Supplementary Information

Rational bottom-up synthesis of sulphur-rich porous carbons for single-atomic platinum catalyst supports

Koki Chida,^a Takeharu Yoshii,^{*,a} Ryo Kawaguchi,^a Masataka Inoue,^b Fumito Tani,^b Tatsuki Sobue,^c Shunsuke Ohtani,^c Kenichi Kato,^c Tomoki Ogoshi,^{*,c,d} Shoko Nakahata,^e Kazuhide Kamiya,^{*,e,f} Hirotomo Nishihara^{a,g}

^aInstitute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi, 980-8577, Japan.

^bInstitute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka, Nishiku, Fukuoka, 819-0395, Japan.

^cDepartment of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan.

^dWPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan.

^eResearch Center for Solar Energy Chemistry, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, 560-8531, Japan.

^fInnovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University Suita, Osaka, 565-0871, Japan.

^gAdvanced Institute for Materials Research (WPI-AIMR), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi, 980-8577, Japan.

*Corresponding authors: takeharu.yoshii.b3@tohoku.ac.jp; ogoshi@sbchem.kyoto-u.ac.jp; kamiya.kazuhide.es@osaka-u.ac.jp

Scheme S1 Synthetic procedure of (a) 1-ethynylpyrene (2) and (b) 1,3,6,8-tetraethynylpyrrene (3).

Scheme S2 Synthetic procedure of 2,5,8-tri(triethynyl)benzo[1,2-*b*:3,4-*b*:5,6-*b*"]trithiophene (**1S**).

.

Scheme S3 Temperature profile for heat treatment.

Fig. S1 TG-DSC profiles and the corresponding MS spectra of (a,b) 1, (c,d) 2, and (e,f) 3.

Fig. S2 Photos of (a) **2** and (b) **3** before and after heat treatment process at 900°C. SEM images of (c) **2**, (d) **2**_900, (e) **3**, and (f) **3**_900.

Fig. S3 PXRD patterns of (a) 2 and 2_{900} , and (b) 3 and 3_{900} .

Fig. S4 (a) TG-DSC profiles and (b) the corresponding MS spectra of 2S.

Fig. S5 PXRD patterns of of 1S, 1S_700, and 1S_900 samples.

Fig. S6 TEM images of (a, b) $1S_700$ and (c, d) $1S_900$.

Fig. S7 Pore-size distributions of **1S**_700 and **1S**_900 calculated from the NLDFT method.

Fig. S8 CO₂ (25 °C, blue circle) ethane (25°C, red circle), *n*-butane (25 °C, yellow circle), n-hexane (25 °C, green circle) and tetrachloromethane (25 °C, brown circle) adsorption/desorption isotherms of **1S**_900.

Fig. S9 Polarization curves of Pt-1S_900, Pt-3_900, and Pt/C under Ar flow.

Samples	I _D /I _G
2_ 900	0.92
3_ 900	1.0
1S_ 700	0.84
1S_ 900	0.98

Table S1 I_D/I_G ratio of carbonized **2**, **3** and **1S** samples.

Sample	C / wt %	S / wt %
1S_ 700	71.1	19.9
1S_ 900	84.4	15.6

 Table S2 Elemental analysis results of carbonized 1S samples.

sample	S _{BET} / m ² g ⁻¹	V _{total} α/ cm³ g ⁻¹
15	25	0.06
1S_ 700	714	0.31
1S_ 900	795	0.35
2	1	4.7×10 ⁻³
2_ 900	0	1.3×10 ⁻⁵
3	24	0.07
3_ 900	630	0.33

Table S3 Porous textures of carbonized 1S, 2 and 3 samples.

^{α} The total pore volume was calculated at *P/P*₀ = 0.96.

Entry	Temp. / °C	S content / wt%	S _{BET} / m ² g ⁻¹	Ref.
1	700	19.9	714	This work
2	900	15.6	796	This work
3	700	12.7	47	63
4	700	20.1	420	60
5	700	10.2	308	61
6	700	15.2	40	59
7	900	5.6	161	27
8	900	9.8	668	28
9	900	6.0	1189	62
10	900	2.9	1054	64
11	900	5.5	341	65
12	900	4.7	641	66
13	900	5.5	1292	67

Table S4 S contents and S_{BET} values of S-doped porous carbons reported in this work and previous works.

Sample	Pt content / wt %	
	before	after
Pt- 1S_ 900	0.68	0.75
Pt- 3_ 900	0.12	-
Pt/C	8.60	8.52

Table S5 Pt content determined from Pt 4f XPS analysis for each catalyst before and after the LSV measurement.