Supporting Information

Copper Catalyzed Direct C–H Double Methylation of Aromatic Aldehydes Employing Methanol as an Alkylating Agent

Sereena Sunny and Ramasamy Karvembu*

Department of Chemistry, National Institute of Technology, Tiruchirappalli-620015, India. E-mail: <u>kar@nitt.edu</u>

Table of Contents

1. General Information	S2
2. General Procedure A	S2
3. General Procedure B	S4
4. General Procedure C	S6
5. Mechanistic Studies	S8
6. ¹ H NMR and ¹³ C NMR Spectra of Methylated Products	S11
7. ¹ H NMR and ¹³ C NMR Spectra of Ethylated Products	S22
8. ¹ H NMR and ¹³ C NMR Spectra of Allylated Products	S29
9. ¹ H NMR Spectra of Deuterium Labelling Study	S36
10. HR-MS Spectra of the Products	\$37
11. Green Chemistry Metrics	S50

1. General Information

UV-Visible spectra were recorded on a Shimadzu UV2600 instrument. FT-IR spectra of the compounds were recorded as their KBr pellets (thin film) using a ThermoScientific Nicolet iS5 spectrometer. ¹H NMR (TMS as the internal standard) and ¹³C NMR spectra were recorded on a Bruker 500 MHz spectrometer. Chemical shifts (δ) are reported in ppm and coupling constants (J) are in Hertz (Hz). The following abbreviations were used to explain the multiplicities: s = singlet, d = doublet, dd = doublet of doublet, t = triplet, td = triplet of doublet, m = multiplet. Mass spectra were recorded on the Agilent Q-TOF HRMS instrument. Unless otherwise noted, all the reagents were obtained commercially and used without further purification. Hexane for silica gel column chromatography was distilled prior to use. Methanol was dried based on the standard procedure. XploSens PS[™] peroxides detection strip has been purchased from Sigma.

2. General Procedure A

A 10 ml round bottom flask was charged with CuSO₄·5H₂O (0.025 mmol, 5 mol %) in 1 ml methanol. The mixture was stirred for 30 min, then aldehyde (0.5 mmol) was added. Then the reaction mixture was stirred at room temperature for 24 h. Then the solvent was removed under reduced pressure and the crude reaction mixture was purified by silica gel column chromatography (Hexane/EtOAc = 995/5 to 85/15) to obtain the title compounds. Silica gel was neutralized with triethylamine before isolating 3ai.

2-(4-nitrophenyl)propan-2-ol (3aa)

Colourless oil (82 mg, 90 %); $R_f = 0.4$ (10 % EtOAc in hexane)

UV-Vis (MeOH): λ_{max} (nm): 264, 203. ¹H NMR (500 MHz, CDCl₃, ppm): δ 8.24 - 8.21 (m, 2H), 7.65 - 7.63 (m, 2H), 5.47 (s, 1H), 3.34 (s, 6H). ¹³C NMR (126 MHz, CDCl₃, ppm): δ 148.2, 145.2, 128, 123.6, 101.7, 52.9. FT-

IR (Thin film): v 3426, 1525, 1346 cm⁻¹. HR-MS (ESI-TOF): m/z Calcd. for [C₉H₁₁NO₃] 166.0504 ([M-CH₃]⁺); Found 166.0504.

2-(3-nitrophenyl)propan-2-ol (3ab)

Pale yellow oil (85 mg, 94 %); $R_f = 0.4$ (10 % EtOAc in hexane) OH

UV-Vis (MeOH), λ_{max} (nm): 260, 204. ¹H NMR (500 MHz, CDCl₃, ppm): δ 8.32 - 8.31 (m, 1H), 8.18 - 8.16 (m, 1H), 7.78 - 7.76 (m, 1H), 7.54 (t, J = 7.95 Hz, 1H), 5.46 (s, 1H), 3.33 (s, 6H). ¹³C NMR (126 MHz, CDCl₃, ppm): δ 148.3, 140.4, 132.9, 129.3, 123.4, 122.0, 101.5, 52.7. FT-IR (Thin film): v 3444, 1531, 1349 cm⁻¹. HRMS (ESI-TOF): m/z Calcd. for $[C_9H_{11}NO_3]$ 166.0504 ($[M-CH_3]^+$); Found: 166.0504.

2-(2-nitrophenyl)propan-2-ol (3ac)

Colourless oil (75 mg, 83 %); $R_f = 0.4$ (10 % EtOAc in Hexane)

1362 cm⁻¹. HRMS (ESI-TOF): m/z Calcd. for [C₉H₁₁NO₃] 166.0504 ([M-CH₃]⁺); Found: 166.0505.

(E)-2-methyl-4-(2-nitrophenyl)but-3-en-2-ol (3ad)

Colourless oil (75 mg, 72 %); $R_f = 0.3$ (10 % EtOAc in hexane).

UV-Vis (MeOH), λ_{max} (nm): 311, 234, 203. ¹H NMR (500 MHz, DMSO-*d*₆, ppm): δ 7.97 (dd, J = 8.2, J = 1.2 Hz, 1H), 7.82 (dd, J = 7.9, J = 1.3 Hz, 1H), 7.57 - 7.54 (m, 1H), 6.98 (d, J = 15.8 Hz, 1H), 6.28 (dd, J = 16, J = 4.8 Hz, 1H), 4.99 (dd, J = 4.8, J = 1.2 Hz, 1H) 2.5 (s, 6H). ¹³C NMR (126 MHz,

DMSO-*d*₆, ppm): δ 148.1, 133.7, 131.4, 130.8, 129.4, 128.8, 127.7, 124.5, 101.9, 52.6. FT-IR (Thin film): v 3449, 1525, 1347 cm⁻¹. HRMS (ESI-TOF): m/z Calcd. for [C₁₁H₁₃NO₃] 192.0661 ([M-CH₃]⁺); Found: 192.0661.

4-(2-hydroxypropan-2-yl)benzonitrile (3ae)

OH Colourless oil (62 mg, 76 %); $R_f = 0.4$ (10 % EtOAc in Hexane)

UV-Vis (MeOH), λ_{max} (nm): 269, 229, 202. ¹H NMR (500 MHz, DMSO-*d*₆, ppm): δ 7.84 - 7.82 (m, 2H), 7.57 - 7.55 (m, 2H), 5.45 (s, 1H), 3.25 (s, 6H) NC ¹³C NMR (126 MHz, DMSO-*d*₆, ppm): δ 143.8, 132.6, 128, 119.1, 111.7, 102.1, 53.2. FT-IR (Thin film): v 3421, 2229 cm⁻¹. HRMS (ESI-TOF): m/z Calcd. for [C₁₀H₁₁NO] 146.0606 ([M-CH₃]⁺); Found: 146.0607.

3-(2-hydroxypropan-2-yl)benzonitrile (3af

OH Colourless oil (65 mg, 80 %); $R_f = 0.4$ (10 % EtOAc in Hexane)

UV-Vis (MeOH), λ_{max} (nm): 272, 225. ¹H NMR (500 MHz, DMSO- d_6 , ppm): δ 7.84 - 7.82 (m, 1H), 7.78 (s, 1H), 7.72 (d, J = 7.85, 1H), 7.61 (t, J = 7.75, 1H), 5.45 (s, 1H), 3.27 (s, 6H) ¹³C NMR (126 MHz, DMSO-*d*₆, ppm): δ 140.2, 132.8, ĊN 131.9, 130.5, 130.0, 119.0, 111.7, 101.9, 53.2. FT-IR (Thin film): v 3380, 2230 cm⁻¹. HRMS (ESI-TOF): m/z Calcd. for [C₁₀H₁₁NO] 146.0606 ([M-CH₃]⁺); Found: 146.0603.

2-(2-chloro-5-nitrophenyl)propan-2-ol (3ag)

Yellow oil (74 mg, 68 %); $R_f = 0.5$ (10 % EtOAc in Hexane) ОН

 O_2N UV-Vis (MeOH), λ_{max} (nm): 270, 203. ¹H NMR (500 MHz, DMSO-*d*₆, ppm): δ 8.26 (d, J = 2.85, 1H), 8.21 (dd, J = 8.75, J = 2.85 Hz, 1H), 7.77 (d, J = 8.75 Hz, 1H), 5.61 (s, 1H), 3.34 (s, 6H). ¹³C NMR (126 MHz, DMSO- d_6 , ppm): δ 146.7, 139.4, 137.5, 131.7, 125.4, 123.1, 99.9, 54.2. FT-IR (Thin film): v 3449, 1526, 1348 cm⁻¹. HRMS (ESI-TOF): m/z Calcd. for [C₉H₁₀ClNO₃] 200.0114 ([M-CH₃]⁺); Found: 200.0111

2-(4-(methylthio)phenyl)propan-2-ol (3ai)

OH Colourless oil (71 mg, 78 %); $R_f = 0.5$ (10 % EtOAc in Hexane)

UV-Vis (MeOH), λ_{max} (nm): 258, 210. ¹H NMR (500 MHz, DMSO-*d*₆, ppm): δ 7.33 - 7.31 (m, 2H), 7.27 - 7.25 (m, 2H), 5.35 (s, 1H), 3.23 (s, 6H), 2.47 (s, 3H). ¹³C NMR (126 MHz, DMSO-*d*₆, ppm): δ 138.8, 135.2, 127.5, 125.8, 102.7, 52.8, 14.9. FT-IR (Thin film): v 3446 cm⁻¹. HRMS (ESI-TOF): m/z Calcd. for [C₁₀H₁₄OS] 167.0531 ([M-CH₃]⁺); Found: 167.0535.

2-(naphthalen-1-yl)propan-2-ol (3ak)

HO Pale yellow oil (56 mg, 60 %); $R_f = 0.7$ (10 % EtOAc in Hexane)

UV-Vis (MeOH), λ_{max} (nm): 280, 217. ¹H NMR (500 MHz, DMSO- d_6 , ppm): δ 8.26 - 8.24 (m, 1H), 7.96 - 7.92 (m, 2H), 7.67 - 7.66 (m, 1H), 7.57 - 7.50 (m, 3H), 5.92 (s, 1H), 3.31 (s, 6H). ¹³C NMR (126 MHz, DMSO- d_6 , ppm): δ 133.8, 133.7,

130.7, 129.4, 128.8, 126.5, 126.1, 125.3, 125.1, 124.8, 102.7, 53.6. FT-IR (Thin film): v 3444, cm⁻¹. HRMS (ESI-TOF): m/z Calcd. for $[C_{13}H_{14}O]$ 171.0810 ($[M-CH_3]^+$); Found: 171.0813.

2-(5-nitrofuran-2-yl)propan-2-ol (3al)

Yellow oil (46 mg, 54 %); $R_f = 0.3$ (10 % EtOAc in Hexane)

UV-Vis (MeOH), λ_{max} (nm): 305, 227, 200. ¹H NMR (500 MHz, DMSO*d*₆, ppm): δ 7.68 (d, *J* = 3.75, 1H), 6.86 - 6.85 (m, 1H), 5.59 (s, 1H), 3.33 (s, 6H). ¹³C NMR (126 MHz, DMSO-*d*₆, ppm): δ 154.3, 151.6, 113.4,

112.5, 96.7, 53.3. FT-IR (Thin film): v 3448, 1535, 1355 cm⁻¹. HRMS (ESI-TOF): m/z Calcd. for $[C_7H_9NO_4]$ 156.0297 ([M-CH₃]⁺); Found: 156.0296.

3-(2-hydroxypropan-2-yl)benzoic acid (3an)

OH White solid (59 mg, 65 %); $R_f = 0.4$ (25 % EtOAc in Hexane)

UV-Vis (MeOH), λ_{max} (nm): 255, 217. ¹H NMR (500 MHz, DMSO-*d*₆, ppm): δ 13.03 (bs, 1H), 7.99 (s, 1H), 7.94 - 7.93 (m, 1H), 7.62 (d, *J* = 7.65, 1H), 7.52 (t, *J* = 7.65, 1H), 5.46 (s, 1H), 3.26 (s, 6H). ¹³C NMR (126 MHz, DMSO-*d*₆, ppm): δ 167.6, 139.1, 131.4, 131.1, 129.7, 127.8, 102.5, 53.0. FT-IR (Thin film): v 3433,

1693 cm⁻¹. HRMS (ESI-TOF): m/z Calcd. for $[C_{10}H_{12}O_3]$ 165.0552 ($[M-CH_3]^+$); Found: 165.0556.

3. General Procedure B

A 10 ml round bottom flask was charged with $CuSO_4 \cdot 5H_2O$ (0.025 mmol, 5 mol %) in 1 ml ethanol. The mixture was stirred for 30 min, then aldehyde (0.5 mmol) was added. Then the reaction mixture was stirred at room temperature for 24 h. Then the solvent was removed under

reduced pressure and the crude reaction mixture was purified by silica gel column chromatography (Hexane/EtOAc = 995/5 to 99/1) to obtain the title compounds. Silica gel was neutralized with triethylamine before isolating **4af**.

3-(4-nitrophenyl)pentan-3-ol (4aa)

Colourless oil (93 mg, 89 %); $R_f = 0.5$ (10 % EtOAc in Hexane)

UV-Vis (MeOH), λ_{max} (nm): 265, 203. ¹H NMR (500 MHz, DMSO-*d*₆, ppm): δ 8.26 - 8.23 (m, 2H), 7.69 - 7.66 (m, 2H), 5.63 (s, 1H), 3.60 - 3.50 (m, 4H), 1.16 (t, *J* = 7.1 Hz, 6H). ¹³C NMR (126 MHz, DMSO-*d*₆, ppm): δ 147.9, 146.9, 128.4, 123.9, 100.3, 61.8, 15.7. FT-IR (Thin film): v 3427,

1524, 1346 cm⁻¹. HRMS (ESI-TOF): m/z Calcd. for $[C_{11}H_{15}NO_3]$ 180.0661 ($[M-CH_2CH_3]^+$); Found: 180.0658.

3-(3-nitrophenyl)pentan-3-ol (4ab)

Colourless oil (95 mg, 90 %); $R_f = 0.5$ (10 % EtOAc in Hexane)

UV-Vis (MeOH), λ_{max} (nm): 261, 203. ¹H NMR (500 MHz, DMSO-*d*₆, ppm): δ 8.22 - 8.20 (m, 2H), 7.86 - 7.84 (m, 1H), 7.71 - 7.68 (m, 1H), 5.65 (s, 1H), 3.61 - 3.50 (m, 4H), 1.16 (t, *J* = 7.05 Hz, 6H). ¹³C NMR (126 MHz, DMSO-*d*₆, 7.141 5, 133 1, 129 8, 123 2, 121 0, 99 6, 61 2, 15 1, ET-IR (Thin film): y 3447

ppm): δ 147.7, 141.5, 133.1, 129.8, 123.2, 121.0, 99.6, 61.2, 15.1. FT-IR (Thin film): v 3447, 1531, 1349 cm⁻¹. HRMS (ESI-TOF): m/z Calcd. for [C₁₁H₁₅NO₃] 180.0661 ([M-CH₂CH₃]⁺); Found: 180.0661.

3-(2-nitrophenyl)pentan-3-ol (4ac)

Pale yellow oil (45 mg, 43 %); $R_f = 0.55$ (10 % EtOAc in Hexane)

UV-Vis (MeOH), λ_{max} (nm): 252, 203. ¹H NMR (500 MHz, DMSO-*d*₆, ppm): δ 7.88 - 7.86 (m, 1H), 7.74 - 7.70 (m, 2H), 7.62 - 7.59 (m, 1H), 5.89 (s, 1H), 3.65 - 3.50 (m, 4H), 1.13 (t, *J* = 7.05 Hz, 6H). ¹³C NMR (126 MHz, DMSO-*d*₆,

ppm): δ 149.2, 133.1, 130.2, 128.1, 124.4, 98.2, 63.2, 15.4. FT-IR (Thin film): v 3448, 1532, 1361 cm⁻¹. HRMS (ESI-TOF): m/z Calcd. for [C₁₁H₁₅NO₃] 180.0661 ([M-CH₂CH₃]⁺); Found: 180.0660.

4-(3-hydroxypentan-3-yl)benzonitrile (4ad)

OH Colourless oil (57 mg, 60 %); $R_f = 0.5$ (10 % EtOAc in Hexane)

NC NC UV-Vis (MeOH), λ_{max} (nm): 271, 230, 201. ¹H NMR (500 MHz, DMSO *d*₆, ppm): δ 7.84 - 7.83 (m, 2H), 7.59 - 7.57 (m, 2H), 5.56 (s, 1H), 3.57 -3.46 (m, 4H), 1.14 (t, *J* = 7.05 Hz, 6H). ¹³C NMR (126 MHz, DMSO-*d*₆, ppm): δ 144.8, 132.5, 127.8, 119.0, 111.4, 100.3, 61.5, 15.4. FT-IR (Thin film): v 3420, 2229 cm⁻¹. HRMS (ESI-TOF): m/z Calcd. for [C₁₁H₁₅NO] 160.0762 ([M-CH₂CH₃]⁺); Found: 160.0763.

3-(2-chloro-5-nitrophenyl)pentan-3-ol (4ae)

Pale yellow oil (49 mg, 40 %); $R_f = 0.6$ (10 % EtOAc in Hexane)

UV-Vis (MeOH), λ_{max} (nm): 269, 204. ¹H NMR (500 MHz, DMSO-*d*₆, ppm): δ 8.30 - 8.29 (m, 1H), 8.23 - 8.21 (m, 1H), 7.78 - 7.77 (m, 1H), 5.72 (s, 1H), 3.70 - 3.56 (m, 4H), 1.16 (t, *J* = 7.05 Hz, 6H). ¹³C NMR (126 MHz, DMSO-*d*₆, ppm): δ 146.8, 139.4, 138.6, 131.7, 125.3, 122.9, 98.2,

62.7, 15.5. FT-IR (Thin film): v 3446, 1528, 1347 cm⁻¹. HRMS (ESI-TOF): m/z Calcd. for $[C_{11}H_{14}CINO_3]$ 214.0271 ([M-CH₂CH₃]⁺); Found: 214.0270.

3-(3-hydroxypentan-3-yl)benzonitrile (4af)

Colourless oil (59 mg, 62 %); $R_f = 0.4$ (10 % EtOAc in Hexane)

UV-Vis (MeOH), λ_{max} (nm): 272, 225. ¹H NMR (500 MHz, DMSO-*d*₆, ppm): δ 7.82 - 7.79 (m, 2H), 7.74 - 7.73 (m, 1H), 7.60 (t, *J* = 7.75 Hz, 1H), 5.55 (s, 1H), 3.58 - 3.47 (m, 4H), 1.16 (t, *J* = 7.05 Hz, 6H). ¹³C NMR (126 MHz,

DMSO- d_6 , ppm): δ 141.3, 132.5, 131.7, 130.4, 129.9, 119.1, 111.7, 100.2, 61.7, 15.5. FT-IR (Thin film): v 3380, 2230 cm⁻¹. HRMS (ESI-TOF): m/z Calcd. for [C₁₁H₁₅NO] 160.0762 ([M-CH₂CH₃]⁺); Found: 160.0757.

3-(4-(methylthio)phenyl)pentan-3-ol (4ag)

Colourless oil (51mg, 48 %); $R_f = 0.6$ (10 % EtOAc in Hexane)

UV-Vis (MeOH), λ_{max} (nm): 258, 210. ¹H NMR (500 MHz, DMSO- d_6 , ppm): δ 7.34 - 7.32 (m, 2H), 7.26 - 7.24 (m, 2H), 5.45 (s, 1H), 3.56 - 3.43

(m, 4H), 2.47 (s, 3H), 1.14 (t, J = 7.05 Hz, 6H). ¹³C NMR (126 MHz, DMSO- d_6 , ppm): δ 138.5, 136.3, 127.4, 125.9, 101.0, 61.0, 15.5, 15.0. FT-IR (Thin film): v 3434 cm⁻¹. HRMS (ESI-TOF): m/z Calcd. for [C₁₂H₁₈OS] 181.0687 ([M-CH₂CH₃]⁺); Found: 181.0688.

4. General Procedure C

A 10 ml round bottom flask was charged with $CuSO_4 \cdot 5H_2O$ (0.025 mmol, 5 mol %) in 1 ml allyl alcohol. The mixture was stirred for 30 min, then aldehyde (0.5 mmol) was added. Then the reaction mixture was stirred at room temperature for 24 h. Then the solvent was removed under reduced pressure and the crude reaction mixture was purified by silica gel column chromatography (Hexane/EtOAc = 995/5 to 99/1) to obtain the title compounds. Silica gel was neutralized with triethylamine before isolating **4aa-4ag**.

4-(4-nitrophenyl)hepta-1,6-dien-4-ol (5aa)

Yellow oil (108 mg, 92 %); $R_f = 0.5$ (10 % EtOAc in Hexane)

UV-Vis (MeOH), λ_{max} (nm): 265, 211. ¹H NMR (500 MHz, DMSO-*d*₆, ppm): δ 8.26 - 8.25 (m, 2H), 7.72 - 7.70 (m, 2H), 5. 97 - 5.90 (m, 1H), 5.74 (s, 1H), 5.33 - 5.28 (m, 2H), 5.18 - 5.16 (m, 2H), 4.08 - 4.07 (m, 4H). ¹³C NMR (126)

MHz, DMSO-*d*₆, ppm): δ 147.9, 146.1, 134.9, 128.3, 123.9, 117.1, 99.8, 67.0. FT-IR (Thin film): v 3428, 1524, 1347 cm⁻¹. HRMS (ESI-TOF): m/z Calcd. for [C₁₃H₁₅NO₃] 192.0661 ([M-CH₂CH=CH₂]⁺); Found: 192.0656.

4-(3-nitrophenyl)hepta-1,6-dien-4-ol (5ab)

Pale yellow oil (100 mg, 85 %); $R_f = 0.5$ (10 % EtOAc in Hexane)

UV-Vis (MeOH), λ_{max} (nm): 261, 210. ¹H NMR (500 MHz, DMSO- d_6 , ppm): δ 8.24 - 8.22 (m, 2H), 7.89 - 7.88 (m, 1H), 7.73 - 7.70 (m, 1H), 5. 98 - 5.91 (m, 1H), 5.77 (s, 1H), 5.33 - 5.29 (m, 2H), 5.18 - 5.16 (m, 2H), 4.09 - 4.08 (m, 4H). ¹³C NMR (126 MHz, DMSO- d_6 , ppm): δ 148.2, 141.3, 135.0, 133.6, 130.4,

123.8, 121.5, 117.1, 99.6, 67.0. FT-IR (Thin film): v 3445, 1531, 1349 cm⁻¹. HRMS (ESI-TOF): m/z Calcd. for $[C_{13}H_{15}NO_3]$ 192.0661 ([M-CH₂CH=CH₂]⁺); Found: 192.0655.

4-(2-chloro-5-nitrophenyl)hepta-1,6-dien-4-ol (5ac)

но

NO₂

Colourless oil (54 mg, 40 %); $R_f = 0.6$ (10 % EtOAc in Hexane)

UV-Vis (MeOH), λ_{max} (nm): 270, 210. ¹H NMR (500 MHz, DMSO- d_6 , ppm): δ 8.35 (d, J = 2.85 Hz, 1H), 8.24 (dd, J = 2.9 Hz, J = 8.75 Hz, 1H), 7.79 (d, J = 8.8 Hz, 1H), 5.97 - 5.89 (m, 1H), 5.84 (s, 1H), 5.32 - 5.28 (m,

2H), 5.19 - 5.16 (m, 2H), 4.15 - 4.14 (m, 4H). ¹³C NMR (126 MHz, DMSO- d_6 , ppm): δ 146.7, 139.4, 138.1, 134.7, 131.7, 125.4, 123.1, 117.5, 97.5, 67.9. FT-IR (Thin film): v 3442, 1528, 1347 cm⁻¹. HRMS (ESI-TOF): m/z Calcd. for [C₁₃H₁₄ClNO₃] 226.0271 ([M-CH₂CH=CH₂]⁺); Found: 226.0272.

4-(4-hydroxyhepta-1,6-dien-4-yl)benzonitrile (5ad)

Colourless oil (64 mg, 60 %); $R_f = 0.5$ (10 % EtOAc in Hexane)

UV-Vis (MeOH), λ_{max} (nm): 271, 229. ¹H NMR (500 MHz, DMSO-*d*₆, ppm): δ 7.88 – 7.86 (m, 2H), 7.63 - 7.62 (m, 2H), 5. 97 - 5.89 (m, 1H), 5.69 (s, 1H), 5.32 - 5.27 (m, 2H), 5.18 - 5.15 (m, 2H), 4.07 - 4.05 (m, 4H). ¹³C NMR (126)

MHz, DMSO- d_6 , ppm): δ 144.2, 135.0, 132.7, 127.9, 119.1, 117.0, 111.7, 100.0, 66.9. FT-IR (Thin film): v 3421, 2229 cm⁻¹. HRMS (ESI-TOF): m/z Calcd. for [C₁₄H₁₅NO] 172.0762 ([M-CH₂CH=CH₂]⁺); Found: 172.0760.

3-(4-hydroxyhepta-1,6-dien-4-yl)benzonitrile (5ae)

Colourless oil (48 mg, 45 %); $R_f = 0.4$ (10 % EtOAc in Hexane)

UV-Vis (MeOH), λ_{max} (nm): 272, 224. ¹H NMR (500 MHz, DMSO- d_6 , ppm): δ 7.85 - 7.83 (m, 2H), 7.78 - 7.76 (m, 1H), 7.64 - 7.61 (m, 1H), 5. 97 - 5.90 (m, 1H), 5.67 (s, 1H), 5.32 - 5.28 (m, 2H), 5.18 - 5.15 (m, 2H), 4.07 - 4.05

(m, 4H). ¹³C NMR (126 MHz, DMSO- d_6 , ppm): δ 140.7, 135.0, 132.8, 131.8, 130.5, 130.9, 119.0, 117.0, 111.8, 99.8, 66.9. FT-IR (Thin film): v 3458, 2230 cm⁻¹. HRMS (ESI-TOF): m/z Calcd. for [C₁₄H₁₅NO] 172.0762 ([M-CH₂CH=CH₂]⁺); Found: 172.0756.

4-(4-(methylthio)phenyl)hepta-1,6-dien-4-ol (5af)

Colourless oil (82 mg, 70 %); $R_f = 0.8$ (10 % EtOAc in Hexane)

UV-Vis (MeOH), λ_{max} (nm): 259, 210. ¹H NMR (500 MHz, DMSO-*d*₆, ppm): δ 7.38 - 7.36 (m, 2H), 7.28 - 7.27 (m, 2H), 5. 96 - 5.89 (m, 1H), 5.58 (s, 1H), 5.31 - 5.27 (m, 2H), 5.16 - 5.13

(m, 2H), 5. 96 - 5.89 (m, 1H), 5.58 (s, 1H), 5.31 - 5.27 (m, 2H), 5.16 - 5.13 (m, 2H), 4.03 - 4.02 (m, 4H), 2.48 (s, 3H). 13 C NMR (126 MHz, DMSO- d_6 , ppm): δ 138.9, 135.6, 135.3, 127.5, 125.9, 116.7, 100.5, 66.47, 15.0. FT-IR (Thin film): v 3425 cm⁻¹. HRMS (ESI-TOF): m/z Calcd. for [C₁₄H₁₈OS] 193.0687 ([M-CH₂CH=CH₂]⁺); Found: 193.0683.

(E)-4-(2-nitrostyryl)hepta-1,6-dien-4-ol (5af)

Pale yellow oil (78 mg, 60 %); $R_f = 0.4$ (10 % EtOAc in Hexane)

UV-Vis (MeOH), λ_{max} (nm): 314, 235, 210. ¹H NMR (500 MHz, DMSO*d*₆, ppm): δ 7.99 - 7.97 (m, 1H), 7.84 - 7.82 (m, 1H), 7.73 - 7.70 (m, 1H), 7.58 - 7.54 (m, 1H), 7.05 - 7.02 (m, 1H), 6.37 - 6.32 (m, 1H), 5.99 - 5.91

(m, 4H), 5. 33 - 5.29 (m, 2H), 5.23 - 5.22 (dd, J = 1.1 Hz, J = 4.85 Hz, 1H) 5.58 (s, 1H), 5.18 - 5.15 (m, 2H), 5.16 - 5.13 (m, 2H), 4.17 - 4.12 (m, 2H), 4.08 - 4.04 (m, 2H). ¹³C NMR (126 MHz, DMSO- d_6 , ppm): δ 148.4, 135.4, 133.9, 131.9, 131.0, 129.6, 129.0, 127.7, 124.7, 116.8, 100.0, 66.4. FT-IR (Thin film): v 3447, 1523, 1345 cm⁻¹. HRMS (ESI-TOF): m/z Calcd. for [C₁₅H₁₇NO₃] 218.0817 ([M-CH₂CH=CH₂]⁺); Found: 218.0811.

5. Mechanistic Studies

a) Radical trapping experiment with TEMPO

A 10 ml round bottom flask was charged with $CuSO_4 \cdot 5H_2O$ (0.025 mmol, 5 mol %) in 1 ml methanol. The mixture was stirred for 30 min, then aldehyde (0.05 mmol) and TEMPO (0.75 mmol) were added. Then the reaction mixture was stirred at room temperature for 24 h. A portion of the reaction mixture was collected and analysed by HR-MS. The TEMPO adduct **5** was not detected.

b) Radical trapping experiment with BHT

A 10 ml round bottom flask was charged with $CuSO_4 \cdot 5H_2O$ (0.025 mmol, 5 mol %) in 1 ml methanol. The mixture was stirred for 30 min, then aldehyde (0.05 mmol) and BHT (0.75 mmol) were added. Then the reaction mixture was stirred at room temperature for 24 h. A portion of the reaction mixture was collected and analysed by HR-MS. Unfortunately, we could not able to detect the adduct **6** in the HR-MS.

c) Deuterium labelling experiment

A 10 ml round bottom flask was charged with CuSO₄·5H₂O (0.025 mmol, 5 mol %) in 1 ml CD₃OD. The mixture was stirred for 30 min, then aldehyde (0.05 mmol) was added. Then the reaction mixture was stirred at room temperature for 24 h. Then the solvent was removed under reduced pressure and the crude reaction mixture was purified by silica gel column chromatography (Hexane/EtOAc = 99/1) to obtain the corresponding deuterated product which was analysed by NMR spectroscopy (**Figure S27 & 28**). Since there was an interference of CH₃ proton peak and water peak at 3.33ppm in dmso- d^6 , we have analysed product 7 in CDCl₃ also to avoid the misinterpretation of the data.

n.d. = not detected

II) Deuterium labelling experiment

IIi) Inert reaction

d) Inert reaction

A 10 ml round bottom flask was charged with $CuSO_4 \cdot 5H_2O$ (0.025 mmol, 5 mol %) under an argon atmosphere. Then, 1 ml of dry MeOH was added using syringe. The mixture was stirred for 30 min, then aldehyde (0.05 mmol) was added under argon atmosphere. The reaction mixture was stirred at room temperature for 24 h under argon atmosphere. Then the solvent was removed under reduced pressure and the crude reaction mixture was purified by silica gel column chromatography (Hexane/EtOAc = 99/1) to obtain the corresponding product **3ab**.

e) Hydrogen peroxide (H₂O₂) detection using XploSens PS[™] peroxides detection strip

A 10 ml round bottom flask was charged with $CuSO_4 \cdot 5H_2O$ (0.025 mmol, 5 mol %) in 1 ml CD₃OD. The mixture was stirred for 30 min, then aldehyde (0.05 mmol) was added. Then, the XploSens PSTM peroxides detection strip was immersed in the reaction mixture for 5 seconds and the resulting color change was noted. This procedure was repeated at 3, 6, 12, and 24 h to monitor peroxide levels over time. The appearance of pale-yellow colour was observed indicating the presence of peroxide in the solution (\approx 100-250 ppm).

Figure S1: a) XploSens PS^{TM} peroxides detection strip before and after immersion. b) Immersed strip and quantification scale c) At different time intervals; 1min - just after the addition of substrate

6. ¹H NMR and ¹³C NMR Spectra of Methylated Products

Figure S2: ¹H NMR and ¹³C NMR Spectra of 2-(4-nitrophenyl)propan-2-ol (3aa)

Figure S3: ¹H NMR and ¹³C NMR Spectra of 2-(3-nitrophenyl)propan-2-ol (3ab)

Figure S4: ¹H NMR and ¹³C NMR Spectra of 2-(2-nitrophenyl)propan-2-ol (3ac)

Figure S5: ¹H NMR and ¹³C NMR Spectra of (*E*)-2-methyl-4-(2-nitrophenyl)but-3-en-2ol (3ad)

Figure S6: ¹H NMR and ¹³C NMR Spectra of 4-(2-hydroxypropan-2-yl)benzonitrile (3ae)

Figure S7: ¹H NMR and ¹³C NMR Spectra of 3-(2-hydroxypropan-2-yl)benzonitrile (3ae)

Figure S8: ¹H NMR and ¹³C NMR Spectra of 2-(2-chloro-5-nitrophenyl)propan-2-ol (3ag)

Figure S9: ¹H NMR and ¹³C NMR Spectra of 2-(4-(methylthio)phenyl)propan-2-ol (3ai)

Figure S10: ¹H NMR and ¹³C NMR Spectra of 2-(naphthalen-1-yl)propan-2-ol (3ak)

Figure S11: ¹H NMR and ¹³C NMR Spectra of 2-(5-nitrofuran-2-yl)propan-2-ol (3al)

Figure S12: ¹H NMR and ¹³C NMR Spectra of 3-(2-hydroxypropan-2-yl)benzoic acid (3an)

Figure S13: ¹H NMR and ¹³C NMR Spectra of 3-(4-nitrophenyl)pentan-3-ol (4aa)

Figure S14: ¹H NMR and ¹³C NMR Spectra of 3-(3-nitrophenyl)pentan-3-ol (4ab)

Figure S15: ¹H NMR and ¹³C NMR Spectra of 3-(2-nitrophenyl)pentan-3-ol (4ac)

Figure S16: ¹H NMR and ¹³C NMR Spectra of 4-(3-hydroxypentan-3-yl)benzonitrile (4ad)

Figure S17: ¹H NMR and ¹³C NMR Spectra of 3-(2-chloro-5-nitrophenyl)pentan-3-ol (4ae)

(4af)

Figure S19: ¹H NMR and ¹³C NMR Spectra of 3-(4-(methylthio)phenyl)pentan-3-ol (4ag)

8. ¹H NMR and ¹³C NMR Spectra of Allylated Products

Figure S20: ¹H NMR and ¹³C NMR Spectra of 4-(4-nitrophenyl)hepta-1,6-dien-4-ol (5aa)

Figure S21: ¹H NMR and ¹³C NMR Spectra of 4-(3-nitrophenyl)hepta-1,6-dien-4-ol (5ab)

Figure S22: ¹H NMR and ¹³C NMR Spectra of 4-(2-chloro-5-nitrophenyl)hepta-1,6dien-4-ol (5ac)

Figure S23: ¹H NMR and ¹³C NMR Spectra of 4-(4-hydroxyhepta-1,6-dien-4-yl) benzonitrile (5ad)

Figure S24: ¹H NMR and ¹³C NMR Spectra of 3-(4-hydroxyhepta-1,6-dien-4-yl) benzonitrile (5ae)

4-ol (5af)

77.09 77

Figure S26: ¹H NMR and ¹³C NMR Spectra of (*E*)-4-(2-nitrostyryl)hepta-1,6-dien-4-ol (5ag)

Figure S27: ¹H NMR and ¹³C NMR Spectra of 3ab (recorded in DMSO-*d*⁶)

Figure S28: ¹H NMR Spectra of 3ab and 7 (recorded in CDCl₃)

HR-MS Spectra of the Products

Figure S29: HR-MS Spectrum of 3aa

Figure S30: HR-MS Spectrum of 3ab

Figure S31: HR-MS Spectrum of 3ac.

Figure S32: HR-MS Spectrum of 3ad.

Figure S33: HR-MS Spectrum of 3ae.

Figure S34: HR-MS Spectrum of 3af

Figure S35: HR-MS Spectrum of 3ag.

Figure S36: HR-MS Spectrum of 3ai.

Figure S37: HR-MS Spectrum of 3ak

Figure S38: HR-MS Spectrum of 3al.

Figure S39: HR-MS Spectrum of 3an.

Figure S40: HR-MS Spectrum of 4aa.

Figure S41: HR-MS Spectrum of 4ab.

Figure S42: HR-MS Spectrum of 4ac.

Figure S43: HR-MS Spectrum of 4ad.

Figure S44: HR-MS Spectrum of 4ae.

Figure S45: HR-MS Spectrum of 4af.

Figure S46: HR-MS Spectrum of 4ag.

Figure S47: HR-MS Spectrum of 5aa.

Figure S48: HR-MS Spectrum of 5ab.

Figure S49: HR-MS Spectrum of 5ac

x105_+ESI Scan (rt: 0.303 min) Frag=175.0V 4CNAL.d

Figure S51: HR-MS Spectrum of 5ae.

Figure S52: HR-MS Spectrum of 5af

Figure S53: HR-MS Spectrum of 5ag.

11. Green Chemistry Metrics Calculation

a) Atom Economy Calculation

Atom Economy = (Molecular weight of Desired Product/ Σ Molecular weight of all the reagents) *100

Considering Methanol as a Reagent (Only stoichiometric amount of alcohol was					
considered for calculation)					
Comment Melocity Melocity Comments to Comments					
Compound	Molecular	Molecular weight of	Molecular weight of	Atom	
	weight of	alconol * 2	product	economy	
		(1.00	101 1007	0.4	
3aa	151.12	64.08	181.1885	84	
<u> </u>	151.12	64.08	181.1885	84	
3ac	151.12	64.08	181.1885	84	
3ad	177.16	64.08	207.2258	86	
3ae	131.13	64.08	161.2004	83	
3af	131.13	64.08	161.2004	83	
3ag	185.56	64.08	215.6336	86	
3ai	152.21	64.08	182.2826	84	
3ak	156.18	64.08	186.2497	85	
3al	141.082	64.08	171.1507	83	
3an	150.133	64.08	180.2005	84	
4aa	151.12	92.136	209.2417	86	
4ab	151.12	92.136	209.2417	86	
4ac	151.12	92.136	209.2417	86	
4ad	131.13	92.136	189.2536	85	
4ae	185.56	92.136	243.6868	88	
4af	131.13	92.136	189.2536	85	
4ag	152.21	92.136	210.3357	86	
5aa	151.12	116.16	233.2631	87	
5ab	151.12	116.16	233.2631	87	
5ac	185.56	116.16	267.7082	89	
5ad	131.13	116.16	213.2750	86	
5ae	131.13	116.16	213.2750	86	
5af	152.21	116.16	234.3571	87	
5ag	177.16	116.16	259.3004	88	

 Table S1: Atom economy calculation of products

b) Process Mass Intensity Calculation (PMI)
 PMI = Total mass used in the synthesis (Kg) / Mass of product (Kg)
 Solvents used for the separation are excluded from calculations due to their recyclability.

Mass of alcohol = Density * Volume (1 ml)

Compound	Mass of	Mass of	Mass of	Mass of	Mass of	PMI
	aldehyde	alcohol	catalyst	silica	product	
	(0.5 mmol)	(25 mmol)	(0.025 mmol)	(≈20 g)		
					0.00000	
3aa	7.556E-05	0.00079	6.225E-06	0.02	0.000082	255
3ab	7.556E-05	0.00079	6.225E-06	0.02	0.000085	246
3ac	7.556E-05	0.00079	6.225E-06	0.02	0.000075	278
3ad	8.858E-05	0.00079	6.225E-06	0.02	0.000075	278
3ae	6.557E-05	0.00079	6.225E-06	0.02	0.000062	337
3af	6.557E-05	0.00079	6.225E-06	0.02	0.000065	321
3ag	9.278E-05	0.00079	6.225E-06	0.02	0.000074	282
3ai	7.611E-05	0.00079	6.225E-06	0.02	0.000071	294
3ak	7.809E-05	0.00079	6.225E-06	0.02	0.000056	373
3al	7.054E-05	0.00079	6.225E-06	0.02	0.000046	454
3an	7.507E-05	0.00079	6.225E-06	0.02	0.000059	354
4aa	7.556E-05	0.00079	6.225E-06	0.02	0.000093	224
4ab	7.556E-05	0.00079	6.225E-06	0.02	0.000095	220
4ac	7.556E-05	0.00079	6.225E-06	0.02	0.000045	464
4ad	6.557E-05	0.00079	6.225E-06	0.02	0.000057	366
4ae	9.278E-05	0.00079	6.225E-06	0.02	0.000049	426
4af	6.557E-05	0.00079	6.225E-06	0.02	0.000059	354
4ag	7.611E-05	0.00079	6.225E-06	0.02	0.000051	409
5aa	7.556E-05	0.00085	6.225E-06	0.02	0.000108	194
5ab	7.556E-05	0.00085	6.225E-06	0.02	0.0001	209
5ac	9.278E-05	0.00085	6.225E-06	0.02	0.000054	388
5ad	6.557E-05	0.00085	6.225E-06	0.02	0.000064	327
5ae	6.557E-05	0.00085	6.225E-06	0.02	0.000048	436
5af	7.611E-05	0.00085	6.225E-06	0.02	0.000082	255
5ag	8.858E-05	0.00085	6.225E-06	0.02	0.000078	269

 Table S2: Process Mass Intensity calculation of products

Entry	Substrate	Catalytic condition	Temperatur	Yield	Atom	References
			e	(%)	economy	
1		Blue light, UO_2^{2+} ,	rt	60	92	24b
		MeOH (1 ml), O ₂				
	O ₂ N	(1 atm), 30 h				
2	1	O ₂ (1.8 MPa),	60 °C	76	92	24c
		NaOH (4.5 M),				
	O _o N	EtOH/H ₂ O, 24 h				
	-2					
3		<i>cis</i> -[Ru(dtbpy) ₂ Cl ₂]	rt	92	46	24a
		(5 mol %), H ₅ IO ₆ ,				
		CF ₃ SO ₃ H,				
	O ₂ N	AcOH/H ₂ O (1:1), 4				
		h				
4	0	CuSO ₄ .H ₂ O (5 mol	rt	90	84	this work
		%), MeOH, 24 h				
	I I I H					
	O ₂ N					

 Table S3: Literature comparison of AE of 3aa with present work.