## **Supplementary Information**

## Efficient hydrodeoxygenation of lignin-derived phenolic compounds under acid-free conditions over carbon-supported NiMo catalysts

Shan Jiang<sup>a</sup>, Riyang Shu<sup>b\*</sup>, Anqi Wang<sup>a</sup>, Zhuoli Deng<sup>a</sup>, Yuhong Xiao<sup>a</sup>, Jiajin Li<sup>a</sup>,

Qingwei Meng<sup>a,c</sup>, Qian Zhang<sup>a,c\*</sup>

<sup>a</sup> School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China

<sup>b</sup> Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, PR China

<sup>c</sup> Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China

\*Corresponding author

E-mail address: shuriyang@gdut.edu.cn (Riyang Shu), zhangqian@gdut.edu.cn (Qian Zhang)



Fig. S1.  $N_2$  adsorption/desorption isotherms of the  $Ni_xMo_yN/C$  catalysts.



Fig. S2. SEM images of different Ni<sub>x</sub>Mo<sub>y</sub>N/C catalysts at large scale. (a) Ni<sub>1</sub>Mo<sub>1</sub>N/C
(b) Ni<sub>1</sub>Mo<sub>2</sub>N/C; (c) Ni<sub>1</sub>Mo<sub>3</sub>N/C; (d) Ni<sub>1</sub>Mo<sub>4</sub>N/C.



Fig. S3. SEM-based EDS elemental mappings for  $Ni_1Mo_1N/C$  catalyst.



Fig. S4. SEM-based EDS elemental mappings for  $Ni_1Mo_2N/C$  catalyst.



Fig. S5. SEM-based EDS elemental mappings for  $Ni_1Mo_3N/C$  catalyst.



Fig. S6. SEM-based EDS elemental mappings for  $Ni_1Mo_4N/C$  catalyst.



Fig. S7. XPS spectra of  $Ni_xMo_yN/C$  catalysts: survey spectra.



Fig. S8. EPR profiles of the different  $Ni_xMo_yN/C$  catalysts.



Fig. S9. Chromatogram of the raw lignin-oil before and after the HDO upgrading.