Supporting Information

N-Sulfonylation of Azoles with Sulfonyl Hydrazides Enabled

by Electrocatalysis

Cheng Huang,^{*a,b} Chen Kang,^{a,b} Hong-Jun Liu,^a Chen-Lu Wang,^a Sheng Tang,^a Yu-Shu Qin,^a Zhenhong Wei^a, and Hu Cai^{*a}

^aSchool of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, P. R. China.

^bThese authors contributed equally to this work.

*Corresponding Author(s): Cheng Huang: <u>huangcheng@ncu.edu.cn</u>; Hu Cai: <u>caihu@ncu.edu.cn</u>;

Table of Contents

1. General Information	S1
2. Reaction Setup	S1
3. General Experimental Procedure for <i>N</i> -Sulfonylation of Azoles	S1
4. Optimization of Conditions	S2
5. Radical Trapping Reactions	S5
6. Electron Paramagnetic Resonance (EPR) Spectroscopy Experiments	S6
7. Cyclic Voltammetry Studies	S6
8. Electricity On/Off Experiment	S7
9. Electrochemical Continuous-flow Experiments	S8
10. Experimental Procedure for Diversification	S9
11. Synthesis of Starting Materials	S9
12. Faraday Efficiency	S12
13. Characterization Data for All Compounds	S13
14. References	S33
15. Copies of ¹ H NMR, ¹³ C NMR and ¹⁹ F NMR	S34
16. Crystal Structure Data	S117

1. General Information

Unless otherwise specified, all reagents and starting materials were purchased from commercial sources and used as received. ¹H NMR spectra were recorded using Agilent ProPulse AM-400 MHz instrument with tetramethylsilane (TMS) as an internal standard. ¹³C NMR spectra were obtained at 101 MHz and referenced to the internal solvent signals. ¹⁹F NMR spectra were recorded at 376 MHz using CDCl₃ as solvent. Mass spectra were recorded using an Agilent 7890-5975C spectrometer. EPR spectra were recorded by X Band on a Bruker E500 spectrometer. All the electrochemical reactions were performed in an undivided cell unless otherwise noted. The electrolysis instrument used is an adjustable DC regulated power supply (HYELEC, HY3005B). Cyclic voltammograms were obtained on a DH7000C instrument. Flash chromatography was carried out with silica gel (200-300 mesh). Analytical TLC was performed with silica gel GF254 plates, and the products visualized by UV detection.

2. Reaction Setup

The electrolysis instrument used is an adjustable DC regulated power supply (HYELEC HY3005B) (made in China). All the materials used to make the electrolytic cell were commercially available. The anode used graphite felt (1.0 cm \times 1.0 cm) and cathode used platinum sheet electrodes (1.0 cm \times 1.0 cm).

Figure S1. Reaction setup

3. General Experimental Procedure for N-Sulfonylation of Azoles

A 3 mL reaction tube with magnetic stirring bar was charged with sulfonyl hydrazides substrates **1** (0.2 mmol, 1 equiv), azoles **2** (0.4 mmol, 2 equiv), ${}^{n}Bu_{4}NBr$ (0.2 mmol, 1 equiv) and 2.0 mL of CH₃CN, graphite felt (1.0 cm × 1.0 cm) as the anode, platinum sheet (1.0 cm × 1.0 cm) as cathode, was added in an undivided cell under air atmosphere for 2 h (constant current = 15 mA). After reaction, the solvent was removed by rotary evaporation and the crude product was purified by column chromatography on silica gel (eluting with petroleum ether/ethyl acetate) to give the desired products.

4. Optimization of Conditions

Table S1. Optimization of solvents

	$ \begin{array}{c c} & & & \\ &$	↑ + H ₂ ↑
Entry	Change from standard conditions	Yield (%)
1	DCE instead of CH ₃ CN	45
2	DCM instead of CH₃CN	34
3	DMF instead of CH ₃ CN	26
4	DMSO instead of CH ₃ CN	N.R.
5	EtOH instead of CH ₃ CN	37
6	THF instead of CH ₃ CN	N.R.
7	H_2O instead of CH_3CN	23
8	CH_3CN : H_2O (5:1) instead of CH_3CN	39

Reaction condition: **1** (0.20 mmol, 1.0 equiv), **2** (0.40 mmol, 2.0 equiv), ${}^{n}Bu_{4}NBr$ (0.2 mmol, 1.0 equiv), were added into 2 mL of CH₃CN, graphite felt (1.0 cm × 1.0 cm) as the anode, platinum sheet (1.0 cm × 1.0 cm) as cathode, constant current = 15 mA, in an undivided cell under air atmosphere for 2 h at room temperature. Isolated yields. N.R. = No Reaction.

Table S2. Optimization of electrodes

	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	↑ + H ₂ ↑
Entry	Change from standard conditions	Yield (%)
1	C(+)/Ni(-) instead of C(+)/Pt(-)	47
2	C(+)/Al(-) instead of C(+)/Pt(-)	30
3	C(+)/C(-) instead of C(+)/Pt(-)	56
4	C(+)/Zn(-) instead of C(+)/Pt(-)	38
5	Pt(+)/Pt(-) instead of C(+)/Pt(-)	N.R.
6	Pt(+)/C(-) instead of C(+)/Pt(-)	N.R.
7	Pt(+)/Zn(-) instead of C(+)/Pt(-)	N.R.
8	Pt(+)/Ni(-) instead of C(+)/Pt(-)	N.R.

Reaction condition: **1** (0.20 mmol, 1.0 equiv), **2** (0.40 mmol, 2.0 equiv), ${}^{n}Bu_{4}NBr$ (0.2 mmol, 1.0 equiv), were added into 2 mL of CH₃CN, graphite felt (1.0 cm × 1.0 cm) as the anode, platinum sheet (1.0 cm × 1.0 cm) as cathode, constant current = 15 mA, in an undivided cell under air atmosphere for 2 h at room temperature. Isolated yields. N.R. = No Reaction.

Table S3. Optimization of current

	$ \begin{array}{c c} 0,0\\ S^{N}N^{-}NH_{2} + H^{-}N \\ 1 & 2 \end{array} $ $ \begin{array}{c c} Pt\\ Vindivided cell\\ Current \end{array} $ $ \begin{array}{c c} 0,0\\ S^{N}N^{-}N \\ S^{N}N^{+}N_{2} \\ 3 \end{array} $	+ H ₂ ↑
Entry	Change from standard conditions	Yield (%)
1	6 mA instead of 15 mA	83
2	8 mA instead of 15 mA	70
3	10 mA instead of 15 mA	76
4	12 mA instead of 15 mA	45
5	18 mA instead of 15 mA	52
6	20 mA instead of 15 mA	55

Reaction condition: **1** (0.20 mmol, 1.0 equiv), **2** (0.40 mmol, 2.0 equiv), ${}^{n}Bu_{4}NBr$ (0.2 mmol, 1.0 equiv), were added into 2 mL of CH₃CN, graphite felt (1.0 cm × 1.0 cm) as the anode, platinum sheet (1.0 cm × 1.0 cm) as cathode, constant current = 15 mA, in an undivided cell under air atmosphere for 2 h at room temperature. Isolated yields. N.R. = No Reaction.

Table S4. Optimization of electrolytes

Entry	Change from standard conditions	Yield (%)
Enay		
1	TEAB instead of ^{<i>n</i>} Bu₄NBr	49
2	^{<i>n</i>} Bu ₄ NBF ₄ instead of ^{<i>n</i>} Bu ₄ NBr	84
3	^{<i>n</i>} Bu ₄ NClO ₄ instead of ^{<i>n</i>} Bu ₄ NBr	N.R.
4	^{<i>n</i>} Bu ₄ NHSO ₄ instead of ^{<i>n</i>} Bu ₄ NBr	N.R.
5	TBAI instead of ⁿ Bu₄NBr	39
6	TBAF instead of ⁿ Bu ₄ NBr	76
7	ⁿ Bu ₄ NCl instead of ⁿ Bu ₄ NBr	51
8	ⁿ Et ₄ NCl instead of ⁿ Bu ₄ NBr	54
9	ⁿ Et ₄ NBF ₄ instead of ⁿ Bu ₄ NBr	71
10	^{<i>n</i>} Bu ₄ NBF ₄ with KBr instead of ^{<i>n</i>} Bu ₄ NBr	79
11	ⁿ Bu ₄ NBF ₄ with NaBr instead of ⁿ Bu ₄ NBr	82

Standard condition: **1** (0.20 mmol, 1.0 equiv), **2** (0.40 mmol, 2.0 equiv), ${}^{n}Bu_{4}NBr$ (0.2 mmol, 1.0 equiv), were added into 2 mL of CH₃CN, graphite felt (1.0 cm × 1.0 cm) as the anode, platinum sheet (1.0 cm × 1.0 cm) as cathode, constant current = 15 mA, in an undivided cell under air atmosphere for 2 h at room temperature. Isolated yields. N.R. = No Reaction.

Table S5. Optimization of time

	$ \begin{array}{c c} & & & \\ &$	+ H ₂ Å
Entry	Change from standard conditions	Yield (%)
1	1 h instead of 2 h	53
2	3 h instead of 2 h	65
3	4 h instead of 2 h	55

Reaction condition: **1** (0.20 mmol, 1.0 equiv), **2** (0.40 mmol, 2.0 equiv), ${}^{n}Bu_{4}NBr$ (0.2 mmol, 1.0 equiv), were added into 2 mL of CH₃CN, Graphite felt (1.0 cm × 1.0 cm) as the anode, platinum sheet (1.0 cm × 1.0 cm) as cathode, constant current = 15 mA, in an undivided cell under air atmosphere for 2 h at room temperature. Isolated yields. N.R. = No Reaction.

\bigcirc	$1 \qquad 2 \qquad $	+ N ₂ + H ₂
Entry	The ratio of sulfonyl hydrazides 1 and azoles 2	3 Yield (%)
1	1:1	51
2	1:2	87
3	1:3	82
4	2:1	67
5	3:1	68

Table S6. Optimization of the amount of sulfonyl hydrazides and azoles

Reaction condition: **1**, **2**, ${}^{n}Bu_{4}NBr$ (0.2 mmol, 1.0 equiv), were added into 2 mL of CH₃CN, Graphite felt (1.0 cm × 1.0 cm) as the anode, platinum sheet (1.0 cm × 1.0 cm) as cathode, constant current = 15 mA, in an undivided cell under air atmosphere for 2 h at room temperature. Isolated yields. N.R. = No Reaction.

5. Radical Trapping Reactions

Figure S2 GC-MS of the crude reaction mixture

6. Electron Paramagnetic Resonance (EPR) Spectroscopy Experiments

EPR spectra were recorded by X Band on a Bruker E500 spectrometer. EPR spectra was recorded at room temperature on EPR spectrometer operated at 9.852 GHz. Typical spectrometer parameters are shown as follows, Center field set: 3510 G; Sweep width: 100G; Number of Points: 1024; Attenuation:10 dB; Modulation frequency: 100 kHz; Modulation Amplitude: 1.0 G; Conver Time :20.00 ms; Sweep Time: 20.48 s.

Figure S3. EPR experiments: (i) A solution containing PBN, **1**, and CH₃CN was electrolyzed for 3 mins under N₂ atmosphere, (iii) A solution containing PBN, **2**, and CH₃CN was electrolyzed for 3 mins under N₂ atmosphere; (ii and iv) Fitting results.

7. Cyclic Voltammetry Studies

Cyclic voltammetry was recorded on a DH7000C instrument. A 3 mm diameter glassy carbon electrode was used as the working electrode; a platinum wire electrode (0.5*37 mm) was used as the counter electrode; an Ag/AgCl was used as reference electrode under air at room temperature. The scan rate is 100 mVs⁻¹, ranging from 0 V to 3 V.

(1) **1** (0.2 mmol) and the solvent (CH₃CN, 5 mL) containing ${}^{n}Bu_{4}NBF_{4}$ (0.2 mmol) were poured into the electrochemical cell in cyclic voltammetry experiments. The scan rate was 100 mVs⁻¹, ranging from 0 V to 3 V.

(2) **2** (0.2 mmol) and the solvent (CH₃CN, 5 mL) containing ${}^{n}Bu_{4}NBF_{4}$ (0.2 mmol) were poured into the electrochemical cell in cyclic voltammetry experiments. The scan rate was 100 mVs⁻¹, ranging from 0 V to 3 V.

8. Electricity On/Off Experiment

Eight parallel reaction mixtures in 3 mL reaction tube with magnetic stirring bar was charged with benzenesulfonyl hydrazide **1** (0.02 mmol), 1*H*-pyrazole **2** (0.4 mmol, 2.0 equiv.), n Bu₄NBr (0.2 mmol, 1.0 equiv), and 2.0 mL of CH₃CN at room temperature using a constant current of 15 mA. Graphite felt (1.0 cm × 1.0 cm) as the anode, platinum sheet (1.0 cm × 1.0 cm) as cathode. These reaction tubes were labeled by **A**, **B**, **C**, **D**, **E**, **F**, **G** and **H**.

The reaction **A** was electrolyzed for 0.5 h. After reaction, upon removal of solvent under vacuum, the crude residue was subjected to flash column chromatography on silica gel to yield the desired product in 26% yield.

The reaction **B** was electrolyzed for 0.5 h. Then, the reaction **B** was stirred in the absence of electric current for 0.5 h. After reaction, upon removal of solvent under vacuum, the crude residue was subjected to flash column chromatography on silica gel to yield the desired product in 29% yield.

The reaction **C** was electrolyzed for 0.5 h. Then, the reaction **C** was stirred in the absence of electric current for 0.5 h. Then, the reaction **C** was electrolyzed for 0.5 h. After reaction, upon removal of solvent under vacuum, the crude residue was subjected to flash column chromatography on silica gel to yield the desired product in 53% yield.

The reaction **D** was electrolyzed for 0.5 h. Then, the reaction **D** was stirred in the absence of electric current for 0.5 h. Then, the reaction **D** was electrolyzed for 0.5 h. Then, the reaction **D** was stirred in the absence of electric current for 0.5 h. Following concentration in vacuo, the crude residue was subjected to flash column chromatography on silica gel to yield the desired product in 57% yield.

The reaction **E** was electrolyzed for 0.5 h. Then, the reaction **E** was stirred in the absence of electric current for 0.5 h. Then, the reaction **E** was electrolyzed for 0.5 h. Then, the reaction **E** was stirred in the absence of electric current for 0.5 h. Then, the reaction **E** was electrolyzed for 0.5 h. After reaction, upon removal of solvent under vacuum, the crude residue was subjected to flash column chromatography on silica gel to yield the desired product in 72% yield.

The reaction **F** was electrolyzed for 0.5 h. Then, the reaction **F** was stirred in the absence of electric current for 0.5 h. Then, the reaction **F** was electrolyzed for 0.5 h. Then, the reaction **F** was stirred in the absence of electric current for 0.5 h. Then, the reaction **F** was electrolyzed for 0.5 h. Then, the reaction **F** was stirred in the absence of electric current for 0.5 h. Then, the reaction **F** was electrolyzed for 0.5 h. Then, the reaction **F** was stirred in the absence of electric current for 0.5 h. After reaction, upon removal of solvent under vacuum, the crude residue was subjected to flash column chromatography on silica gel to yield the desired product in 75% yield.

The reaction **G** was electrolyzed for 0.5 h. Then, the reaction **G** was stirred in the absence of electric current for 0.5 h. Then, the reaction **G** was electrolyzed for 0.5 h. Then, the reaction **G** was stirred in the absence of electric current for 0.5 h. Then, the reaction **G** was electrolyzed for 0.5 h. Then, the reaction **G** was stirred in the absence of electric current for 0.5 h. Then, the reaction **G** was electrolyzed for 0.5 h. Then, the reaction **G** was electrolyzed for 0.5 h. Then, the reaction **G** was electrolyzed for 0.5 h. Then, the reaction **G** was electrolyzed for 0.5 h. After reaction, upon removal of solvent under vacuum, the crude residue was subjected to flash column chromatography on silica gel to yield the

desired product in 87% yield.

The reaction **H** was electrolyzed for 0.5 h. Then, the reaction **H** was stirred in the absence of electric current for 0.5 h. Then, the reaction **H** was electrolyzed for 0.5 h. Then, the reaction **H** was stirred in the absence of electric current for 0.5 h. Then, the reaction **H** was electrolyzed for 0.5 h. Then, the reaction **H** was stirred in the absence of electric current for 0.5 h. Then, the reaction **H** was electrolyzed for 0.5 h. Then, the reaction **H** was electrolyzed for 0.5 h. Then, the reaction **H** was electrolyzed for 0.5 h. Then, the reaction **H** was electrolyzed for 0.5 h. Then, the reaction **H** was electrolyzed for 0.5 h. Then, the reaction **H** was electrolyzed for 0.5 h. Then, the reaction **H** was stirred in the absence of electric current for 0.5 h. After reaction, upon removal of solvent under vacuum, the crude residue was subjected to flash column chromatography on silica gel to yield the desired product in 88% yield.

Figure S5. Electricity on / off Experiments

9. Electrochemical Continuous-flow Experiments

Figure S6. Components of flow chemistry: Micro syringe pump (DK INFUSETEK, SPLab02), DC stabilized power supply (HYELEC, HY3005B), Continuous flow panel (EZONE, PER-10).

A 10 mL reaction tube was charged with benzenesulfonyl hydrazide **1** (10 mmol), 1*H*pyrazole **2** (20 mmol, 2.0 equiv), $^{n}Bu_{4}NBr$ (10 mmol, 1.0 equiv) and 10 mL of CH₃CN. The 10 mL mixture was swirled until homogeneous, placed in a 10 mL disposable syringe and mounted on a syringe pump. The mixture liquid feed was pumped into the flow reactor for electrolysis for 10 h at room temperature. After reaction, the solvent was extracted with ethyl acetate (3 × 20 mL), the combined organic extracts were washed with brine (20 mL), dried over anhydrous Na_2SO_4 and concentrated in vacuo. Purification of the crude product by flash chromatography on silica gel using the indicated solvent system (petroleum ether/ethyl acetate = 4 : 1) afforded the desired product **3** in 62% yield (1.29 g).

10. Experimental Procedure for Diversification

Prepared according to literature methods.¹ A suspension of 1-((4-iodophenyl)sulfonyl)-1*H*-pyrazole (0.5 mmol), $PdCl_2(PPh_3)_2$ (2 mol%), CuI (3 mol%) in 2 mL of triethylamine was degassed with nitrogen for 5 minutes. Then, a solution of phenyl acetylene (1.2 equiv.) was added drop-wise over 5 minutes via syringe and the reaction mixture was left to stir for 12 h. After completion, the solvent diluted with 10 mL ethyl acetate and washed with 5 mL brine and dried over anhydrous Na₂SO₄. After the solvent was evaporated *in vacu*o, the residues were purified by column chromatography, eluting with petroleum ether/ethyl acetate = 4:1 to afford **77** as a white solid.

Prepared according to literature methods.² In an oven-dried round bottom flask, 4-bromo-1-(phenylsulfonyl)-1*H*-pyrazole **33** (0.3 mmol) was taken in a mixture of 2.0 mL EtOH, 1 mL water and 3 mL toluene and degassed for 20 mins. To the resulting mixture, Phenylboronic acid (0.4 mmol, 1.5 equiv.), K₂CO₃ (1.2 mmol, 4.0 equiv.) and Pd(PPh₃)₄ (0.024 mmol, 0.8 mol%) were added successively at room temperature. The resulting mixture was stirred at 95 °C (oil bath) under positive argon pressure for 12 h. The reaction mixture was cooled to room temperature, quenched with saturated NH₄Cl solution, and extracted with CH₂Cl₂. The combined organic layer was dried over Na₂SO₄, concentrated *in vacuo* to obtain a black oil which was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 5:1) to obtain 4-phenyl-1-(phenylsulfonyl)-1*H*-pyrazole **78** as a white solid.

11. Synthesis of Starting Materials

$$\begin{array}{ccc} 0 & NH_2NH_2 \cdot H_2O & 0, 0\\ R^{\prime} CI & THF, 0 \circ C & R^{\prime} S \\ \end{array}$$

Synthesis of arylsulfonyl hydrazides. All sulfonyl hydrazides were prepared according to the literature procedure.³⁻⁶ The hydrazine monohydrate (1.50 g, 30 mmol) was added dropwise into the solution of sulfonyl chloride (10 mmol) in THF (50 mL) under air at 0 °C. Subsequently, the mixture was further stirred at 0 °C for 30 mins. After the completion of the reaction, the solvent was removed by evaporation, and the residue was extracted with dichloromethane (3 × 20 mL), and the combined organic layer was washed with water and brine and dried over

Na₂SO₄. Concentration in vacuum followed by silica gel column purification with a petroleum ether/ethyl acetate eluent gave the desired products in yields ranging from 70% to 95%.

Synthesis of compound **83**. Prepared according to literature methods.⁷ To the 100 mL round bottom flask, the 1H-pyrazole-4-carboxylic acid (230 mg, 2.0 mmol), tyrosine derivative (360 mg, 0.6 equiv), DCC (454 mg, 1.1 equiv), and DMAP (10 mg) were added in 20 mL DCM at room temperature and stirred about 6 hours. After the completion of the reaction, the solution was filtrated by the celite and remove the solvent. The crude product was purified directly by flash chromatograph using the mixture of hexane/ethyl acetate (1:1) to provide the desired product **83** (white solid, 356 mg, 51%). ¹H NMR (400 MHz, CDCl₃) δ 8.18 (s, 2H), 7.23 – 6.98 (m, 4H), 5.18 (s, 1H), 4.61 (d, *J* = 7.4 Hz, 1H), 3.74 (s, 3H), 3.10 (dd, *J* = 20.5, 5.9 Hz, 2H), 1.43 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 172.3, 161.4, 155.2, 149.5, 137.1, 133.7, 130.3, 121.8, 113.9, 80.1, 54.4, 52.3, 37.7, 28.3.

Synthesis of compound **84**. Prepared according to literature methods.⁸ **Step 1**: A 100 mL round-bottom flask was charged with 1H-pyrazole-4-carboxylic acid (5 mmol), dry DCM (20 mL) and three drops of DMF. The reaction mixture was cooled to 0 °C. Then, $(COCI)_2$ (1.3 equiv) was added dropwise to the reaction mixture and stirred at room temperature for 5 h. The resulting mixture was concentrated under reduced pressure to afford acid chloride quantitatively which was used directly without further purification for the next step.

Step 2: To a solution of ethyl *L*-phenylalaninate (6 mmol, 1.2 equiv) and Et₃N (7.5 mmol, 1.5 equiv) in dry DCM (20 mL), acid chloride prepared from Step-1 was added dropwise at 0 °C and the reaction mixture was stirred at room temperature for 12 h. Then water (10 mL) was added, the organic layer was separated and the aqueous layer was extracted three times with DCM. The combined organic layer was washed with saturated aqueous NaHCO₃ (10 mL) solution. After that, the organic layer was dried over Na₂SO₄ and concentrated under reduced pressure. The crude reaction mixture was then purified by flash column with petroleum ether/ethyl acetate (4/1 ratio) on silica gel to afford the compound **84** (706 mg, 41%). ¹**H NMR** (400 MHz, CDCl₃) δ 7.89 (d, *J* = 9.9 Hz, 2H), 7.33 – 7.20 (m, 3H), 7.15 (dt, *J* = 7.9, 2.0 Hz, 2H), 5.04 (d, *J* = 7.8 Hz, 1H), 4.21 (d, *J* = 7.1 Hz, 3H), 3.21 (q, *J* = 4.9, 4.0 Hz, 2H), 1.28 (d, *J* = 7.1 Hz, 2H). ¹³**C NMR** (101 MHz, CDCl₃) δ 172.5, 162.5, 136.0, 134.3, 129.3, 128.5, 127.1, 117.5, 61.7, 53.3, 37.9, 14.0.

Synthesis of compound **85**. Prepared according to literature methods.⁸ To the 100 mL round bottom flask, the 1H-pyrazole-4-carboxylic acid (230 mg, 2.0 mmol), ((3aR,5R,5aS,8aS,8bR)-2,2,7,7-tetramethyltetrahydro-5H-bis([1,3]dioxolo)[4,5-b:4',5'-d]pyran-5-yl)methanol (312 mg, 0.6 equiv), DCC (454 mg, 1.1 equiv), and DMAP (10 mg) were added in 20 mL DCM at room temperature and stirred about 6 hours. After the completion of the reaction, the solution was filtrated by the celite and remove the solvent. The crude product was purified directly by flash chromatograph using the mixture of hexane/ethyl acetate (4:1) to provide the white solid product **85** (362 mg, 51%). ¹**H NMR** (400 MHz, CDCl₃) δ 8.07 (s, 2H), 5.58 (d, *J* = 5.0 Hz, 1H), 4.64 (m, 1H), 4.49 (dd, *J* = 11.6, 4.5 Hz, 1H), 4.41 – 4.28 (m, 3H), 4.21 – 4.09 (m, 1H), 1.53 (d, *J* = 4.2 Hz, 3H), 1.47 (d, *J* = 7.3 Hz, 3H), 1.36 (s, 3H), 1.34 (s, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 162.9, 136.6, 109.7, 109.4, 108.8, 108.7, 96.3, 71.1, 70.7, 70.5, 66.2, 63.3, 26.0, 25.9, 24.9, 24.4.

Synthesis of compound **86**. Prepared according to literature methods.⁹ To a solution of 6bromo-1*H*-pyrazolo[4,3-b]pyridine (5 mmol) and 1-methyl-4-(4,4,5,5-tetramethyl-1,3,2dioxaborolan-2-yl)-1*H*-pyrazole (7.5 mmol, 1.5 equiv), Na₂CO₃ (20 mmol, 4 equiv), Pd(pddf)Cl₂ (5 mol%) in 1,4-dixoane:H₂O (5:2, v/v) under N₂ atmosphere and the reaction mixture was stirred at 85 °C for 12 h. Then water (10 mL) was added, the organic layer was separated and the aqueous layer was extracted three times with DCM. The combined organic layer was washed with saturated aqueous NaHCO₃ (10 mL) solution. After that, the organic layer was then purified by flash column with petroleum ether/ethyl acetate (4/1 ratio) on silica gel to afford the compound **86** (776 mg, 78%). ¹**H NMR** (400 MHz, CDCl₃) δ 8.77 (s, 1H), 8.32 (s, 1H), 7.88 (d, *J* = 15.5 Hz, 2H), 7.77 (s, 1H), 4.01 (s, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 145.1, 137.1, 131.9, 129.4, 126.8, 120.2, 113.5, 113.2, 103.6, 39.5.

12. Faraday Efficiency

Faradaic efficiency was calculated according to the following equation¹⁰:

arada*i*c efficiency =
$$\left(\frac{n * z * F}{1 * t}\right) * 100\% = \left(\frac{0.174 \text{ mmol} * 4 * 26.8 \text{ A} \cdot \text{h}}{15 \text{ mA} * 2 \text{ h}}\right) * 100\% = 62.2\%$$

Where *n* represents the product's amount (mmol), *z* represents the number of electrons transferred \cdot *F* represents Faraday constant (F = 96500 C/mol = 26.8 A·h) \cdot *I* represents the current (mA), *t* represents the electrolysis time (h).

13. Characterization Data for All Compounds

1-(Phenylsulfonyl)-1H-pyrazole (3)

The compound was prepared according to the General procedure. White solid; mp 97.2-98.5 °C. $R_{\rm f}$ = 0.5 (petroleum ether/ethyl acetate 4:1); 36.2 mg, yield 87%. ¹H NMR (400 MHz, CDCl₃) δ 8.11 (d, J = 2.7 Hz, 1H), 8.02 – 7.97 (m, 2H), 7.71 (d, J = 1.5 Hz, 1H), 7.62 (s, 1H), 7.51 (t, J = 7.7 Hz, 2H), 6.40 – 6.37 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 145.4, 137.0, 134.6, 131.3, 129.4, 128.0, 108.9. HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₉H₉N₂O₂S 209.0379; Found: 209.0375.

4-Methyl-1-(phenylsulfonyl)-1H-pyrazole (4)

The compound was prepared according to the General procedure. White solid; mp 81.8-82.4 °C. $R_{\rm f}$ = 0.5 (petroleum ether/ethyl acetate 4:1); 31.5 mg, yield 71%. ¹H NMR (400 MHz, CDCl₃) δ 7.95 (dt, J = 7.3, 1.3 Hz, 2H), 7.84 – 7.79 (m, 1H), 7.58 (dt, J = 6.8, 1.6 Hz, 1H), 7.53 – 7.45 (m, 3H), 2.02 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 146.9, 137.3, 134.4, 129.3, 129.1, 127.8, 119.9, 8.7. HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₁₀H₁₁N₂O₂S 223.0536; Found: 223.0530.

3-Methyl-1-(phenylsulfonyl)-1H-pyrazole (5)

The compound was prepared according to the General procedure. White solid; mp 90.2-91.5 °C. $R_{\rm f}$ = 0.5 (petroleum ether/ethyl acetate 4:1); 29.3 mg, yield 66%. ¹H NMR (400 MHz, CDCl₃) δ 8.01 – 7.68 (m, 3H), 7.54 – 7.47 (m, 1H), 7.39 (t, *J* = 7.7 Hz, 2H), 6.08 (d, *J* = 2.7 Hz, 1H), 2.13 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 155.5, 137.3, 134.2, 132.0, 129.2, 127.7, 109.7, 13.8. HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₁₀H₁₁N₂O₂S 223.0536; Found: 223.0534.

3,5-Dimethyl-1-(phenylsulfonyl)-1*H*-pyrazole (6)

The compound was prepared according to the General procedure. White solid; mp 72.6-74.8 °C. $R_{\rm f}$ = 0.5 (petroleum ether/ethyl acetate 4:1); 25.0 mg, yield 53%. ¹H NMR (400 MHz, CDCl₃) δ 7.93 (dd, J = 8.3, 1.4 Hz, 2H), 7.62 – 7.57 (m, 1H), 7.50 (t, J = 7.6 Hz, 2H), 5.89 (s, 1H), 2.48 (s, 3H), 2.19 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 153.6, 144.2, 138.3, 134.0, 129.3, 127.5, 110.9, 13.8, 13.1. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₁H₁₃N₂O₂S 237.0692; Found: 237.0691.

3,4-Dimethyl-1-(phenylsulfonyl)-1*H*-pyrazole (7)

The compound was prepared according to the General procedure. White solid; mp 84.2-86.1 °C. $R_{\rm f}$ = 0.5 (petroleum ether/ethyl acetate 4:1); 26.0 mg, yield 55%. ¹H NMR (400 MHz, CDCl₃) δ 7.91 (d, J = 7.9 Hz, 2H), 7.72 (s, 1H), 7.59 – 7.53 (m, 1H), 7.46 (t, J = 7.8 Hz, 2H), 2.12 (s, 3H), 1.93 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 145.4, 137.6, 134.0, 129.6, 129.2, 127.7, 119.3, 12.1, 8.4. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₁H₁₃N₂O₂S 237.0692; Found: 237.0693.

4-(tert-Butyl)-1-(phenylsulfonyl)-1H-pyrazole (8)

The compound was prepared according to the General procedure. White solid; mp 59.1-60.3 °C. $R_{\rm f}$ = 0.5 (petroleum ether/ethyl acetate 4:1); 33.3 mg, yield 63%. ¹H NMR (400 MHz, CDCl₃) δ 8.01 – 7.94 (m, 2H), 7.82 (d, *J* = 8.7 Hz, 1H), 7.65 – 7.57 (m, 2H), 7.54 – 7.47 (m, 2H), 1.21 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 144.0, 137.2, 136.1, 134.3, 129.2, 127.8, 126.2, 31.0(1), 30.9 (5). HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₁₃H₁₇N₂O₂S 265.1005; Found: 265.1004.

4-Methoxy-1-(phenylsulfonyl)-1*H*-pyrazole (9)

The compound was prepared according to the General procedure. White solid; mp 57.2-59.3 °C. $R_{\rm f}$ = 0.5 (petroleum ether/ethyl acetate 4:1); 30.0 mg, yield 63%. ¹H NMR (400 MHz, CDCl₃) δ 7.97 – 7.84 (m, 2H), 7.60 (d, *J* = 15.1 Hz, 2H), 7.49 (q, *J* = 6.0, 4.4 Hz, 3H), 3.71 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 148.7, 137.0, 136.7, 134.4, 129.3, 127.8, 112.8, 58.9. HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₁₀H₁₁N₂O₃S 239.0485; Found: 239.0490.

1-(Phenylsulfonyl)-1H-pyrazole-4-carbaldehyde (10)

The compound was prepared according to the General procedure. White solid; mp 98.8-101.5 °C. $R_{\rm f}$ = 0.5 (petroleum ether/ethyl acetate 4:1); 27.4 mg, yield 58%. ¹H NMR (400 MHz, CDCl₃) δ 9.92 (s, 1H), 8.62 (d, 1H), 8.15 – 7.97 (m, 3H), 7.74 – 7.68 (m, 1H), 7.61 – 7.56 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 183.3, 143.7, 135.8, 135.4, 134.8, 129.7, 128.6, 125.4. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₀H₉N₂O₃S 237.0328; Found: 237.0326.

1-(1-(Phenylsulfonyl)-1H-pyrazol-4-yl)ethan-1-one (11)

The compound was prepared according to the General procedure. White solid; mp 85.2-86.5 °C. $R_{\rm f}$ = 0.5 (petroleum ether/ethyl acetate 4:1); 33.5 mg, yield 67%. ¹H NMR (400 MHz, CDCl₃) δ 8.53 (d, J = 11.2 Hz, 1H), 8.03 (dt, J = 11.5, 4.1 Hz, 3H), 7.72 – 7.64 (m, 1H), 7.61 – 7.51 (m, 2H), 2.43 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 191.3, 173.8, 165.3, 144.3, 135.3, 133.1, 129.7, 128.5, 28.2. HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₁₁H₁₁N₂O₃S 251.0485; Found: 251.0489.

Ethyl 1-(phenylsulfonyl)-1H-pyrazole-4-carboxylate (12)

The compound was prepared according to the General procedure. White solid; mp 107.8-109.8 °C. $R_{\rm f}$ = 0.5 (petroleum ether/ethyl acetate 4:1); 24.1 mg, yield 43%.¹H NMR (400 MHz, CDCl₃) δ 8.56 (s, 1H), 8.06 – 8.02 (m, 3H), 7.73 – 7.61 (m, 1H), 7.56 (t, *J* = 7.8 Hz, 2H), 4.29 (q, *J* = 7.1 Hz, 2H), 1.33 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 161.6, 145.3, 136.2, 135.2, 134.1, 129.7, 128.5, 117.8, 61.1, 14.3. HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₁₂H₁₃N₂O₄S 281.0591; Found: 281.0596.

4-Nitro-1-(phenylsulfonyl)-1H-pyrazole (13)

The compound was prepared according to the General procedure. White solid; mp 106.8-107.8 °C. $R_{\rm f}$ = 0.5 (petroleum ether/ethyl acetate 4:1); 23.8 mg, yield 47%.¹H NMR (400 MHz, CDCl₃) δ 8.84 (s, 1H), 8.22 (s, 1H), 8.12 (d, *J* = 7.9 Hz, 2H), 7.79 (t, *J* = 7.5 Hz, 1H), 7.65 (t, *J* = 7.8 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 139.4, 136.7, 136.0, 135.1, 130.0, 129.6, 128.9. HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₉H₈N₃O₄S 254.0230; Found: 254.0234.

1-(Phenylsulfonyl)-1*H*-pyrazole-4-carbonitrile (14)

The compound was prepared according to the General procedure. White solid; mp 101.6-103.4 °C. $R_{\rm f}$ = 0.5 (petroleum ether/ethyl acetate 4:1); 25.6 mg, yield 55%.¹H NMR (400 MHz, CDCl₃) δ 8.56 (d, J = 16.0 Hz, 1H), 8.11 – 8.01 (m, 2H), 7.93 (d, J = 15.8 Hz, 1H), 7.73 (q, J = 8.1, 7.4 Hz, 1H), 7.60 (q, J = 8.3 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 145.6, 136.1, 135.8, 135.3, 129.8, 128.7, 111.4, 95.9. HRMS (ESI) *m*/*z*: [M + H]⁺ Calcd for C₁₀H₈N₃O₂S 234.0332; Found: 234.0329.

1-(Phenylsulfonyl)-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-pyrazole (15)

The compound was prepared according to the General procedure. White solid; mp 130.1-132.0 °C. $R_{\rm f}$ = 0.5 (petroleum ether/ethyl acetate 4:1); 17.4 mg, yield 42%. ¹H NMR (400 MHz, CDCl₃) δ 8.38 (s, 1H), 8.03 – 7.96 (m, 2H), 7.90 (s, 1H), 7.64 – 7.60 (m, 1H), 7.51 (t, *J* = 7.8 Hz, 2H), 1.28 (s, 12H). ¹³C NMR (101 MHz, CDCl₃) δ 149.9, 138.0, 137.0, 134.6, 129.4, 128.2, 84.0, 24.7. HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₁₅H₂₀BN₂O₄S 335.1231; Found: 335.1235.

1-(Phenylsulfonyl)-4-(trifluoromethyl)-1H-pyrazole (16)

The compound was prepared according to the General procedure. Yellow liquid; $R_f = 0.5$ (petroleum ether/ethyl acetate 4:1); 27.1 mg, yield 49%.¹H NMR (400 MHz, CDCl₃) δ 8.40 (s, 1H), 8.09 – 8.04 (m, 2H), 7.87 (s, 1H), 7.73 – 7.69 (m, 1H), 7.59 (t, J = 7.8 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 141.5 ($J_{C-F} = 3.0$ HZ), 135.9, 135.4,130.4 ($J_{C-F} = 4.0$ HZ), 129.7, 128.6, 127.6, 119.8 ($J_{C-F} = 268.7$ HZ).¹⁹F NMR (376 MHz, CDCl₃) δ -57.6. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₀H₈F₃N₂O₂S 277.0253; Found: 277.0256.

4-Fluoro-1-(phenylsulfonyl)-1H-pyrazole (17)

The compound was prepared according to the General procedure. White solid; mp 86.8-87.8 °C. $R_{\rm f}$ = 0.5 (petroleum ether/ethyl acetate 4:1); 23.1 mg, yield 51%. ¹H NMR (400 MHz, CDCl₃) δ 8.01 – 7.94 (m, 3H), 7.66 (t, *J* = 7.5 Hz, 1H), 7.62 (d, *J* = 4.4 Hz, 1H), 7.55 (t, *J* = 7.8 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 150.3(J_{C-F} = 258.6 HZ), 136.5, 134.8, 134.6(J_{C-F} = 17.2 HZ), 129.5, 128.1, 116.4(J_{C-F} = 28.3 HZ). ¹⁹F NMR (376 MHz, CDCl₃) δ -171.3. HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₉H₈FN₂O₂S 227.0285; Found: 227.0286.

4-Chloro-1-(phenylsulfonyl)-1H-pyrazole (18)

The compound was prepared according to the General procedure. White solid; mp 77.2-78.4 °C. $R_{\rm f}$ = 0.5 (petroleum ether/ethyl acetate 4:1); 23.1 mg, yield 51%. ¹H NMR (400 MHz, CDCl₃) δ 8.06 (s, 1H), 7.99 (dd, J = 8.4, 1.3 Hz, 2H), 7.70 – 7.58 (m, 2H), 7.53 (t, J = 7.9 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 144.0, 136.4, 135.0, 129.6, 128.4, 128.3, 114.3. HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₉H₈ClN₂O₂S 242.9990; Found: 242.9988.

3-Chloro-1-(phenylsulfonyl)-1H-pyrazole (19)

The compound was prepared according to the General procedure. White solid; mp 82.5-83.4 °C. $R_{\rm f}$ = 0.5 (petroleum ether/ethyl acetate 4:1); 25.2 mg, yield 52%. ¹H NMR (400 MHz, CDCl₃) δ 8.07 – 7.97 (m, 3H), 7.70 – 7.65 (m, 1H), 7.56 (t, *J* = 7.9 Hz, 2H), 6.33 (d, *J* = 2.7 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 141.4, 136.4, 134.9, 133.0, 129.5, 128.3, 109.1. HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₉H₈ClN₂O₂S 242.9990; Found: 242.9988.

4-Chloro-3,5-dimethyl-1-(phenylsulfonyl)-1*H*-pyrazole (20)

The compound was prepared according to the General procedure. White solid; mp 106.8-108.8 °C. $R_{\rm f}$ = 0.5 (petroleum ether/ethyl acetate 4:1); 30.2 mg, yield 56%. ¹H NMR (400 MHz, CDCl₃) δ 8.07 – 7.81 (m, 2H), 7.68 – 7.59 (m, 1H), 7.52 (dd, *J* = 8.5, 7.2 Hz, 2H), 2.48 (s, 3H), 2.20 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 151.1, 139.4, 137.7, 134.4, 129.4, 127.7, 113.9, 11.8, 11.2. HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₁₁H₁₂CIN₂O₂S 271.0303; Found: 271.0297.

3-Bromo-1-(phenylsulfonyl)-1*H*-pyrazole (21)

The compound was prepared according to the General procedure. White solid; mp 91.5-92.2 °C. $R_{\rm f}$ = 0.5 (petroleum ether/ethyl acetate 4:1); 24.0 mg, yield 42%.¹H NMR (400 MHz, CDCl₃) δ 8.01 (dt, J = 10.2, 2.0 Hz, 3H), 7.69 – 7.64 (m, 1H), 7.55 (t, J = 7.8 Hz, 2H), 6.40 (d, J = 2.7 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 136.4, 135.0, 133.2, 132.9, 129.6, 128.3, 112.3. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₉H₈BrN₂O₂S 286.9484; Found: 286.9483.

4-Bromo-1-(phenylsulfonyl)-1H-pyrazole (22)

The compound was prepared according to the General procedure. White solid; mp 63.8-64.6 °C. $R_{\rm f}$ = 0.5 (petroleum ether/ethyl acetate 4:1); 26.9 mg, yield 47%.¹H NMR (400 MHz, CDCl₃) δ 8.15 (d, *J* = 5.8 Hz, 1H), 8.04 (t, *J* = 6.6 Hz, 2H), 7.72 – 7.66 (m, 2H), 7.58 (q, *J* = 7.5, 7.1 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 145.9, 136.4, 135.0, 130.6, 129.6, 128.3, 97.7. HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₉H₈BrN₂O₂S 286.9484; Found: 286.9481.

4-Bromo-3-methyl-1-(phenylsulfonyl)-1H-pyrazole (23)

The compound was prepared according to the General procedure. White solid; mp 74.3-75.8 °C. $R_{\rm f}$ = 0.5 (petroleum ether/ethyl acetate 4:1); 27.6 mg, yield 46%.¹H NMR (400 MHz, CDCl₃) δ 8.01 (s, 1H), 7.96 (d, *J* = 7.8 Hz, 2H), 7.62 (t, *J* = 7.5 Hz, 1H), 7.51 (t, *J* = 7.7 Hz, 2H), 2.19 (s, 3H).¹³C NMR (101 MHz, CDCl₃) δ 145.9, 136.4, 135.0, 130.6, 129.6, 128.3, 97.7, 12.5. HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₁₀H₁₀BrN₂O₂S 300.9641; Found: 300.9633.

4-Bromo-3,5-dimethyl-1-(phenylsulfonyl)-1H-pyrazole (24)

The compound was prepared according to the General procedure. White solid; mp 103.8-105.2 °C. $R_{\rm f}$ = 0.5 (petroleum ether/ethyl acetate 4:1); 32.0 mg, yield 51%.¹H NMR (400 MHz, CDCl₃) δ 8.00 – 7.86 (m, 2H), 7.66 – 7.60 (m, 1H), 7.52 (t, *J* = 7.7 Hz, 2H), 2.50 (s, 3H), 2.21 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 152.3, 141.2, 137.7, 134.4, 129.4, 127.7, 101.1, 12.8, 12.3. HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₁₁H₁₂BrN₂O₂S 314.9797; Found: 314.9797.

4-Phenyl-1-(phenylsulfonyl)-1H-pyrazole (25)

The compound was prepared according to the General procedure. White solid; mp 67.3-68.8 °C. $R_{\rm f}$ = 0.5 (petroleum ether/ethyl acetate 4:1); 35.2 mg, yield 62%.¹H NMR (400 MHz, CDCl₃) δ 8.35 (s, 1H), 8.10 – 8.01 (m, 3H), 7.68 (t, *J* = 7.5 Hz, 1H), 7.58 (t, *J* = 7.7 Hz, 2H), 7.50 (d, *J* = 7.6 Hz, 2H), 7.41 (t, *J* = 7.6 Hz, 2H), 7.33 (t, *J* = 7.3 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 143.5, 137.0, 134.7, 130.2, 129.5, 129.1, 128.2, 128.0, 127.0, 126.1, 126.0. HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₁₅H₁₃N₂O₂S 285.0692; Found: 285.0689.

1-(Phenylsulfonyl)-3-(m-tolyl)-1H-pyrazole (26)

The compound was prepared according to the General procedure. White solid; mp 89.5-90.7 °C. $R_{\rm f}$ = 0.5 (petroleum ether/ethyl acetate 4:1); 34.0 mg, yield 57%. ¹H NMR (400 MHz, CDCl₃) δ 8.15 (s, 1H), 8.08 (d, *J* = 7.9 Hz, 2H), 7.69 – 7.54 (m, 5H), 7.31 (t, *J* = 8.0 Hz, 1H), 7.20 (d, *J* = 7.6 Hz, 1H), 6.73 (s, 1H), 2.40 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 157.3, 138.4, 137.3, 134.4, 132.7, 131.3, 130.1, 129.4, 128.6, 128.1, 127.1, 106.9, 21.4. HRMS (ESI) *m*/*z*: [M + H]⁺ Calcd for C₁₆H₁₅N₂O₂S 299.0849; Found: 299.0851.

3-(3-Methoxyphenyl)-1-(phenylsulfonyl)-1H-pyrazole (27)

The compound was prepared according to the General procedure. White solid; mp 100.8-102.1 °C. $R_{\rm f}$ = 0.5 (petroleum ether/ethyl acetate 4:1); 36.4 mg, yield 58%. ¹H NMR (400 MHz, CDCl₃) δ 8.13 (d, J = 2.9 Hz, 1H), 8.07 (d, J = 7.8 Hz, 2H), 7.77 (d, J = 8.3 Hz, 2H), 7.64 (d, J = 7.5 Hz, 1H), 7.55 (t, J = 7.6 Hz, 2H), 6.94 (d, J = 8.3 Hz, 2H), 6.67 (s, 1H), 3.85 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 160.5, 157.0, 137.4, 134.4, 132.7, 129.4, 128.1, 127.9, 124.1, 114.1, 106.5, 55.4. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₆H₁₅N₂O₃S 315.0798; Found: 315.0810.

3-(3-Bromophenyl)-1-(phenylsulfonyl)-1H-pyrazole (28)

The compound was prepared according to the General procedure. White solid; mp 99.2-100.4 °C. $R_f = 0.5$ (petroleum ether/ethyl acetate 4:1); 42.0 mg, yield 58%. ¹H NMR (400 MHz, CDCl₃) δ 8.17 (d, J = 2.9 Hz, 1H), 8.08 (d, J = 7.9 Hz, 2H), 7.99 (s, 1H), 7.73 (d, J = 7.8 Hz, 1H), 7.67 (t, J = 7.6 Hz, 1H), 7.57 (t, J = 7.8 Hz, 2H), 7.49 (d, J = 8.1 Hz, 1H), 7.27 (t, J = 7.7 Hz, 1H), 6.71 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 155.6, 137.0, 134.7, 133.4, 132.8, 132.2, 130.3, 129.5, 129.3, 128.2, 125.1, 122.9, 106.7. HRMS (ESI) *m*/*z*: [M + H]⁺ Calcd for C₁₅H₁₂BrN₂O₂S 362.9797; Found: 362.9801.

3-Phenyl-1-(phenylsulfonyl)-1H-pyrazole (29)

The compound was prepared according to the General procedure. White solid; mp 96.1-97.5 °C. $R_{\rm f}$ = 0.5 (petroleum ether/ethyl acetate 4:1); 34.1 mg, yield 60%. ¹H NMR (400 MHz, CDCl₃) δ 8.13 (d, J = 2.7 Hz, 1H), 8.05 (dd, J = 8.3, 1.5 Hz, 2H), 7.81 (dt, J = 5.8, 1.6 Hz, 2H), 7.63 – 7.59 (m, 1H), 7.54 – 7.49 (m, 2H), 7.41 – 7.34 (m, 3H), 6.71 (d, J = 2.7 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 144.8, 137.2, 134.4, 132.7, 131.3, 129.3(4), 129.2(6), 128.7, 128.1, 126.4, 106.7. HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₁₅H₁₃N₂O₂S 285.0692; Found: 285.0688.

1-(Phenylsulfonyl)-3-(p-tolyl)-1H-pyrazole (30)

The compound was prepared according to the General procedure. White solid; mp 128.1-130.2 °C. $R_{\rm f}$ = 0.5 (petroleum ether/ethyl acetate 4:1); 39.9 mg, yield 67%. ¹H NMR (400 MHz, CDCl₃) δ 8.22 – 7.83 (m, 3H), 7.78 – 7.51 (m, 5H), 7.28 – 7.20 (m, 2H), 6.76 – 6.64 (m, 1H), 2.39 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 157.2, 139.4, 137.3, 134.4, 132.6, 129.3(9), 129.3(5), 128.6, 128.1, 126.4, 106.7, 21.4. HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₁₆H₁₅N₂O₂S 299.0849; Found: 299.0845.

3-(4-Fluorophenyl)-1-(phenylsulfonyl)-1H-pyrazole (31)

The compound was prepared according to the General procedure. White solid; mp 150.8-151.3 °C. $R_{\rm f}$ = 0.5 (petroleum ether/ethyl acetate 4:1); 26.6 mg, yield 44%. ¹H NMR (400 MHz, CDCl₃) δ 8.12 (d, J = 2.8 Hz, 1H), 8.04 (dd, J = 7.6, 1.7 Hz, 2H), 7.77 (dd, J = 8.6, 5.5 Hz, 2H), 7.62 (t, J = 7.5 Hz, 1H), 7.52 (t, J = 7.8 Hz, 2H), 7.06 (t, J = 8.7 Hz, 2H), 6.65 (d, J = 2.8 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 163.4 (J_{C-F} = 249.5 HZ), 156.2, 137.2, 134.5, 132.8, 129.4, 128.3 (J_{C-F} = 8.1 HZ), 128.1, 127.7 (J_{C-F} = 3.0 HZ), 115.7 (J_{C-F} = 21.2 HZ), 106.5. ¹⁹F NMR (376 MHz, CDCl₃) δ -111.9. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₅H₁₂FN₂O₂S 303.0598; Found: 303.0608.

3-(4-Chlorophenyl)-1-(phenylsulfonyl)-1H-pyrazole (32)

The compound was prepared according to the General procedure. White solid; mp 146.5-147.9 °C. $R_{\rm f}$ = 0.5 (petroleum ether/ethyl acetate 4:1); 29.3 mg, yield 46%. ¹H NMR (400 MHz, CDCl₃) δ 8.12 (s, 1H), 8.04 (d, *J* = 7.9 Hz, 2H), 7.72 (d, *J* = 8.2 Hz, 2H), 7.61 (d, *J* = 7.6 Hz, 1H), 7.53 (d, *J* = 8.0 Hz, 2H), 7.33 (d, *J* = 8.1 Hz, 2H), 6.66 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 156.0, 137.1, 135.2, 134.6, 132.8, 129.9, 129.5, 128.9, 128.2, 127.7, 106.6. HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₁₅H₁₂CIN₂O₂S 319.0303; Found: 319.0315.

3-(4-Bromophenyl)-1-(phenylsulfonyl)-1H-pyrazole (33)

The compound was prepared according to the General procedure. White solid; mp 155.6-157.8 °C. $R_{\rm f}$ = 0.5 (petroleum ether/ethyl acetate 4:1); 29.7 mg, yield 41%. ¹H NMR (400 MHz, CDCl₃) δ 8.13 (s, 1H), 8.04 (dd, *J* = 7.7, 1.7 Hz, 2H), 7.68 – 7.62 (m, 3H), 7.56 – 7.50 (m, 4H), 6.67 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 156.0, 137.1, 134.5, 132.8, 131.8, 130.3, 129.4, 128.1, 127.9, 123.4, 106.4. HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₁₅H₁₂BrN₂O₂S 362.9797; Found: 362.9800.

1-(Phenylsulfonyl)-1H-imidazole (34)

The compound was prepared according to the General procedure. Yellow liquid; $R_f = 0.5$ (petroleum ether/ethyl acetate 4:1); 29.1 mg, yield 70%. ¹H NMR (400 MHz, CDCl₃) δ 8.01 (s, 1H), 7.93 (d, J = 7.9 Hz, 2H), 7.66 (t, J = 7.6 Hz, 1H), 7.55 (t, J = 7.7 Hz, 2H), 7.29 (s, 1H), 7.07 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 137.9, 136.7, 134.9, 131.5, 129.8, 127.3, 117.5. HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₉H₉N₂O₂S 209.0379; Found: 209.0379.

6-Methoxy-1-(phenylsulfonyl)-1H-benzo[d]imidazole (35)

The compound was prepared according to the General procedure. White solid; mp 137.5-139.4 °C. $R_f = 0.5$ (petroleum ether/ethyl acetate 4:1); 42.0 mg, yield 73%. ¹H NMR (400 MHz, CDCl₃) δ 8.31 (s, 1H), 7.94 (d, J = 7.5 Hz, 2H), 7.71 (d, J = 8.7 Hz, 1H), 7.59 (t, J = 7.2 Hz, 1H), 7.54 – 7.44 (m, 2H), 7.20 (d, J = 2.6 Hz, 1H), 6.98 (d, J = 8.9 Hz, 1H), 3.79 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 157.8, 145.2, 141.8, 137.6, 134.8, 129.8, 127.1, 125.0, 115.2, 112.9, 103.4, 55.8. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₄H₁₃N₂O₃S 289.0641; Found: 289.0643.

2-Methyl-1-(phenylsulfonyl)-1H-benzo[d]imidazole (36)

The compound was prepared according to the General procedure. White solid; mp 87.8-89.0 °C. $R_{\rm f}$ = 0.5 (petroleum ether/ethyl acetate 4:1); 40.3 mg, yield 74%. ¹H NMR (400 MHz, CDCl₃) δ 8.01 (d, *J* = 7.7 Hz, 1H), 7.90 (d, *J* = 7.8 Hz, 2H), 7.59 (dd, *J* = 11.7, 7.1 Hz, 2H), 7.47 (t, *J* = 7.7 Hz, 2H), 7.31 (t, *J* = 6.7 Hz, 2H), 2.79 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 151.3, 141.9, 138.3, 134.6, 133.1, 129.7, 126.7, 124.8, 124.7, 119.7, 113.4, 17.0. HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₁₄H₁₃N₂O₂S 273.0692; Found: 273.0690.

2-Chloro-1-(phenylsulfonyl)-1H-benzo[d]imidazole (37)

The compound was prepared according to the General procedure. White solid; mp 79.2-81.1 °C. $R_{\rm f}$ = 0.5 (petroleum ether/ethyl acetate 4:1); 31.0 mg, yield 53%. ¹H NMR (400 MHz, CDCl₃) δ 8.11 (d, J = 7.1 Hz, 1H), 8.01 (dd, J = 8.1, 1.6 Hz, 2H), 7.68 – 7.61 (m, 2H), 7.53 (t, J = 8.0 Hz, 2H), 7.44 – 7.34 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 140.9, 138.4, 137.6, 135.2, 133.8, 129.7, 127.5, 125.8, 125.3, 120.0, 113.9. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₃H₁₀ClN₂O₂S 293.0146; Found: 293.0149.

2-Bromo-1-(phenylsulfonyl)-1H-benzo[d]imidazole (38)

The compound was prepared according to the General procedure. White solid; mp 79.2-81.5 °C. $R_{\rm f}$ = 0.5 (petroleum ether/ethyl acetate 4:1); 37.0 mg, yield 55%. ¹H NMR (400 MHz, CDCl₃) δ 8.13 (d, *J* = 8.1 Hz, 1H), 8.02 (d, *J* = 7.2 Hz, 2H), 7.64 (dt, *J* = 7.7, 4.2 Hz, 2H), 7.54 – 7.49

(m, 2H), 7.45 – 7.28 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 142.6, 137.7, 135.2, 134.3, 129.7, 127.6, 126.0, 125.8, 125.2, 119.9, 114.0. HRMS (ESI) *m*/*z*: [M + H]⁺ Calcd for C₁₃H₁₀BrN₂O₂S 336.9641; Found: 336.9640.

6-Chloro-1-(phenylsulfonyl)-1H-benzo[d]imidazole (39)

The compound was prepared according to the General procedure. White solid; mp 152.5-153.9 °C. $R_{\rm f}$ = 0.5 (petroleum ether/ethyl acetate 4:1); 28.6 mg, yield 49%. ¹H NMR (400 MHz, CDCl₃) δ 8.35 (s, 1H), 7.98 (d, *J* = 8.0 Hz, 2H), 7.86 (d, *J* = 2.0 Hz, 1H), 7.66 (dd, *J* = 10.4, 8.1 Hz, 2H), 7.60 – 7.51 (m, 2H), 7.32 (dd, *J* = 8.6, 2.0 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 142.5, 141.8, 137.3, 135.2, 131.7, 131.4, 130.0, 127.2, 125.7, 121.9, 112.8. HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₁₃H₁₀CIN₂O₂S 293.0146; Found: 293.0144.

1-(Phenylsulfonyl)-1*H*-indazole (40)

The compound was prepared according to the General procedure. White solid; mp 56.8-58.0 °C. $R_{\rm f}$ = 0.5 (petroleum ether/ethyl acetate 4:1); 36.1 mg, yield 70%. ¹H NMR (400 MHz, CDCl₃) δ 8.31 – 8.11 (m, 2H), 7.98 (d, *J* = 7.1 Hz, 2H), 7.69 (d, *J* = 8.4 Hz, 1H), 7.59 – 7.53 (m, 2H), 7.45 (t, *J* = 7.8 Hz, 2H), 7.33 (t, *J* = 7.7 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 141.5, 140.3, 137.6, 134.2, 129.3, 129.2, 127.5, 125.8, 124.3, 121.4, 113.2. HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₁₃H₁₁N₂O₂S 259.0536; Found: 259.0533.

3-Methyl-1-(phenylsulfonyl)-1H-indazole (41)

The compound was prepared according to the General procedure. White solid; mp 134.2-136.1 °C. $R_{\rm f}$ = 0.5 (petroleum ether/ethyl acetate 4:1); 33.7 mg, yield 62%. ¹H NMR (400 MHz, CDCl₃) δ 8.12 (d, J = 8.5 Hz, 1H), 7.91 (d, J = 7.5 Hz, 2H), 7.56 – 7.46 (m, 3H), 7.38 (t, J = 7.8 Hz, 2H), 7.27 (t, J = 7.6 Hz, 1H), 2.48 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 151.0, 141.1, 137.6, 133.9, 129.2, 129.1, 127.4, 126.2, 124.0, 120.6, 113.3, 12.3. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₄H₁₃N₂O₂S 273.0692; Found: 273.0686.

4-Methyl-1-(phenylsulfonyl)-1*H*-indazole (42)

The compound was prepared according to the General procedure. White solid; mp 69.3-71.2 °C. $R_{\rm f}$ = 0.5 (petroleum ether/ethyl acetate 4:1); 31.6 mg, yield 58%. ¹H NMR (400 MHz, CDCl₃) δ 8.20 (d, J = 3.1 Hz, 1H), 7.99 (dd, J = 19.8, 8.0 Hz, 3H), 7.52 (d, J = 7.7 Hz, 1H), 7.43 (d, J = 8.2 Hz, 3H), 7.08 (d, J = 7.1 Hz, 1H), 2.53 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 141.4, 138.9, 137.6, 134.2, 134.1, 131.2, 129.2, 127.5, 126.4, 120.7, 112.8, 21.2. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₄H₁₃N₂O₂S 273.0692; Found: 273.0686.

5-Methyl-1-(phenylsulfonyl)-1H-indazole (43)

The compound was prepared according to the General procedure. White solid; mp 72.6-73.2 °C. $R_{\rm f}$ = 0.5 (petroleum ether/ethyl acetate 4:1); 36.4 mg, yield 67%. ¹H NMR (400 MHz, CDCl₃) δ 8.08 (q, J = 6.3, 5.5 Hz, 2H), 7.99 – 7.92 (m, 2H), 7.55 – 7.50 (m, 1H), 7.45 – 7.35 (m, 4H), 2.44 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 140.4, 140.3, 137.6, 134.2, 132.1, 129.5, 129.2, 127.5, 126.1, 124.6, 110.5, 18.4. HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₁₄H₁₃N₂O₂S 273.0692; Found: 273.0685.

5-Methoxy-1-(phenylsulfonyl)-1H-indazole (44)

The compound was prepared according to the General procedure. White solid; mp 66.8-68.6 °C. $R_{\rm f}$ = 0.5 (petroleum ether/ethyl acetate 4:1); 42.6 mg, yield 74%. ¹H NMR (400 MHz, CDCl₃) δ 8.06 (d, J = 10.2 Hz, 2H), 7.92 (d, J = 8.4 Hz, 2H), 7.51 (t, J = 7.5 Hz, 1H), 7.39 (d, J = 7.8 Hz, 2H), 7.16 (d, J = 6.8 Hz, 1H), 6.99 (s, 1H), 3.80 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 157.0, 141.4, 137.4, 135.7, 134.2, 129.2, 127.4, 126.9, 120.4, 114.1, 101.4, 55.7. HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₁₄H₁₃N₂O₃S 289.0641; Found: 289.0637.

5-Chloro-1-(phenylsulfonyl)-1H-indazole (45)

The compound was prepared according to the General procedure. White solid; mp 68.9-70.6

°C. $R_f = 0.5$ (petroleum ether/ethyl acetate 4:1); 38.5 mg, yield 66%. ¹H NMR (400 MHz, CDCl₃) δ 8.17 (d, J = 11.7 Hz, 2H), 7.99 (d, J = 7.9 Hz, 2H), 7.68 (s, 1H), 7.60 (t, J = 7.5 Hz, 1H), 7.51 (dt, J = 15.7, 8.5 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 140.6, 138.8, 137.2, 134.5, 130.2, 129.9, 129.4, 127.6, 126.9, 120.8, 114.3. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₃H₁₀ClN₂O₂S 293.0146; Found: 293.0142.

5-Bromo-1-(phenylsulfonyl)-1H-indazole (46)

The compound was prepared according to the General procedure. White solid; mp 83.3-84.8 °C. $R_{\rm f}$ = 0.5 (petroleum ether/ethyl acetate 4:1); 45.0 mg, yield 67%. ¹H NMR (400 MHz, CDCl₃) δ 8.14 – 8.06 (m, 2H), 7.99 – 7.93 (m, 2H), 7.84 – 7.79 (m, 1H), 7.66 – 7.54 (m, 2H), 7.46 (q, *J* = 9.2, 7.7 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 140.4, 139.1, 137.2, 134.5, 132.4, 129.3, 127.5, 127.4, 123.9, 117.6, 114.5. HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₁₃H₁₀BrN₂O₂S 336.9641; Found: 336.9639.

1-(Phenylsulfonyl)-1H-indazole-5-carbonitrile (47)

The compound was prepared according to the General procedure. White solid; mp 153.7-155.1 °C. $R_{\rm f}$ = 0.5 (petroleum ether/ethyl acetate 4:1); 36.8 mg, yield 65%.¹H NMR (400 MHz, CDCl₃) δ 8.30 (d, J = 8.8 Hz, 1H), 8.25 (s, 1H), 8.06 (s, 1H), 7.98 (d, J = 7.9 Hz, 2H), 7.75 (d, J = 8.8 Hz, 1H), 7.59 (t, J = 5.9 Hz, 1H), 7.47 (t, J = 7.7 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 141.2, 140.8, 136.9, 134.9, 131.6, 129.5, 127.7, 127.2, 125.4, 118.4, 114.3, 108.1. HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₁₄H₁₀N₃O₂S 284.0488; Found: 284.0492.

1-(Phenylsulfonyl)-1H-1,2,4-triazole (48)

The compound was prepared according to the General procedure. White solid; mp 100.8-102.1 °C. $R_{\rm f}$ = 0.5 (petroleum ether/ethyl acetate 4:1); 29.4 mg, yield 68%. ¹H NMR (400 MHz, CDCl₃) δ 8.75 (s, 1H), 8.09 – 7.97 (m, 3H), 7.71 (d, *J* = 7.3 Hz, 1H), 7.62 – 7.54 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 154.3, 144.7, 135.7, 135.6, 129.8, 128.6. HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₈H₈N₃O₂S 210.0332; Found: 210.0332.

1-(Phenylsulfonyl)-1*H*-benzo[d][1,2,3]triazole (49)

The compound was prepared according to the General procedure. White solid; mp 117.0-118.8 °C. $R_{\rm f}$ = 0.5 (petroleum ether/ethyl acetate 4:1); 33.2 mg, yield 64%. ¹H NMR (400 MHz, CDCl₃) δ 8.13 – 8.01 (m, 4H), 7.66 – 7.59 (m, 2H), 7.53 – 7.43 (m, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 145.4, 136.9, 135.3, 131.6, 130.4, 129.7, 127.9, 125.9, 120.9, 112.0. HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₁₂H₁₀N₃O₂S 260.0488; Found: 260.0497.

5,6-Dimethyl-1-(phenylsulfonyl)-1H-benzo[d][1,2,3]triazole (50)

The compound was prepared according to the General procedure. White solid; mp 124.5-126.2 °C. $R_{\rm f}$ = 0.5 (petroleum ether/ethyl acetate 4:1); 33.2 mg, yield 64%.¹H NMR (400 MHz, CDCl₃) δ 8.10 – 8.00 (m, 2H), 7.80 (d, *J* = 7.4 Hz, 1H), 7.70 (d, *J* = 7.3 Hz, 1H), 7.61 – 7.55 (m, 1H), 7.49 – 7.43 (m, 2H), 2.39 (s, 3H), 2.31 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 144.5, 141.2, 137.1, 135.9, 135.0, 130.5, 129.6, 127.7, 119.6, 111.4, 21.1, 20.3. HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₁₄H₁₄N₃O₂S 288.0807; Found: 288.0808.

7-(Phenylsulfonyl)-7H-purine (51)

The compound was prepared according to the General procedure. White solid; mp 146.3-147.1 °C. $R_{\rm f}$ = 0.5 (petroleum ether/ethyl acetate 4:1); 36.9 mg, yield 71%.¹H NMR (400 MHz, CDCl₃) δ 9.30 (s, 1H), 9.19 (s, 1H), 8.65 (s, 1H), 8.02 (d, *J* = 6.7 Hz, 2H), 7.70 (t, *J* = 7.5 Hz, 1H), 7.58 (t, *J* = 7.7 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 161.3, 155.3, 146.1, 142.3, 136.6, 135.9, 130.4, 127.5, 122.8. HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₁₁H₉N₄O₂S 261.0441; Found: 261.0437.

6-Chloro-7-(phenylsulfonyl)-7H-purine (52)

The compound was prepared according to the General procedure. White solid; mp 210.1-212.1 °C. $R_{\rm f}$ = 0.5 (petroleum ether/ethyl acetate 4:1); 32.9 mg, yield 56%.¹H NMR (400 MHz, CDCl₃) δ 8.82 (s, 1H), 8.55 (s, 1H), 8.26 (d, *J* = 7.8 Hz, 2H), 7.70 (t, *J* = 7.6 Hz, 1H), 7.58 (t, *J* = 7.7 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 153.6, 152.3, 150.2, 142.4, 136.2, 135.8, 132.2, 129.8, 128.7. HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₁₁H₈ClN₄O₂S 295.0051; Found: 295.0048.

2,6-Dichloro-7-(phenylsulfonyl)-7H-purine (53)

The compound was prepared according to the General procedure. White solid; mp 141.6-142.8 °C. $R_{\rm f}$ = 0.5 (petroleum ether/ethyl acetate 4:1); 47.9 mg, yield 73%.¹H NMR (400 MHz, CDCl₃) δ 8.53 (s, 1H), 8.26 (d, *J* = 7.9 Hz, 2H), 7.73 (t, *J* = 7.5 Hz, 1H), 7.62 (t, *J* = 7.7 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 154.8, 152.9, 151.2, 142.8, 136.1, 135.8, 131.3, 129.9, 128.9. HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₁₁H₇Cl₂N₄O₂S 328.9661; Found: 328.9663.

6-Methoxy-7-(phenylsulfonyl)-7*H*-purine (54)

The compound was prepared according to the General procedure. White solid; mp 140.4-142.3 °C. $R_{\rm f}$ = 0.5 (petroleum ether/ethyl acetate 4:1); 40.1 mg, yield 69%.¹H NMR (400 MHz, CDCl₃) δ 8.60 (s, 1H), 8.36 (s, 1H), 8.25 (dd, *J* = 8.5, 1.3 Hz, 2H), 7.66 (tt, *J* = 6.9, 1.3 Hz, 1H), 7.58 – 7.52 (m, 2H), 4.12 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 161.4, 154.1, 150.6, 139.7, 136.8, 135.4, 129.6, 128.6, 122.1, 54.7. HRMS (ESI) *m*/*z*: [M + H]⁺ Calcd for C₁₂H₁₁N₄O₃S 291.0546; Found: 291.0546.

1-Tosyl-1*H*-pyrazole (55)

The compound was prepared according to the General procedure. White solid; mp 130.2-131.6 °C. $R_{\rm f}$ = 0.5 (petroleum ether/ethyl acetate 4:1); 35.5 mg, yield 80%. ¹H NMR (400 MHz, CDCl₃) δ 8.06 (d, J = 2.7 Hz, 1H), 7.85 (d, J = 8.4 Hz, 2H), 7.67 (s, 1H), 7.28 (d, J = 8.1 Hz, 2H), 6.37 – 6.32 (m, 1H), 2.36 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 146.0, 145.3, 134.0, 131.2, 130.1, 128.2, 108.8, 21.7. HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₁₀H₁₁N₂O₂S 223.0536; Found: 223.0532.

1-((4-Methoxyphenyl)sulfonyl)-1H-pyrazole (56)

The compound was prepared according to the General procedure. White solid; mp 101.2-102.6 °C. $R_{\rm f}$ = 0.5 (petroleum ether/ethyl acetate 4:1); 33.8 mg, yield 71%. ¹H NMR (400 MHz, CDCl₃) δ 8.07 (d, J = 2.8 Hz, 1H), 7.94 – 7.88 (m, 2H), 7.68 (d, J = 1.6 Hz, 1H), 6.97 – 6.92 (m, 2H), 6.38 – 6.31 (m, 1H), 3.82 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 164.5, 145.1, 131.0, 130.6, 128.2, 114.7, 108.6, 55.8. HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₁₀H₁₁N₂O₃S 239.0485; Found: 239.0480.

1-((4-Ethylphenyl)sulfonyl)-1H-pyrazole (57)

The compound was prepared according to the General procedure. White solid; mp 57.8-59.1 °C. $R_{\rm f}$ = 0.5 (petroleum ether/ethyl acetate 4:1); 32.6 mg, yield 69%. ¹H NMR (400 MHz, CDCl₃) δ 8.12 (d, J = 2.8 Hz, 1H), 7.93 (d, J = 8.1 Hz, 2H), 7.73 (s, 1H), 7.36 (d, J = 8.1 Hz, 2H), 6.40 (d, J = 2.2 Hz, 1H), 2.71 (q, J = 7.7 Hz, 2H), 1.23 (t, J = 7.5 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 152.0, 145.2, 134.2, 131.2, 129.0, 128.3, 108.8, 28.9, 14.9. HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₁₁H₁₃N₂O₂S 237.0692; Found: 237.0685.

1-((4-(tert-Butyl)phenyl)sulfonyl)-1H-pyrazole (58)

The compound was prepared according to the General procedure. White solid; mp 98.1-100.0 °C. $R_{\rm f}$ = 0.5 (petroleum ether/ethyl acetate 4:1); 33.8 mg, yield 64%. ¹H NMR (400 MHz, CDCl₃) δ 8.09 (s, 1H), 7.95 – 7.86 (m, 2H), 7.70 (s, 1H), 7.51 (d, *J* = 8.8 Hz, 2H), 6.37 (d, *J* = 2.5 Hz, 1H), 1.28 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 158.7, 145.2, 134.0, 131.2, 128.0, 126.5, 108.7, 35.4, 30.9. HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₁₃H₁₇N₂O₂S 265.1005; Found: 265.1007.

1-((4-Fluorophenyl)sulfonyl)-1H-pyrazole (59)

The compound was prepared according to the General procedure. White solid; mp 80.8-81.9 °C. $R_{\rm f}$ = 0.5 (petroleum ether/ethyl acetate 4:1); 28.5 mg, yield 63%. ¹H NMR (400 MHz, CDCl₃) δ 8.14 – 8.03 (m, 3H), 7.76 (s, 1H), 7.23 (t, *J* = 8.4 Hz, 2H), 6.43 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 166.2 ($J_{\rm C-F}$ = 208.1 HZ), 145.6, 133.0 ($J_{\rm C-F}$ = 2.0 HZ), 131.2, 131.1, 116.9 ($J_{\rm C-F}$ = 19.2 HZ), 109.1. ¹⁹F NMR (376 MHz, CDCl₃) δ -101.3. HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₉H₈FN₂O₂S 227.0285; Found: 227.0280.

1-((4-Chlorophenyl)sulfonyl)-1*H*-pyrazole (60)

The compound was prepared according to the General procedure. White solid; mp 98.3-99.8 °C. $R_{\rm f}$ = 0.5 (petroleum ether/ethyl acetate 4:1); 21.8 mg, yield 45%.¹H NMR (400 MHz, DMSO- d_6) δ 8.46 (s, 1H), 8.06 – 7.84 (m, 3H), 7.72 (d, J = 8.3 Hz, 2H), 6.59 (s, 1H). ¹³C NMR (101 MHz, DMSO- d_6) δ 146.7, 140.7, 135.6, 133.1, 130.6, 130.0, 110.5. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₉H₈CIN₂O₂S 242.9990; Found: 242.9987.

1-((4-Bromophenyl)sulfonyl)-1*H*-pyrazole (61)

The compound was prepared according to the General procedure. White solid; mp 152.3-153.4 °C. $R_{\rm f}$ = 0.5 (petroleum ether/ethyl acetate 4:1); 41.8 mg, yield 73%.¹H NMR (400 MHz, CDCl₃) δ 8.12 (s, 1H), 7.89 (d, *J* = 8.6 Hz, 2H), 7.76 (s, 1H), 7.69 (d, *J* = 8.7 Hz, 2H), 6.44 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 145.7, 136.0, 132.8, 131.3, 130.2, 129.6, 109.2. HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₉H₈BrN₂O₂S 286.9484; Found: 286.9484.

1-((4-lodophenyl)sulfonyl)-1H-pyrazole (62)

The compound was prepared according to the General procedure. White solid; mp 156.4-158.1 °C. $R_{\rm f}$ = 0.5 (petroleum ether/ethyl acetate 4:1); 44.1 mg, yield 66%.¹H NMR (400 MHz, CDCl₃) δ 8.07 (d, J = 2.6 Hz, 1H), 7.92 – 7.84 (m, 2H), 7.70 (dd, J = 9.5, 7.7 Hz, 3H), 6.39 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 145.6, 138.7, 131.2, 129.2, 128.1, 109.1, 102.8. HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₉H₈IN₂O₂S 334.9346; Found: 334.9346.

1-((4-Nitrophenyl)sulfonyl)-1H-pyrazole (63)

The compound was prepared according to the General procedure. White solid; mp 90.3-92.1 °C. $R_{\rm f}$ = 0.5 (petroleum ether/ethyl acetate 4:1); 29.9 mg, yield 59%. ¹H NMR (400 MHz, DMSO- d_6) δ 8.54 – 8.32 (m, 3H), 8.25 – 8.12 (m, 2H), 7.91 (s, 1H), 6.61 (s, 1H). ¹³C NMR (101 MHz, DMSO- d_6) δ 151.5, 147.3, 141.7, 133.5, 129.8, 125.6, 110.9. HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₉H₈N₃O₄S 254.0230; Found: 254.0235.

4-((1H-Pyrazol-1-yl)sulfonyl)benzonitrile (64)

The compound was prepared according to the General procedure. White solid; mp 121.3-122.7 °C. $R_{\rm f}$ = 0.5 (petroleum ether/ethyl acetate 4:1); 30.3 mg, yield 65%. ¹H NMR (400 MHz, CDCl₃) δ 8.14 (dd, J = 8.5, 5.6 Hz, 3H), 7.86 (d, J = 7.9 Hz, 2H), 7.79 (s, 1H), 6.48 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 146.3, 141.0, 133.2, 131.6, 128.8, 118.3, 116.9, 109.7. HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₁₀H₈N₃O₂S 234.0332; Found: 234.0326.

1-((4-(Trifluoromethyl)phenyl)sulfonyl)-1H-pyrazole (65)

The compound was prepared according to the General procedure. White solid; mp 74.8-75.8 °C. R_f = 0.5 (petroleum ether/ethyl acetate 4:1); 38.6 mg, yield 70%. ¹H NMR (400 MHz, CDCl₃)

δ 8.16 – 8.09 (m, 3H), 7.78 (d, *J* = 8.2 Hz, 2H), 7.74 (s, 1H), 6.42 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 146.0, 140.5, 136.0 (*J*_{C-F} = 34.3 HZ), 131.5, 128.7, 126.5 (*J*_{C-F} = 4.0 HZ), 121.5 (*J*_{C-F} = 274.7 HZ), 109.4. ¹⁹F NMR (376 MHz, CDCl₃) δ -63.5. HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₁₀H₈F₃N₂O₂S 277.0253; Found: 277.0256.

1-((4-(Trifluoromethoxy)phenyl)sulfonyl)-1*H*-pyrazole (66)

The compound was prepared according to the General procedure. White solid; mp 126.8-127.7 °C. $R_{\rm f}$ = 0.5 (petroleum ether/ethyl acetate 4:1); 36.8 mg, yield 63%. ¹H NMR (400 MHz, CDCl₃) δ 8.14 – 8.01 (m, 3H), 7.74 (s, 1H), 7.33 (d, *J* = 8.5 Hz, 2H), 6.41 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 153.5, 145.8, 135.1, 131.3, 130.5, 118.8, 109.2. ¹⁹F NMR (376 MHz, CDCl₃) δ -57.8. HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₁₀H₈F₃N₂O₃S 293.0202; Found: 293.0198.

1-([1,1'-Biphenyl]-4-ylsulfonyl)-1*H*-pyrazole (67)

The compound was prepared according to the General procedure. White solid; mp 123.3-124.2 °C. $R_f = 0.5$ (petroleum ether/ethyl acetate 4:1); 30.1mg, yield 53%. ¹H NMR (400 MHz, CDCl₃) δ 8.18 (d, J = 2.8 Hz, 1H), 8.10 (d, J = 8.4 Hz, 2H), 7.82 – 7.72 (m, 3H), 7.59 (d, J = 6.8 Hz, 2H), 7.48 (dt, J = 16.2, 7.3 Hz, 3H), 6.45 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 147.6, 145.4, 138.8, 135.4, 131.3, 129.2, 128.9, 128.7, 128.0, 127.4, 108.9. HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₁₅H₁₃N₂O₂S 285.0692; Found: 285.0690.

1-(MesityIsulfonyI)-1H-pyrazole (68)

The compound was prepared according to the General procedure. White solid; mp 134.2-136.1 °C. $R_{\rm f}$ = 0.5 (petroleum ether/ethyl acetate 4:1); 35.0 mg, yield 70%. ¹H NMR (400 MHz, CDCl₃) δ 8.17 (d, J = 2.8 Hz, 1H), 7.67 (d, J = 1.6 Hz, 1H), 6.96 (s, 2H), 6.40 – 6.32 (m, 1H), 2.61 (s, 6H), 2.28 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 144.9, 144.4, 141.3, 132.4, 130.9, 130.7, 107.4, 22.9, 21.2. HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₁₂H₁₅N₂O₂S 251.0849; Found: 251.0841.

1-((2,4,6-Triisopropylphenyl)sulfonyl)-1*H*-pyrazole (69)

The compound was prepared according to the General procedure. White solid; mp 140.2-141.8 °C. $R_{\rm f}$ = 0.5 (petroleum ether/ethyl acetate 4:1); 36.7 mg, yield 55%. ¹H NMR (400 MHz, CDCl₃) δ 8.20 (d, J = 3.1 Hz, 1H), 7.72 (s, 1H), 7.28 (t, J = 3.2 Hz, 2H), 6.44 (s, 1H), 4.22 (dq, J = 6.8, 2.9 Hz, 2H), 3.13 – 2.84 (m, 1H), 1.59 (d, J = 2.8 Hz, 4H), 1.29 – 1.18 (m, 14H). ¹³C NMR (101 MHz, CDCl₃) δ 155.0, 152.3, 143.9, 129.8, 124.4, 107.9, 34.3, 29.8, 24.6, 23.5. HRMS (ESI)

m/z: [M + H]⁺ Calcd for C₁₈H₂₇N₂O₂S 335.1788; Found: 335.1787.

1-(Naphthalen-2-ylsulfonyl)-1H-pyrazole (70)

The compound was prepared according to the General procedure. White solid; mp 181.1-182 .8 °C. $R_f = 0.5$ (petroleum ether/ethyl acetate 4:1); 23.2 mg, yield 45%. ¹H NMR (400 MHz, CDCl₃) δ 8.68 (s, 1H), 8.21 (d, J = 2.8 Hz, 1H), 8.05 – 7.91 (m, 4H), 7.76 – 7.64 (m, 3H), 6.43 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 145.4, 135.6, 133.8, 131.9, 131.3, 130.4, 129.9(0), 129.8(3), 129.7, 128.0(3), 127.9(8), 122.3, 108.9. HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₁₃H₁₁N₂O₂S 259.0536; Found: 259.0531.

1-(Thiophen-2-ylsulfonyl)-1*H*-pyrazole (71)

The compound was prepared according to the General procedure. White solid; mp >300 °C. R_f = 0.5 (petroleum ether/ethyl acetate 4:1); 22.3 mg, yield 52%. ¹H NMR (400 MHz, CDCl₃) δ 8.13 (t, *J* = 3.3 Hz, 1H), 7.87 (t, *J* = 4.2 Hz, 1H), 7.82 – 7.73 (m, 2H), 7.14 (d, *J* = 4.4 Hz, 1H), 6.44 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 145.5, 136.8, 135.6, 131.1, 127.9, 109.1. HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₇H₇N₂O₂S₂ 214.9943; Found: 214.9939.

3-((1H-Pyrazol-1-yl)sulfonyl)pyridine (72)

The compound was prepared according to the General procedure. White solid; mp 67.3-68.5 °C. $R_{\rm f}$ = 0.5 (petroleum ether/ethyl acetate 4:1); 22.3 mg, yield 52%. ¹H NMR (400 MHz, DMSO- d_6) δ 9.09 (s, 1H), 8.89 (d, J = 4.7 Hz, 1H), 8.50 (d, J = 3.0 Hz, 1H), 8.34 (d, J = 8.2 Hz, 1H), 7.91 (s, 1H), 7.67 (dd, J = 8.3, 4.6 Hz, 1H), 6.61 (s, 1H). ¹³C NMR (101 MHz, DMSO- d_6) δ 155.9, 148.2, 147.1, 136.3, 133.3, 125.3, 110.7. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₈H₈N₃O₂S 210.0332; Found: 210.0329.

1-(Methylsulfonyl)-1*H*-pyrazole (73)

The compound was prepared according to the General procedure. White solid; mp 86.8-87.9 °C. $R_{\rm f}$ = 0.5 (petroleum ether/ethyl acetate 4:1); 17.8 mg, yield 61%. ¹H NMR (400 MHz, CDCl₃) δ 8.00 (s, 1H), 7.78 (s, 1H), 6.42 (s, 1H), 3.28 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 145.2, 130.9, 108.6, 41.3. HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₄H₇N₂O₂S 147.0223; Found: 147.0227.

1-((4-(Phenylethynyl)phenyl)sulfonyl)-1H-pyrazole (77)

The compound was prepared according to the General procedure. White solid; mp 116.8-117.8 °C. $R_f = 0.5$ (petroleum ether/ethyl acetate 4:1); 46.2 mg, yield 75%.¹H NMR (400 MHz, CDCl₃) δ 8.10 (d, J = 2.7 Hz, 1H), 7.96 (d, J = 8.3 Hz, 2H), 7.73 (d, J = 1.6 Hz, 1H), 7.62 (d, J = 8.2 Hz, 2H), 7.55 – 7.48 (m, 2H), 7.35 (dt, J = 5.2, 2.6 Hz, 3H), 6.39 (dd, J = 2.8, 1.5 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 145.5, 135.8, 132.2, 131.8, 131.3, 130.1, 129.2, 128.5, 128.1, 122.0, 109.1, 94.3, 87.4. HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₁₇H₁₃N₂O₂S 309.0692; Found: 309.0691.

4-([1,1'-Biphenyl]-4-yl)-1-(phenylsulfonyl)-1*H*-pyrazole (78)

The compound was prepared according to the General procedure. White solid; mp 126.1-127.2 °C. $R_{\rm f}$ = 0.5 (petroleum ether/ethyl acetate 4:1); 49.0 mg, yield 68%. ¹H NMR (400 MHz, CDCl₃) δ 7.84 (d, J = 8.0 Hz, 3H), 7.70 – 7.58 (m, 7H), 7.45 (t, J = 7.5 Hz, 3H), 7.36 (t, J = 7.3 Hz, 2H), 6.67 (d, J = 2.2 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 148.9, 140.9, 140.6, 133.3, 130.9, 128.9, 127.5(4), 127.4(8), 127.0, 126.2, 102.9. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₁H₁₇N₂O₂S 361.1005; Found: 361.1003.

4-(2-((tert-Butoxycarbonyl)amino)-3-methoxy-3-oxopropyl)phenyl 1-(phenylsulfonyl)-1*H*-pyrazole-4-carboxylate (79)

The compound was prepared according to the General procedure. White solid; mp 206.8-207.3 °C. $R_f = 0.5$ (petroleum ether/ethyl acetate 4:1); 32.8 mg, yield 31%.¹H NMR (400 MHz, CDCl₃) δ 8.72 (s, 1H), 8.16 (s, 1H), 8.08 (d, J = 7.9 Hz, 2H), 7.71 (t, J = 7.5 Hz, 1H), 7.59 (t, J = 7.8 Hz, 2H), 7.15 (d, J = 8.2 Hz, 2H), 7.07 (d, J = 8.1 Hz, 2H), 4.98 (d, J = 8.3 Hz, 1H), 4.57 (s, 1H), 3.70 (s, 3H), 3.24 – 2.93 (m, 2H), 1.40 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 172.2, 159.9, 155.1, 149.1, 145.5, 136.0, 135.4, 134.8, 134.2, 130.5, 129.8, 128.6, 121.6, 116.9, 54.4, 52.4, 37.8, 29.7, 28.3. HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₂₅H₂₈N₃O₈S 530.1592; Found: 530.1595.

Ethyl (1-(phenylsulfonyl)-1H-pyrazole-4-carbonyl)-L-phenylalaninate (80)

The compound was prepared according to the General procedure. White solid; mp 210.1-211.2 °C. $R_f = 0.5$ (petroleum ether/ethyl acetate 4:1); 44.4 mg, yield 52%. ¹H NMR (400 MHz, CDCl₃) δ 8.48 (d, J = 0.7 Hz, 1H), 8.08 – 7.99 (m, 2H), 7.87 (d, J = 0.7 Hz, 1H), 7.80 – 7.65 (m, 1H), 7.57 (dd, J = 8.5, 7.2 Hz, 2H), 7.40 – 7.20 (m, 4H), 7.19 – 7.12 (m, 2H), 6.76 (d, J = 7.8 Hz, 1H), 5.00 (dt, J = 7.8, 6.1 Hz, 1H), 4.21 (q, J = 7.1 Hz, 2H), 3.18 (qd, J = 13.8, 6.2 Hz, 2H), 1.27 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 172.0, 160.5, 143.6, 136.1, 135.8, 135.2, 131.9, 129.6, 129.3, 128.7, 128.5, 127.3, 120.3, 61.9, 53.4, 37.9, 14.1. HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₂₁H₂₂N₃O₅S 428.1275; Found: 428.1269.

((3aR,5R,5aS,8aS,8bR)-2,2,7,7-Tetramethyltetrahydro-5*H*-bis([1,3]dioxolo)[4,5-b:4',5'-d]pyran-5-yl)methyl 1-(phenylsulfonyl)-1*H*-pyrazole-4-carboxylate (81)

The compound was prepared according to the General procedure. White solid; mp 226.5-227.2 °C. $R_f = 0.5$ (petroleum ether/ethyl acetate 4:1); 52.4 mg, yield 53%. ¹H NMR (400 MHz, CDCl₃) δ 8.57 (s, 1H), 8.03 (d, J = 6.9 Hz, 3H), 7.67 (d, J = 7.4 Hz, 1H), 7.56 (t, J = 7.8 Hz, 2H), 5.53 (dd, J = 14.5, 4.9 Hz, 1H), 4.61 (d, J = 8.6 Hz, 1H), 4.33 (d, J = 13.9 Hz, 3H), 4.09 (s, 1H), 3.85 (s, 1H), 1.57 (s, 3H), 1.47 (d, J = 14.7 Hz, 3H), 1.43 (s, 3H), 1.32 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 161.4, 145.4, 136.1, 135.3, 134.3, 129.7, 128.6, 117.3, 109.8, 108.9, 96.3, 71.0, 70.7, 70.4, 66.0, 64.0, 26.0(3), 25.9(7), 25.0, 24.5. HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₂₂H₂₇N₂O₉S 495.1432; Found: 495.1430.

6-(1-Methyl-1*H*-pyrazol-4-yl)-1-(phenylsulfonyl)-1*H*-pyrazolo[4,3-b]pyridine (82)

The compound was prepared according to the General procedure. White solid; mp 112.1-113.5 °C. $R_{\rm f}$ = 0.5 (petroleum ether/ethyl acetate 4:1); 31.9 mg, yield 47%.¹H NMR (400 MHz, CDCl₃) δ 8.82 (s, 1H), 8.47 (s, 1H), 8.35 (s, 1H), 7.99 (dd, *J* = 8.5, 1.3 Hz, 2H), 7.91 (s, 1H), 7.83 (s, 1H), 7.59 (t, 1H), 7.48 (t, *J* = 7.8 Hz, 2H), 4.00 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 146.7, 142.0, 141.5, 137.3, 134.6, 129.4, 128.9, 128.0, 127.7, 123.0, 120.2, 119.6, 116.0, 39.4. HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₁₆H₁₄N₅O₂S 340.0863; Found: 340.0862.

14. References

[1] Tian H-D.; Fu Z-H.; Li C.; Lin H-C.; Li, M.; Ni, S-F.; Wen, L-R.; Zhang, L-B., Selective Electrochemical Synthesis of 9-Aryl-10-sulfonyl Substituted Phenanthrene from Alkynes and Sulfonyl Hydrazides. *Org. Lett.* **2022**, *24*, 9322-9326.

[2] Thondur, J.R.; Sharada, D. S.; Satyanarayana, G., Electrochemical Oxidative Annulation of Inactivated Alkynes for the Synthesis of Sulfonated 2H-Chromene Derivative. *Org. Lett.* **2023**, *25*, 2793-2797.

[3] Tyagi A.; Taneja N.; Khan J., I₂-Catalyzed/Mediated C-S and C-I Bond Formation: Solvent-and Metal-Free Approach for the Synthesis of β -Keto Sulfones and Branched Sulfones. *Adv. Synth. Catal.* **2023**, *365*, 1247-1254.

[4] Fu-Lai.; Yang, Prof. Dr., Iodine-Catalyzed Regioselective Sulfenylation of Indoles with Sulfonyl Hydrazides. *Angew. Chem. Int. Ed.* **2013**, *52*, 4929-4932.

[5] Zuo H-D.; Hao W-J.; Zhu C-F., Electrochemical Annulation-lodosulfonylation of 1,5-Enyne-containing para-Quinone Methides (p-QMs) to Access (E)-Spiroindenes. *Org. Lett.* **2020**, *22*, 4471–4477.

[6] Zhao Y.; Lai Y-L.; Du K-S., Electrochemical Decarboxylative Sulfonylation of Cinnamic Acids with Aromatic Sulfonylhydrazides to Vinyl Sulfones. *J. Org. Chem.* **2017**, *82*, 9655–9661.

[7] Huang, H.; Lambert, T-H., Electrophotocatalytic SNAr Reactions of Unactivated Aryl Fluorides at Ambient Temperature and Without Base. *Angew. Chem. Int. Ed.* **2020**, *59*, 658-662.

[8] Ji, P.; Davies, C. C.; Gao, F.; Chen, J.; Meng, X.; Houk, K. N.; Chen, S.; Wang, W., Selective skeletal editing of polycyclic arenes using organophotoredox dearomative functionalization. *Nat. Commun.* **2022**, *13*, 4565.

[9] Zhang, Y.; Liu, H.; Zhang, Z.; Wang, R.; Liu, T.; Wang, C.; Ma, Y.; Ai, J.; Zhao, D.; Shen, J.; Xiong, B., Discovery and Biological Evaluation of a Series of Pyrrolo[2,3-b]pyrazines as Novel FGFR Inhibitors. *Molecules* **2017**, *22*, 583.

[10] Ding, L.; Zhu, N.; Hu, Y., Over 70% Faradaic Efficiency for CO₂ Electroreduction to Ethanol Enabled by Potassium DopantTuned Interaction between Copper Sites and Intermediates. *Angew. Chem. Int. Ed.* **2022**, *61:* e202209268.

15. Copies of ¹H NMR, ¹³C NMR and ¹⁹F NMR

¹³C NMR (101 MHz, CDCl₃) of **10**

¹³C NMR (101 MHz, CDCl₃) of **11**

S45

¹³C NMR (101 MHz, CDCl₃) of **16**

¹⁹F NMR (376 MHz, CDCl₃) of **17**

¹³C NMR (101 MHz, CDCl₃) of **21**

S57

¹⁹F NMR (376 MHz, CDCl₃) of **31**

¹³C NMR (101 MHz, CDCl₃) of **33**

¹³C NMR (101 MHz, CDCl₃) of **37**

¹³C NMR (101 MHz, CDCl₃) of **39**

¹³C NMR (101 MHz, CDCl₃) of **40**

¹³C NMR (101 MHz, CDCl₃) of **42**

¹³C NMR (101 MHz, CDCl₃) of **46**

S84

¹³C NMR (101 MHz, CDCl₃) of **51**

 ^{13}C NMR (101 MHz, CDCl_3) of 52

¹³C NMR (101 MHz, CDCl₃) of **54**

¹³C NMR (101 MHz, CDCl₃) of **59**

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -22 f1 (ppm)

 $^{19}\mathsf{F}\ \mathsf{NMR}\ (376\ \mathsf{MHz},\ \mathsf{CDCl}_3)$ of $\mathbf{59}$

 ^{13}C NMR (101 MHz, CDCl_3) of 64

¹³C NMR (101 MHz, CDCl₃) of **65**

 $^{19}\mathsf{F}\ \mathsf{NMR}\ (376\ \mathsf{MHz},\ \mathsf{CDCI}_3)$ of $\mathbf{65}$

---63.46

¹³C NMR (101 MHz, CDCl₃) of **67**

¹³C NMR (101 MHz, CDCl₃) of **77**

¹³C NMR (101 MHz, CDCl₃) of **78**

¹³C NMR (101 MHz, CDCl₃) of **79**

¹³C NMR (101 MHz, CDCl₃) of **80**

 ^{13}C NMR (101 MHz, CDCl_3) of 82

16. Crystal Structure Data

X-Ray crystal structure of compound **12**: Crystal of compound **12** were obtained by dissolving the product in Hexane/CH₂Cl₂ mixture and allowing the solvent to slowly evaporate at room temperature. A suitable crystal was selected and mounted onto the cryoloop on a Bruker APEX-II CCD diffractometer. The crystal was kept at 273.15 K during data collection. Using Olex2,1 the structure was solved with the SHELXT2 structure solution program using Intrinsic Phasing and refined with the SHELXL3 refinement package using Least Squares minimization.

Figure S7. ORTEP diagram of compound **12** with ellipsoid shown at the 50% contour percent probability level (CCDC-2328852)

Identification code	12
Empirical formula	$C_{12}H_{12}N_2O_4S$
Formula weight	280.30
Temperature/K	296.15
Crystal system	triclinic
Space group	P-1
a/Å	7.3939(16)
b/Å	7.7731(17)
c/Å	13.160(3)
α/°	84.179(4)
β/°	73.900(3)
γ/°	63.163(3)
Volume/Å ³	648.2(2)
Z	2
ρ _{calc} g/cm³	1.436
µ/mm⁻¹	0.261
F(000)	292.0
Crystal size/mm ³	0.13 × 0.12 × 0.1
Radiation	ΜοΚα (λ = 0.71073)

2O range for data collection/°	5.876 to 55.368
Index ranges	-6 ≤ h ≤ 9, -8 ≤ k ≤ 10, -17 ≤ l ≤ 17
Reflections collected	3956
Independent reflections	2865 [R _{int} = 0.0220, R _{sigma} = 0.0372]
Data/restraints/parameters	2865/0/174
Goodness-of-fit on F ²	1.061
Final R indexes [I>=2σ (I)]	R ₁ = 0.0409, wR ₂ = 0.1040
Final R indexes [all data]	R ₁ = 0.0511, wR ₂ = 0.1127
Largest diff. peak/hole / e Å-3	0.20/-0.33

X-Ray crystal structure of compound **23**: Crystal of compound **23** were obtained by dissolving the product in Hexane/CH₂Cl₂ mixture and allowing the solvent to slowly evaporate at room temperature. A suitable crystal was selected and mounted onto the cryoloop on a Bruker APEX-II CCD diffractometer. The crystal was kept at 273.15 K during data collection. Using Olex2,1 the structure was solved with the SHELXT2 structure solution program using Intrinsic Phasing and refined with the SHELXL3 refinement package using Least Squares minimization.

Figure S8. ORTEP diagram of compound **23** with ellipsoid shown at the 50% contour percent probability level (CCDC- 2328851)

Identification code	23
Empirical formula	$C_{10}H_9BrN_2O_2S$
Formula weight	301.16
Temperature/K	296.15
Crystal system	triclinic
Space group	P-1
a/Å	7.976(3)
b/Å	12.668(4)
c/Å	12.714(4)
α/°	101.928(6)
β/°	102.068(6)
γ/°	105.796(6)
Volume/Å ³	1160.5(7)
Z	4
ρ _{calc} g/cm ³	1.724

µ/mm ⁻¹	3.708
F(000)	600.0
Crystal size/mm ³	0.16 × 0.13 × 0.1
Radiation	ΜοΚα (λ = 0.71073)
2O range for data collection/°	5.48 to 55.71
Index ranges	-8 ≤ h ≤ 10, -16 ≤ k ≤ 15, -16 ≤ l ≤ 16
Reflections collected	7022
Independent reflections	5121 [R_{int} = 0.0432, R_{sigma} = 0.1244]
Data/restraints/parameters	5121/0/291
Goodness-of-fit on F ²	0.994
Final R indexes [I>=2σ (I)]	R ₁ = 0.0635, wR ₂ = 0.1345
Final R indexes [all data]	R ₁ = 0.1530, wR ₂ = 0.1673
Largest diff. peak/hole / e Å-3	1.13/-0.99