.

propyl 2-(3-fluorophenyl)acetate Light yellow liquid (49.0 mg, 50% yield). The product was purified by silica gel column chromatography, using petroleum ether /EA = 120/1 (v/v) as an eluent.

¹H NMR (400 MHz, CDCl₃) δ 7.34 – 7.29 (m, 1H), 7.10 – 6.97 (m, 3H), 4.09 (t, *J* = 6.7 Hz, 2H), 3.65 (s, 2H), 1.68 (h, *J* = 7.2 Hz, 2H), 0.94 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 171.13, 162.79 (d, J = 245.8 Hz), 136.44 (d, J = 7.9 Hz), 129.96 (d, J = 8.4 Hz), 124.99 (d, J = 2.9 Hz), 116.31 (d, J = 21.8 Hz), 114.04 (d, J = 21.0 Hz), 66.67, 41.09 (d, J = 1.8 Hz), 21.93, 10.34.

¹⁹F NMR (377 MHz, CDCl₃) δ -113.25.

HRMS (ESI) m/z: $[M + K]^+$ Calcd for $C_{11}H_{13}FKO_2^+$ 235.0531; Found 235.0529.

propyl 2-(4-fluorophenyl)acetate Light yellow liquid (43.1 mg, 44% yield). The product was purified by silica gel column chromatography, using petroleum ether /EA = 1200/1 (v/v) as an eluent.

¹H NMR (400 MHz, CDCl₃) δ 7.30 – 7.28 (m, 2H), 7.06 – 7.02 (m, 2H), 4.08 (t, *J* = 6.7 Hz, 2H), 3.62 (s, 2H), 1.67 (dtd, *J* = 14.1, 7.4, 6.7 Hz, 2H), 0.94 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 171.60, 161.98 (d, J = 245.2 Hz), 130.83 (d, J = 8.0 Hz), 129.89 (d, J = 3.3 Hz), 115.39 (d, J = 21.3 Hz), 66.57, 40.56, 21.94, 10.36.

¹⁹F NMR (377 MHz, CDCl₃) δ -115.85.

HRMS (ESI) m/z: [M + K] + Calcd for C₁₁H₁₃FKO₂+ 235.0531; Found 235.0545.

propyl 2-(3,5-difluorophenyl)acetate Light yellow liquid (73.8 mg, 69% yield). The product was purified by silica gel column chromatography, using petroleum ether /EA = 120/1 (v/v) as an eluent.

¹H NMR (400 MHz, CDCl₃) δ 6.88 – 6.83 (m, 2H), 6.75 (tt, *J* = 9.0, 2.4 Hz, 1H), 4.10 (t, *J* = 6.7 Hz, 2H), 3.63 (s, 2H), 1.68 (h, *J* = 7.2 Hz, 2H), 0.95 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 170.47, 162.92 (dd, *J* = 248.3, 12.9 Hz), 137.60 (t, *J* = 9.7 Hz), 112.54 – 112.02 (m), 102.66 (t, *J* = 25.2 Hz), 66.84, 40.95 (t, *J* = 2.0 Hz), 21.90, 10.32.

¹⁹F NMR (377 MHz, CDCl₃) δ -110.02.

HRMS (ESI) m/z: $[M + H]^+$ Calcd for $C_{11}H_{13}F_2O_2^+$ 215.0878; Found 215.0881.

propyl 2-(3-fluoro-4-methoxyphenyl)acetate Light yellow liquid (58.8 mg, 52% yield). The product was purified by silica gel column chromatography, using petroleum ether /EA = 120/1 (v/v) as an eluent.

¹H NMR (400 MHz, CDCl₃) δ 7.08 – 6.90 (m, 3H), 4.07 (t, *J* = 6.7 Hz, 2H), 3.89 (s, 3H), 3.56 (s, 2H), 1.67 (h, *J* = 7.2 Hz, 2H), 0.94 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 171.49, 152.13 (d, *J* = 245.5 Hz), 146.68 (d, *J* = 10.6 Hz), 127.00 (d, *J* = 6.7 Hz), 125.00 (d, *J* = 3.6 Hz), 117.05 (d, *J* = 18.7 Hz), 113.29 (d, *J* = 2.2 Hz), 66.57, 56.23, 40.36 (d, *J* = 1.4 Hz), 21.93, 10.35.

¹⁹F NMR (377 MHz, CDCl₃) δ -135.26.

HRMS (ESI) m/z: [M + NH₄] + Calcd for C₁₂H₁₉FNO₃+ 244.1344; Found 244.1354.

propyl 2-(3-chlorophenyl)acetate Light yellow liquid (78.4 mg, 74% yield). The product was purified by silica gel column chromatography, using petroleum ether /EA = 120/1 (v/v) as an eluent.

¹H NMR (400 MHz, CDCl₃) δ 7.34 – 7.26 (m, 3H), 7.20 (ddd, *J* = 5.5, 3.5, 1.6 Hz, 1H), 4.09 (t, *J* = 6.7 Hz, 2H), 3.62 (s, 2H), 1.68 (dtd, *J* = 14.1, 7.4, 6.6 Hz, 2H), 0.95 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 171.05, 136.03, 134.27, 129.76, 129.46, 127.51, 127.29, 66.69, 40.99, 21.93, 10.35.

propyl 2-(4-(trifluoromethyl)phenyl)acetate Light yellow liquid (45.5 mg, 37% yield). The product was purified by silica gel column chromatography, using petroleum ether /EA = 120/1 (v/v) as an eluent.

¹H NMR (400 MHz, CDCl₃) δ 7.62 (d, *J* = 8.0 Hz, 2H), 7.44 (d, *J* = 7.9 Hz, 2H), 4.10 (t, *J* = 6.7 Hz, 2H), 3.72 (s, 2H), 1.68 (h, *J* = 7.1 Hz, 2H), 0.95 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 170.89, 138.13, 129.69, 129.41 (q, *J* = 32.5 Hz), 125.47 (q, *J* = 3.8 Hz), 121.45 (d, *J* = 271.9 Hz), 66.78, 41.16, 21.91, 10.33.

¹⁹F NMR (377 MHz, CDCl₃) δ -62.53.

HRMS (ESI) m/z: [M + Li] + Calcd for C₁₂H₁₃F₃LiO₂+ 253.1022; Found 253.1047.

methyl 4-(2-oxo-2-propoxyethyl)benzoate Light yellow liquid (56.4 mg, 48% yield). The product was purified by silica gel column chromatography, using petroleum ether /EA = 120/1 (v/v) as an eluent.

¹H NMR (400 MHz, CDCl₃) δ 8.02 (d, *J* = 8.3 Hz, 2H), 7.39 (d, *J* = 8.3 Hz, 2H), 4.08 (t, *J* = 6.7 Hz, 2H), 3.93 (s, 3H), 3.70 (s, 2H), 1.71 – 1.60 (m, 2H), 0.92 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 170.94, 166.89, 139.34, 129.83, 129.36, 128.96, 66.70, 52.12, 41.41, 21.91, 10.34.

HRMS (ESI) m/z: $[M + H]^+$ Calcd for $C_{13}H_{17}O_4^+$ 237.1121; Found 237.1121.

propyl 2-(4-cyanophenyl)acetate Light yellow liquid (42.6 mg, 42% yield). The product was purified by silica gel column chromatography, using petroleum ether /EA = 120/1 (v/v) as an eluent.

¹H NMR (400 MHz, CDCl₃) δ 7.61 (d, *J* = 8.1 Hz, 2H), 7.41 (d, *J* = 8.1 Hz, 2H), 4.06 (t, *J* = 6.7 Hz, 2H), 3.69 (s, 2H), 1.64 (h, *J* = 7.1 Hz, 2H), 0.90 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 170.41, 139.54, 132.28, 130.20, 118.74, 111.03, 66.85, 41.30, 21.88, 10.33.

HRMS (ESI) m/z: $[M + H]^+$ Calcd for $C_{12}H_{14}NO_2^+$ 240.1019; Found 240.1023.

propyl 2-(4-methoxyphenyl)acetate^[2] Light yellow liquid (55.1 mg, 53% yield). The product was purified by silica gel column chromatography, using petroleum ether /EA = 120/1 (v/v) as an eluent.

¹H NMR (400 MHz, CDCl₃) δ 7.24 (d, *J* = 8.4 Hz, 2H), 6.90 (d, *J* = 8.6 Hz, 2H), 4.08 (t, *J* = 6.7 Hz, 2H), 3.82 (s, 3H), 3.59 (s, 2H), 1.67 (h, *J* = 7.2 Hz, 2H), 0.95 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 172.08, 158.63, 130.29, 126.28, 113.95, 66.41, 55.25, 40.55, 21.97, 10.40.

propyl 2-(3,4-dimethoxyphenyl)acetate Light yellow liquid (70.2 mg, 59% yield). The product was purified by silica gel column chromatography, using petroleum ether /EA = 120/1 (v/v) as an eluent.

¹H NMR (400 MHz, CDCl₃) δ 6.83 (d, *J* = 5.3 Hz, 3H), 4.06 (t, *J* = 6.7 Hz, 2H), 3.87 (d, *J* = 6.4 Hz, 6H), 3.56 (s, 2H), 1.65 (h, *J* = 7.2 Hz, 2H), 0.92 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 171.93, 148.82, 148.04, 126.64, 121.37, 112.29, 111.09, 66.42, 55.85, 55.80, 40.97, 21.95, 10.38.

HRMS (ESI) m/z: $[M + Li]^+$ Calcd for $C_{13}H_{18}LiO_4^+$ 245.1360; Found 245.1356.

propyl 2-(4-acetoxyphenyl)acetate Light yellow liquid (61.4 mg, 52% yield). The product was purified by silica gel column chromatography, using petroleum ether /EA = 120/1 (v/v) as an eluent.

¹H NMR (400 MHz, CDCl₃) δ 7.33 (d, J = 8.2 Hz, 2H), 7.07 (d, J = 8.3 Hz, 2H), 4.08 (dd, J = 7.2, 6.2 Hz, 2H), 3.64 (s, 2H), 2.32 (d, J = 1.0 Hz, 3H), 1.67 (h, J = 7.1 Hz, 2H), 0.96 – 0.92 (m, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 171.46, 169.54, 149.69, 131.76, 130.32, 121.65, 66.57, 40.80, 21.93, 21.16, 10.37.

HRMS (ESI) m/z: $[M + H]^+$ Calcd for $C_{13}H_{17}O_4^+$ 237.1121; Found 237.1131.

propyl 2-([1,1'-biphenyl]-4-yl)acetate Light yellow liquid (90.2 mg, 71% yield). The product was purified by silica gel column chromatography, using petroleum ether /EA = 120/1 (v/v) as an eluent.

¹H NMR (400 MHz, CDCl₃) δ 7.66 – 7.61 (m, 4H), 7.50 (dd, *J* = 8.4, 6.9 Hz, 2H), 7.42 (dd, *J* = 8.5, 6.8 Hz, 3H), 4.14 (t, *J* = 6.7 Hz, 2H), 3.73 (s, 2H), 1.72 (h, *J* = 7.1 Hz, 2H), 0.99 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 171.77, 140.84, 140.03, 133.26, 129.74, 128.82, 127.35, 127.31, 127.12, 66.60, 41.11, 22.02, 10.45.

HRMS (ESI) m/z: [M + Na] + Calcd for C₁₇H₁₈NaO₂+ 277.1199; Found 277.1182.

propyl 2-(3-(phenylthio)phenyl)acetate Light yellow liquid (85.8 mg, 60% yield). The product was purified by silica gel column chromatography, using petroleum ether /EA = 120/1 (v/v) as an eluent.

¹H NMR (400 MHz, CDCl₃) δ 7.38 – 7.26(m, 9H), 4.10 (t, *J* = 6.7 Hz, 2H), 3.64 (s, 2H), 1.73 – 1.64 (m, 2H), 0.95 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 171.45, 135.83, 134.37, 133.24, 131.33, 130.91, 130.18, 129.22, 127.04, 66.61, 40.99, 21.96, 10.40.

HRMS (ESI) m/z: [M + Li] + Calcd for C₁₇H₁₈LiO₂S⁺ 293.1182; Found 293.1186.

propyl 2-(3-phenoxyphenyl)acetate Light yellow liquid (82.4 mg, 61% yield). The product was purified by silica gel column chromatography, using petroleum ether /EA = 120/1 (v/v) as an eluent.

¹H NMR (400 MHz, CDCl₃) δ 7.41 – 7.13 (m, 4H), 7.09 – 6.95 (m, 5H), 4.10 (t, *J* = 6.7 Hz, 2H), 3.64 (s, 2H), 1.68 (h, *J* = 7.1 Hz, 2H), 0.96 (t, *J* = 7.5 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 171.36, 157.43, 157.07, 136.08, 129.82, 129.80, 124.15, 123.37, 119.74, 119.04, 117.45, 66.56, 41.31, 21.98, 10.42.

HRMS (ESI) m/z: $[M + K]^+$ Calcd for $C_{17}H_{18}KO_3^+$ 309.0888; Found 309.0890.

propyl 2-(4-(trifluoromethoxy)phenyl)acetate Light yellow liquid (65.5 mg, 50% yield). The product was purified by silica gel column chromatography, using petroleum ether /EA = 120/1 (v/v) as an eluent.

¹H NMR (400 MHz, CDCl₃) δ 7.36 – 7.33 (m, 2H), 7.22 – 7.19 (m, 2H), 4.09 (td, *J* = 6.7, 3.8 Hz, 2H), 3.66 (s, 2H), 1.72 – 1.63 (m, 2H), 0.94 (td, *J* = 7.4, 2.0 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 171.25, 132.89, 130.68, 129.26, 128.54, 121.07, 66.67, 40.63, 21.92, 10.31.

¹⁹F NMR (377 MHz, CDCl₃) δ -57.92.

HRMS (ESI) m/z: $[M + Li]^+$ Calcd for $C_{12}H_{13}F_3LiO_3^+$ 269.0971; Found 269.0990.

propyl 2-(4-(methylthio)phenyl)acetate Light yellow solid (67.2 mg, 60% yield). The product was purified by silica gel column chromatography, using petroleum ether /EA = 120/1 (v/v) as an eluent.

¹H NMR (400 MHz, CDCl₃) δ 7.24 (s, 4H), 4.08 (t, *J* = 6.7 Hz, 2H), 3.61 (s, 2H), 2.50 (s, 3H), 1.67 (dtd, *J* = 14.1, 7.4, 6.6 Hz, 2H), 0.94 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 136.77, 130.69, 129.41, 126.51, 126.50, 66.19, 40.55, 21.62, 15.63, 10.44. HRMS (ESI) m/z: [M + H] + Calcd for C₁₂H₁₇O₂S⁺ 225.0944; Found 225.0934.

propyl 2-(thiophen-2-yl)acetate Light yellow liquid (50.6 mg, 55% yield). The product was puripropyl 2-(thiophen-2-yl)acetatefied by silica gel column chromatography, using petroleum ether /EA = 120/1 (v/v) as an eluent.

¹H NMR (400 MHz, CDCl₃) δ 7.33 – 7.29 (m, 1H), 7.19 – 7.18 (m, 1H), 7.08 (dd, *J* = 4.9, 1.3 Hz, 1H), 4.10 (td, *J* = 6.7, 1.1 Hz, 2H), 3.69 (s, 2H), 1.69 (h, *J* = 7.1, 6.7 Hz, 2H), 0.96 (td, *J* = 7.5, 1.1 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 171.27, 133.77, 128.52, 125.69, 122.80, 66.54, 35.95, 21.97, 10.39.

HRMS (ESI) m/z: [M + Na] + Calcd for C₉H₁₂NaO₂S⁺ 207.0450; Found 207.0455.

$$\operatorname{sp}^{\circ}$$

propyl 2-(benzo[d][1,3]dioxol-5-yl)acetate Light yellow liquid (48.8 mg, 44% yield). The product was purified by silica gel column chromatography, using petroleum ether /EA = 120/1 (v/v) as an eluent.

¹H NMR (400 MHz, CDCl₃) δ 6.82 – 6.74 (m, 3H), 5.97 (s, 2H), 4.07 (t, *J* = 6.7 Hz, 2H), 3.55 (s, 2H), 1.67 (h, *J* = 7.2 Hz, 2H), 0.95 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 171.83, 147.72, 146.64, 127.76, 122.39, 109.73, 108.27, 101.02, 66.50, 41.04, 21.95, 10.38.

HRMS (ESI) m/z: [M + H] + Calcd for C₁₂H₁₅O₄+ 223.0965; Found 223.0950.

dipropyl 2,2'-(1,4-phenylene)diacetate White solid (44.48 mg, 32% yield). The product was purified by silica gel column chromatography, using petroleum ether /EA = 120/1 (v/v) as an eluent.

¹H NMR (400 MHz, CDCl₃) δ 7.27 (s, 4H), 4.08 (t, *J* = 6.7 Hz, 4H), 3.63 (s, 4H), 1.67 (dtd, *J* = 14.1, 7.4, 6.7 Hz, 4H), 0.94 (t, *J* = 7.4 Hz, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 171.61, 132.97, 129.42, 66.47, 41.08, 21.95, 10.34.

HRMS (ESI) m/z: $[M + H]^+$ Calcd for $C_{16}H_{23}O_4^+$ 279.1591; Found 279.1589.

propyl (E)-4-phenylbut-3-enoate Light yellow liquid (71.4 mg, 70% yield, E/Z=13:1). The product was purified by silica gel column chromatography, using petroleum ether /EA = 120/1 (v/v) as an eluent.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.42 – 7.18 (m, 5H), 6.54 (dt, *J* = 15.9, 1.5 Hz, 1H), 6.35 (dt, *J* = 15.8, 7.1 Hz, 1H), 4.13 (dt, *J* = 10.1, 6.7 Hz, 2H), 3.29 (dd, *J* = 7.1, 1.4 Hz, 1.5H), 1.79 (d, *J* = 7.2 Hz, 0.5H), 1.76 – 1.66 (m, 2H), 0.97 (dt, *J* = 19.6, 7.4 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ¹³C NMR (101 MHz, CDCl₃) δ 171.68 (major), 167.24 (minor), 139.64 (major), 136.92 (major), 135.21 (minor), 135.05 (minor), 133.35 (major), 129.80 (minor), 128.54 (major), 127.92 (minor), 127.53 (major), 127.30 (minor), 126.29 (major), 121.92 (minor), 66.41 (major), 66.34 (minor), 38.48, 22.03 (minor), 21.99 (major), 10.46 (minor), 10.39 (major).

propyl 2-(p-tolyl)propanoate Light yellow liquid (62.8 mg, 61% yield). The product was purified by silica gel column chromatography, using petroleum ether /EA = 120/1 (v/v) as an eluent.

¹H NMR (400 MHz, CDCl₃) δ 7.29 – 7.17 (m, 4H), 4.07 (td, *J* = 6.7, 2.2 Hz, 2H), 3.74 (q, *J* = 7.2 Hz, 1H), 2.37 (s, 3H), 1.65 (dtd, *J* = 14.1, 7.4, 6.6 Hz, 2H), 1.53 (d, *J* = 7.2 Hz, 3H), 0.91 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 174.83, 137.75, 136.66, 129.27, 127.36, 66.29, 45.21, 21.96, 21.08, 18.61, 10.34.

HRMS (ESI) m/z: $[M + Li]^+$ Calcd for $C_{13}H_{18}LiO_2^+$ 213.1461; Found 213.1466.

propyl 2-(2,3-dimethylphenyl)propanoate Light yellow liquid (69.3 mg, 63% yield). The product was purified by silica gel column chromatography, using petroleum ether /EA = 120/1 (v/v) as an eluent.

¹H NMR (400 MHz, CDCl₃) δ 7.17 – 7.08 (m, 3H), 4.07 (pd, *J* = 7.1, 6.5, 3.9 Hz, 3H), 2.32 (d, *J* = 15.8 Hz, 6H), 1.64 (h, *J* = 7.0 Hz, 2H), 1.51 (d, *J* = 7.1 Hz, 3H), 0.90 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 175.19, 139.23, 137.00, 134.26, 128.64, 125.75, 124.39, 66.30, 41.89, 21.95, 21.09, 18.10, 15.14, 10.33.

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for $C_{14}H_{20}NaO_2^+$ 243.1356; Found 243.1338.

propyl 2-phenylbutanoate Light yellow liquid (46.4 mg, 45% yield). The product was purified by silica gel column chromatography, using petroleum ether /EA = 120/1 (v/v) as an eluent.

¹H NMR (400 MHz, CDCl₃) δ 7.37 – 7.26 (m, 5H), 4.16 – 3.99 (m, 2H), 3.49 (t, *J* = 7.7 Hz, 1H), 2.20 – 2.08 (m, 1H), 1.84 (dt, *J* = 13.6, 7.4 Hz, 1H), 1.64 (h, *J* = 7.1 Hz, 2H), 0.95-0.88 (m, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 174.19, 139.29, 128.51, 127.97, 127.11, 66.23, 53.63, 26.71, 21.96, 12.23, 10.33.

HRMS (ESI) m/z: $[M + H]^+$ Calcd for $C_{13}H_{19}O_2^+$ 207.1380; Found 207.1385.

propyl 2-(2-fluorophenyl)propanoate Light yellow liquid (51.5 mg, 49% yield). The product was purified by silica gel column chromatography, using petroleum ether /EA = 120/1 (v/v) as an eluent.

¹H NMR (400 MHz, CDCl₃) δ 7.36 – 7.24 (m, 2H), 7.16 – 7.05 (m, 2H), 4.11 – 4.03 (m, 3H), 1.63 (h, *J* = 7.2 Hz, 2H), 1.54 (d, *J* = 7.2 Hz, 3H), 0.88 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 174.02, 160.37 (d, J = 245.9 Hz), 128.67 (d, J = 4.1 Hz), 128.58 (d, J = 8.4 Hz), 128.00 (d, J = 14.9 Hz), 124.24 (d, J = 3.6 Hz), 115.40 (d, J = 22.2 Hz), 66.51, 38.49 (d, J = 2.8 Hz), 21.91, 17.50, 10.26.

¹⁹F NMR (377 MHz, CDCl₃) δ -118.25.

propyl 2,2-bis(4-fluorophenyl)acetate Light yellow liquid (130.5 mg, 90% yield). The product was purified by silica gel column chromatography, using petroleum ether /EA = 120/1 (v/v) as an eluent.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.34 – 7.29 (m, 4H), 7.09 – 7.03 (m, 4H), 5.03 (s, 1H), 4.16 (t, *J* = 6.7 Hz, 2H), 1.69 (dtd, *J* = 14.1, 7.4, 6.7 Hz, 2H), 0.92 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 172.38, 162.05 (d, J = 246.2 Hz), 134.44 (d, J = 3.3 Hz), 130.13 (d, J = 8.0 Hz), 115.54 (d, J = 21.5 Hz), 67.00, 55.56, 21.91, 10.33.

¹⁹F NMR (377 MHz, CDCl₃) δ -115.16.

HRMS (ESI) m/z: $[M + NH_4]^+$ Calcd for $C_{17}H_{20}F_2NO_2^+$ 308.1457; Found 308.1440.

propyl 2,2-diphenylacetate Light yellow solid (95.3 mg, 75% yield). The product was purified by silica gel column chromatography, using petroleum ether /EA = 120/1 (v/v) as an eluent.

¹H NMR (400 MHz, CDCl₃) δ 7.44 – 7.29 (m, 10H), 5.13 (s, 1H), 4.20 (t, *J* = 6.7 Hz, 2H), 1.73 (h, *J* = 7.2 Hz, 2H), 0.96 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 172.63, 138.87, 128.68, 128.63, 127.28, 66.85, 57.27, 22.00, 10.42.

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for $C_{17}H_{18}NaO_2^+$ 277.1199; Found 277.1200.

propyl 2-phenylpropanoate^[3] Light yellow liquid (48.0 mg, 50% yield). The product was purified by silica gel column chromatography, using petroleum ether /EA = 120/1 (v/v) as an eluent.

¹H NMR (400 MHz, CDCl₃) δ 7.38 – 7.27 (m, 5H), 4.06 (t, *J* = 6.7 Hz, 2H), 3.76 (q, *J* = 7.2 Hz, 1H), 1.68 – 1.59 (m, 2H), 1.54 (d, *J* = 7.2 Hz, 3H), 0.89 (t, *J* = 7.4 Hz, 3H).

 $^{13}\text{C NMR} (101 \text{ MHz}, \text{CDCl}_3) \\ \delta 174.66, 140.71, 128.58, 127.50, 127.07, 66.34, 45.61, 21.94, 18.54, 10.31.$

isopropyl 2,2-diphenylacetate^[4] Light yellow solid (90.2 mg, 71% yield). The product was purified by silica gel column chromatography, using petroleum ether /EA = 120/1 (v/v) as an eluent.

¹H NMR (400 MHz, CDCl₃) δ 7.40 – 7.29 (m, 10H), 5.15 (hept, J = 6.3 Hz, 1H), 5.05 (s, 1H), 1.29 (d, J = 6.3 Hz, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 172.04, 138.93, 128.64, 128.58, 127.19, 68.66, 57.32, 21.73.

propyl 2-(naphthalen-2-yl)propanoate Light yellow liquid (75.0 mg, 62% yield). The product was purified by silica gel column chromatography, using petroleum ether /EA = 120/1 (v/v) as an eluent.

¹H NMR (400 MHz, CDCl₃) δ 7.88 – 7.81 (m, 4H), 7.55 – 7.48 (m, 3H), 4.10 (td, *J* = 6.7, 2.0 Hz, 2H), 3.95 (q, *J* = 7.1 Hz, 1H), 1.69-1.61 (m, 5H), 0.90 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 174.65, 138.19, 133.48, 132.58, 128.28, 127.83, 127.65, 126.15, 126.14, 125.83, 125.79, 66.45, 45.77, 21.97, 18.60, 10.36.

propyl 2-(o-tolyl)propanoate Light yellow liquid (57.7 mg, 56% yield). The product was purified by silica gel column chromatography, using petroleum ether /EA = 120/1 (v/v) as an eluent.

¹H NMR (400 MHz, CDCl₃) δ 7.33 – 7.16 (m, 4H), 4.09 – 3.95 (m, 3H), 2.42 (s, 3H), 1.62 (ddd, *J* = 14.2, 7.5, 6.8 Hz, 2H), 1.52 (d, *J* = 7.2 Hz, 3H), 0.89 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 174.95, 139.26, 135.71, 130.43, 126.87, 126.48, 126.38, 66.30, 41.36, 21.94, 19.67, 17.87, 10.31.

propyl 2-(4-chlorophenyl)-2-phenylacetate Light yellow liquid (111.7 mg, 98% yield). The product was purified by silica gel column chromatography, using petroleum ether /EA = 120/1 (v/v) as an eluent.

¹H NMR (400 MHz, CDCl₃) δ 7.42 – 7.32 (m, 9H), 5.07 (s, 1H), 4.19 (t, *J* = 6.7 Hz, 2H), 1.71 (h, *J* = 7.2 Hz, 2H), 0.95 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 172.26, 138.42, 137.38, 133.21, 130.10, 128.76, 128.75, 128.52, 127.48, 66.99, 56.55, 21.97, 10.40.

HRMS (ESI) m/z: [M + Na] + Calcd for C₁₇H₁₇ClNaO₂+ 311.0809; Found 311.0828.

pentyl 2-(3-methoxyphenyl)acetate Light yellow liquid (74.3 mg, 63% yield). The product was purified by silica gel column chromatography, using petroleum ether /EA = 120/1 (v/v) as an eluent.

¹H NMR (400 MHz, CDCl₃) δ 7.29 – 7.25 (m, 1H), 6.92 – 6.83 (m, 3H), 4.12 (t, *J* = 6.7 Hz, 2H), 3.83 (s, 3H), 3.62 (s, 2H), 1.79 – 1.62 (m, 2H), 1.33 (tt, *J* = 4.8, 3.5 Hz, 4H), 0.94 – 0.90 (m, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 171.61, 159.67, 135.62, 129.51, 121.62, 114.82, 112.63, 65.08, 55.19, 41.54, 28.27, 28.03, 22.32, 13.99.

HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₁₄H₂₀NaO₃⁺ 259.1305; Found 259.1291.

hexyl 2-(3-methoxyphenyl)acetate Light yellow liquid (76.3 mg, 61% yield). The product was purified by silica gel column chromatography, using petroleum ether /EA = 120/1 (v/v) as an eluent.

¹H NMR (400 MHz, CDCl₃) δ 7.29 – 7.25 (m, 1H), 6.92 – 6.83 (m, 3H), 4.12 (t, *J* = 6.7 Hz, 2H), 3.83 (s, 3H), 3.62 (s, 2H), 1.68 – 1.61 (m, 2H), 1.38 – 1.27 (m, 6H), 0.93 – 0.90 (m, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 171.61, 159.67, 135.62, 129.51, 121.61, 114.83, 112.62, 65.09, 55.17, 41.54, 31.41, 28.54, 25.54, 22.56, 14.02.

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for $C_{15}H_{22}NaO_3^+$ 273.1461; Found 273.1446.

isopropyl 2-(3-methoxyphenyl)acetate Light yellow liquid (63.4 mg, 61% yield). The product was purified by silica gel column chromatography, using petroleum ether /EA = 120/1 (v/v) as an eluent.

¹H NMR (400 MHz, CDCl₃) δ 7.27 (t, *J* = 7.8 Hz, 1H), 6.91 – 6.83 (m, 3H), 5.05 (hept, *J* = 6.3 Hz, 1H), 3.83 (s, 3H), 3.59 (s, 2H), 1.27 (d, *J* = 6.3 Hz, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 171.06, 159.65, 135.75, 129.49, 121.57, 114.75, 112.58, 68.24, 55.18, 41.77, 21.80.

HRMS (ESI) m/z: $[M + K]^+$ Calcd for $C_{12}H_{16}KO_3^+$ 247.0731; Found 247.0738.

isobutyl 2-(3-methoxyphenyl)acetate Light yellow liquid (71.0 mg, 64% yield). The product was purified by silica gel column chromatography, using petroleum ether /EA = 120/1 (v/v) as an eluent.

¹H NMR (400 MHz, CDCl₃) δ 7.29 – 7.25 (m, 1H), 6.92 – 6.83 (m, 3H), 3.91 (d, *J* = 6.7 Hz, 2H), 3.83 (s, 3H), 3.64 (s, 2H), 1.95 (dp, *J* = 13.4, 6.7 Hz, 1H), 0.93 (d, *J* = 6.8 Hz, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 171.57, 159.67, 135.63, 129.51, 121.65, 114.81, 112.66, 70.98, 55.19, 41.56, 27.72, 19.06.

HRMS (ESI) m/z: $[M + Li]^+$ Calcd for $C_{13}H_{18}LiO_3^+$ 229.1411; Found 229.1419.

2-chloroethyl 2,2-diphenylacetate Light yellow liquid (69.9 mg, 51% yield). The product was purified by silica gel column chromatography, using petroleum ether /EA = 120/1 (v/v) as an eluent.

¹H NMR (400 MHz, CDCl₃) δ 7.42 – 7.31 (m, 10H), 5.15 (s, 1H), 4.45 (dd, *J* = 6.3, 5.3 Hz, 2H), 3.71 (dd, *J* = 6.3, 5.2 Hz, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 172.19, 138.35, 128.70, 128.65, 127.44, 64.68, 56.95, 41.40.

isobutyl 2,2-diphenylacetate Light yellow liquid(109.9 mg, 82% yield). The product was purified by silica gel column chromatography, using petroleum ether /EA = 120/1 (v/v) as an eluent.

¹H NMR (400 MHz, CDCl₃) δ 7.40 – 7.29 (m, 10H), 5.11 (s, 1H), 4.00 (d, *J* = 6.6 Hz, 2H), 1.98 (dp, *J* = 13.4, 6.7 Hz, 1H), 0.92 (d, *J* = 6.7 Hz, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 172.58, 138.83, 128.68, 128.59, 127.25, 71.29, 57.32, 27.75, 19.07. HRMS (ESI) m/z: [M + K] ⁺ Calcd for C₁₈H₂₀KO₂⁺ 307.1095; Found 307.1090.

1,1-diphenyloctan-2-one Light yellow liquid (61.6 mg, 44% yield). The product was purified by silica gel column chromatography, using petroleum ether /EA = 120/1 (v/v) as an eluent.

¹H NMR (400 MHz, CDCl₃) δ 7.39 – 7.35 (m, 4H), 7.32 – 7.27 (m, 6H), 5.18 (s, 1H), 2.59 (t, *J* = 7.4 Hz, 2H), 1.67 – 1.60 (m, 2H), 1.34 – 1.25 (m, 6H), 0.90 (t, *J* = 6.8 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 208.82, 138.53, 128.99, 128.69, 127.19, 64.14, 42.98, 31.58, 28.77, 23.98, 22.51, 14.08.

HRMS (ESI) m/z: $[M + H]^+$ Calcd for $C_{20}H_{25}O^+$ 281.1900; Found 281.1905.

1,1-diphenylpentan-2-one Light yellow liquid (79.7 mg, 67% yield). The product was purified by silica gel column chromatography, using petroleum ether /EA = 120/1 (v/v) as an eluent.

¹H NMR (400 MHz, CDCl₃) δ 7.41 – 7.29 (m, 10H), 5.19 (s, 1H), 2.61 – 2.57 (m, 2H), 1.73 – 1.64 (m, 2H), 0.93 (td, J = 7.4, 1.0 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 208.68, 138.54, 129.00, 128.71, 127.21, 64.15, 44.88, 17.47, 13.69.

HRMS (ESI) m/z: $[M + H]^+$ Calcd for $C_{17}H_{19}O^+$ 239.1430; Found 239.1419.

1,1-diphenylpropan-2-one^[5] Light yellow liquid (66.2 mg, 63% yield). The product was purified by silica gel column chromatography, using petroleum ether /EA = 120/1 (v/v) as an eluent.

 1 H NMR (400 MHz, CDCl₃) δ 7.44 – 7.26 (m, 10H), 5.18 (s, 1H), 2.30 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 206.62, 138.32, 129.03, 128.78, 127.32, 65.08, 30.14.

2-isopropyl-5-methylphenyl 4-(2-oxo-2-propoxyethyl)benzoate White solid (139.8 mg, 79% yield). The product was purified by silica gel column chromatography, using petroleum ether /EA = 120/1 (v/v) as an eluent.

¹H NMR (400 MHz, CDCl₃) δ 8.03 (d, J = 8.3 Hz, 2H), 7.39 – 7.37 (m, 2H), 4.95 (td, J = 10.9, 4.4 Hz, 1H), 4.08 (t, J = 6.7 Hz, 2H), 3.70 (s, 2H), 2.14 (dtd, J = 12.0, 3.9, 1.7 Hz, 1H), 1.98 (pd, J = 7.0, 2.8 Hz, 1H), 1.78 – 1.54 (m, 6H), 1.14 (dtd, J = 15.4, 12.4, 9.7 Hz, 2H), 0.96 – 0.92 (m, 10H), 0.81 (d, J = 7.0 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 170.92, 165.83, 139.09, 129.81, 129.71, 129.27, 74.81, 66.66, 47.29, 41.40, 40.98, 34.34, 31.45, 26.52, 23.66, 22.05, 21.93, 20.77, 16.54, 10.33.

HRMS (ESI) m/z: $[M + Li]^+$ Calcd for $C_{22}H_{32}LiO_4^+$ 367.2455; Found 367.2468.

(E)-3,7-dimethylocta-2,6-dien-1-yl 4-(2-oxo-2-propoxyethyl)benzoate White solid (75.2 mg, 42% yield). The product was purified by silica gel column chromatography, using petroleum ether /EA = 120/1 (v/v) as an eluent.

¹H NMR (400 MHz, CDCl₃) δ 8.05 – 8.02 (m, 2H), 7.40 – 7.37 (m, 2H), 5.51 – 5.47 (m, 1H), 5.15 – 5.11 (m, 1H), 4.86 (d, *J* = 7.0 Hz, 2H), 4.09 (t, *J* = 6.7 Hz, 2H), 3.70 (s, 2H), 2.17 – 2.10 (m, 4H), 1.79 (d, *J* = 1.3 Hz, 3H), 1.71 (d, *J* = 1.4 Hz, 3H), 1.69 – 1.66 (m, 2H), 1.64 (d, *J* = 1.2 Hz, 3H), 0.93 (t, *J* = 7.5 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 170.93, 166.44, 142.38, 139.18, 131.85, 129.85, 129.38, 129.27, 123.75, 118.39, 66.68, 61.89, 41.46, 39.56, 26.32, 25.68, 21.92, 17.71, 16.57, 10.32, 1.04.

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for $C_{22}H_{30}NaO_4^+$ 381.2036; Found 381.2052.

(5R,9R,10R,13R,14R)-10,13-dimethyl-17-oxohexadecahydro-1H-cyclopenta[a]phenanthren-3-yl 4-(2-oxo-2-propoxyethyl)benzoate White solid (158 mg, 64% yield). The product was purified by silica gel column chromatography, using petroleum ether /EA = 120/1 (v/v) as an eluent. ¹H NMR (400 MHz, CDCl₃) δ 7.91 (d, J = 8.3 Hz, 2H), 7.28 (d, J = 8.2 Hz, 2H), 4.86 (tt, J = 11.4, 4.9 Hz, 1H), 3.98 (t, J = 6.7 Hz, 2H), 3.60 (s, 2H), 2.40 – 2.33 (m, 1H), 2.05 – 1.95 (m, 1H), 1.87 (ddd, J = 12.1, 8.7, 6.0 Hz, 2H), 1.77 – 1.66 (m, 4H), 1.65 – 1.50 (m, 5H), 1.49 – 1.37 (m, 3H), 1.31 – 1.18 (m, 7H), 0.81 – 0.78 (m, 10H).

¹³C NMR (101 MHz, CDCl₃) δ 221.41, 171.03, 165.96, 139.19, 129.86, 129.75, 129.33, 74.17, 66.75, 54.39, 51.43, 47.88, 44.78, 41.50, 36.82, 35.95, 35.79, 35.12, 34.12, 31.60, 30.90, 28.38, 27.60, 21.99, 21.87, 20.57, 13.91, 12.38, 10.43.

propyl 2-(4-isobutylphenyl)propanoate White solid (71.9 mg, 58% yield). The product was purified by silica gel column chromatography, using petroleum ether /EA = 120/1 (v/v) as an eluent.

¹H NMR (400 MHz, CDCl₃) δ 7.25 – 7.19 (m, 2H), 7.10 – 7.08 (m, 2H), 4.02 (t, *J* = 6.7 Hz, 2H), 3.69 (d, *J* = 7.2 Hz, 1H), 2.45 – 2.43 (m, 2H), 1.83 (dq, *J* = 13.6, 6.8 Hz, 1H), 1.59 (h, *J* = 7.4 Hz, 2H), 1.49 (d, *J* = 7.2 Hz, 3H), 0.90 – 0.82 (m, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 174.92, 140.52, 138.01, 129.35, 127.24, 66.30, 45.30, 45.13, 30.29, 22.46, 22.02, 18.57, 10.35.

HRMS (ESI) m/z: $[M + Li]^+$ Calcd for $C_{16}H_{24}LiO_2^+$ 255.1931; Found 255.1943.

NMR Spectra of Substrates and Products

S31

-6.927

¹H NMR

¹H NMR

S50

S51

¹H NMR

$\begin{array}{c} 7.359\\ 7.354\\ 7.354\\ 7.337\\ 7.337\\ 7.337\\ 7.337\\ 7.337\\ 7.337\\ 7.337\\ 7.337\\ 7.337\\ 7.212\\ 7.195\\ 7.$

¹H NMR

S57

9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 f1 (ppm)

S85

References

- [1] Fabian L, Gómez M, Caturelli Kuran J A, et al. Efficient microwave-assisted esterification reaction employing methanesulfonic acid supported on alumina as catalyst [J]. Synthetic Communications, 2014, 44(16): 2386-92.
- [2] Sadeghian H, Attaran N, Jafari Z, et al. Design and synthesis of 4-methoxyphenylacetic acid esters as 15-lipoxygenase inhibitors and SAR comparative studies of them [J]. Bioorganic & Medicinal Chemistry, 2009, 17(6): 2327-35.
- [3] Grabulosa A, Frew J J R, Fuentes J A, et al. Palladium complexes of bulky orthotrifluoromethylphenyl-substituted phosphines: Unusually regioselective catalysts for the hydroxycarbonylation and alkoxycarbonylation of alkenes [J]. Journal of Molecular Catalysis A: Chemical, 2010, 330(1-2): 18-25.
- [4] Mastitski A, Vellemäe E, Smorodina V, et al. Alcoholysis of primary amides in the presence of CF3SO3H [J]. Organic Preparations and Procedures International, 2023, 55(5): 458-68.
- [5] Umeda R, Muraki M, Nakamura Y, et al. Rhenium complex-catalyzed meinwald rearrangement reactions of oxiranes [J]. Tetrahedron Letters, 2017, 58(24): 2393-5.