Electronic supplementary information

Green palladium and platinum recovery by microwave-assisted

aluminum chloride solution

Anting Ding,^{a,b} Chuanying Liu,^b Chengliang Xiao^{*a,b}

^aCollege of Chemical and Biological Engineering, Zhejiang University, Hangzhou

310058, China

^bInstitute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou 324000, China

*Email: xiaoc@zju.edu.cn (C. XIAO)

Table of the contents

- 1. Supplementary Texts
- 2. Supplementary Figures
- 3. Supplementary Tables

4. Reference

Supplementary Texts

Text S1. Hammett Acidity Experiments. UV-vis was used to analyzed the Hammett acidity of different chloride solutions. Indicator 4-nitroaniline ($pK_{BH^+} = 0.99$, peak wavelength at 377.5 nm) was dissolved at a concentration of 8.5 mg/L in ethanol (to make an all-alkali-type solution), 98% H₂SO₄ (to prepare an all-proton-type solution), and five chloride solutions. Following complete mixing, the solutions were left to sit at room temperature in the dark for 2 h before UV-vis measured. Proton transfer reaction occurs in the solution between indicator basic type B and its conjugated acid (proton type BH⁺):

$$B + H^+ \leftrightarrow BH^+ \tag{S1}$$

Ion balance defines Hammett acidity as follows:

$$H_0 = pK_{BH^+} - lg(c_{BH^+})/c_B$$
(S2)

where pK_{BH^+} is the ion equilibrium constant of 4-nitroaniline (0.99), and the indicator's proton-type concentration to its base-type concentration is expressed as c_{BH^+}/c_B . According to Lambert-Beer law, c_{BH^+}/c_B at a fixed wavelength is as follows: $(c_{BH^+})/c_B = (A_B^{\lambda} - A^{\lambda})/(A^{\lambda} - A_{BH^+}^{\lambda})$ (S3)

where A_B^{λ} is the indicator's all-alkali-type absorbance of the same concentration at a fixed wavelength degree, $A_{BH^+}^{\lambda}$ is its all-proton-type absorption of the same concentration at the same wavelength degree, and A^{λ} is the indicator's absorbance in the medium being measured at the same conditions as A_B^{λ} and $A_{BH^+}^{\lambda}$.

Text S2. Calculation of Energy Consumption and Chemical Inputs. In the scaleup recovery process of Pd/C catalysts with seven cycles, the total chemicals consumption contained 7.84 g NaBH₄ (0.98 g for each cycle), 200 g AlCl₃·6H₂O and 200 g H₂O. After 30 min of microwave-assisted leaching at 100 °C, the leachate was reduced by NaBH₄. The total mass of leached Pd was calculated as:

$$M = m \sum_{i=0}^{7} D_i \tag{S4}$$

where M represents the total mass of leached Pd, m represents the mass of Pd in the catalysts put into each cycle (g), D_i represent the dissolution ratio in each cycle. The mass of leached Pd was calculated to be 8.648 g.

The total energy consumption contains the electricity utilization during the microwave-assisted leaching. The powder of the microwave reactor is 1800 W. Therefore, the energy consumption during the seven cycles was calculated as

$$\frac{1800 W \times 1800 s \times 8}{3600000 J/kW \cdot h} = 7.2 kW \cdot h$$

The cost of chemical inputs of 200 g AlCl₃· $6H_2O$, 7.84 g NaBH4 (the cost of 200 g H₂O was negligible) could be calculated according to the materials cost in **Table S7** as

$$200 \ g \times \frac{\$12.64}{kg} \times 10^{-3} + 7.84 \times \frac{\$780.21}{kg} \times 10^{-3} = \$8.64$$

In total, 0.83 kW h of energy and \$1.00 in material consumption were utilized per gram of Pd leached from spent Pd/C catalysts.

Supplementary Figures

Figure S1. Dissolution ratios and leaching efficiencies of PGMs in AlCl₃·6H₂O

solution (100 °C).

Figure S2. Dissolution ratios of PGMs with varied concentrations of AlCl₃·6H₂O

solutions (120 °C, 120 min).

Figure S3. Dissolution ratios of Pd in five chloride salts with microwave-assisted

(120 °C, 120 min).

Figure S4. TG curves of AlCl₃·6H₂O solutions with different concentrations.

Figure S5. Photo of CoCl₂ in HCl and AlCl₃ solutions.

Figure S6. pH values of AlCl₃ solutions with varied concentrations.

Figure S7. UV-vis spectra of Pd(II) in the leachate.

Supplementary Tables

Lixiviant	Treatment	PMs	Energy consumpt ion kWh/g PM	Chemicals consumpti on \$/g PM	Secondary waste	Ref.
NaCN/NaOH	leaching (20 °C 24 h)	Au Ag	N/A	56.3	cyanide/NaO H	1
thiourea/FeCl ₃	leaching (25 °C 2 h)	Au Ag	N/A	32.1	thiourea/FeCl 3	2
acetonitrile/Ph ₃ PCl ₂ / H ₂ O ₂	leaching (3 min)	Au	N/A	79.2	acetonitrile/ Ph ₃ PO	3
HCl/H ₂ O ₂	leaching (25 °C 45 min)	Au	N/A	18.9	HCl/Cl ₂ (aq)	4
$I_2/I^-/H_2O_2$	leaching (25 °C 4 h)	Au	N/A	18.2	I ₂ (aq)/I ⁻	5
H_2SO_4/H_2O_2	leaching (25 °C 4 h)	Au	N/A	21.3	H_2SO_4	6
HCl/Cl ₂	leaching (30 °C 90 min 1250 rpm)	Au	69.6	30.7	HCl/Cl ₂ (aq)	7
DMF/CuCl ₂ /CaCl ₂	leaching (75 °C 10 min)	Au	35.2	45.6	DMF/Cu ²⁺ / Ca ²⁺ /Cl ⁻	8
CH ₃ CN/TiO ₂	photocatalys t leaching (24 h)	Au Ag	480	45.3	CH₃CN	9
trihexyl(tetradecyl)p hosphonium trihalide ionic liquids	leaching (65 °C 24 h 100 rpm)	Au	78.3	88.3	[P ₆₆₆₁₄][Cl ₃]	10
NH ₄ Br/TiO ₂	photocatalys t leaching (120 min)	Pd Au	400	15.4	NH4Br/Br2(aq)	11
Al(NO ₃) ₃ /AlCl ₃	leaching (80 °C 15 min 350 rpm)	Pd Pt Rh	42.8	21.3	Al ³⁺ /NO ₃ -/Cl-	12

Table S1. Comparison of this work with other methods in the precious metal recovery reaction reported in literature

Al(NO3)3/NaCl	leaching (80 °C 180 min 500 rpm)	Pd Au	65.3	22.8	Al ³⁺ /NO ₃ ⁻ /Cl ⁻	13
CH ₃ CN/FeCl ₃	leaching (70 °C 180 min)	Pd Pt Rh	38.2	24.1	CH ₃ CN/Fe ³⁺ / Cl ⁻	14
HNO3/aqua regia	leaching (80 °C 1.5 h)	Pt	35.6	20.4	HNO3/aqua regia	15
H ₂ SO ₄ /NaCl/NaClO 3	leaching (40 °C 2 h)	Au	8.9	19.8	H ₂ SO ₄ /Na ⁺ /Cl ⁻ / ClO ₃ ⁻	16
(NH ₄) ₂ S ₂ O ₃ /CuSO ₄	leaching (25 °C 8 h 250 rpm)	Au	46.2	25.2	sulfer dioxide/ Cu ²⁺ /SO4 ⁻	17
AlCl ₃	Microwave- assisted leaching (100 °C 30 min)	Pd Pt	0.83	1.0	Al ³⁺ /Cl ⁻	this work

Element	Al	Pd	Pt	Rh	Si
wt%	35.21	1.544	0.101	0.063	10.22

 Table S2. Mass composition in the spent three-way automobile catalyst.

		0 1	<i>6J</i> (<i>bP)</i>		
Filename	G _{corr} (a.u.)	SP Energy (a.u.)	G (a.u.)	ΔG (a.u.)	ΔG (kcal/mol)
R	0.417239	- 1691.33684 5	- 1690.91960 6		
TS	0.41151	- 1691.31688 5	- 1690.90537 5	0.01423121 8	8.93023167
Р	0.347457	- 1691.30359 6	- 1690.95613 9	- 0.03653340 8	- 22.9250787
H_3O+3H_2O	0.070528	- 305.581524 6	- 305.510996 6		
AlOH(H ₂ O) ₅ ²⁺ 9H 2O	0.309456	- 1385.69149 5	- 1385.38203 9		

Table S3. The summary of the correction of Gibbs free energy (G_{corr}), delta G and the single point energy (E_{sp}).

Element	Pd	Pt	Rh	Na	Al	Si	B	Total
wt%	99.1	0.6	0	0	0.3	0	0	100

Table S4. Mass composition of recovered Pd product.

Element	Pt	Pd	Rh	Na	Al	Si	В	Total
wt%	98.8	0.89	0.04	0	0.27	0	0	100

Table S5. Mass composition of recovered Pt product.

			0).			
Element	Pd	С	Al	Na	В	Total
wt%	99.86	0	0.11	0.03	0	100

 Table S6. Mass composition of recovered Pd product in scale-up experiments (cycle

 0).

Method	Material	Source	Cost	Minimum Cost			
Microwave- assisted Dissolution	AlCl₃·6H₂O NaBH₄	Sigma-Aldrich Co. General Reagent Co. Macklin Biochemical Technology Co. Adamas Reagent Co. Runjing Chemical Reagent Co. Macklin Biochemical Technology Co.	17.39 \$ kg ⁻¹ 12.64 \$ kg ⁻¹ 13.98 \$ kg ⁻¹ 800.23 \$ kg ⁻¹ 780.21 \$ kg ⁻¹ 813.77 \$ kg ⁻¹	12.64 \$ kg ⁻¹ 780.21 \$ kg ⁻¹			
Note: Due to regional variations in personnel costs, operating processes, reagent prices, and environmental expenses, there are certain mistakes in the economic assessment of the dissolution of precious metals.							

 Table S7. The cost in bulk for leaching reagents.

REFERENCES

1. P. Quinet, J. Proost, A. V. Lierde, Recovery of precious metals from electronic scrap by hydrometallurgical processing routes. *Miner. Metall. Process.* **2005**, 22, 1.

2. J.-Y. Li, X.-L. Xu, W.-Q. Liu, Thiourea leaching gold and silver from the printed circuit boards of waste mobile phones. *Waste Manage*. **2012**, 32, 1209-1212.

3. E. D. Doidge, I. Carson, P. A. Tasker, R. J. Ellis, C. A. Morrison, J. B. Love, A simple primary amide for the selective recovery of gold from secondary resources. *Angew. Chem. Int. Ed. Engl.* **2016**, 55, 12436-12439.

 T. B. Gontijo, D. Majuste, Selective acid leaching of connector pins removed from waste central processing units with focus on gold recovery. *Hydrometallurgy* 2020, 196, 105432.

5. H. Xu, X. Y. Bi, X. M. Ngo, K.-L. Yang, Principles of detecting vaporous thiols using liquid crystals and metal ion microarrays. *Analyst.* **2009**, 134, 911-915.

6. P. Zhu, G. B. Gu, Recovery of gold and copper from waste printed circuits. Chinese.*J. Rare Metals* 2002, 26, 214-216.

7. D. Tokkan, B. Donmez, O. N. Ata, The leaching kinetics of gold from gold scraps in Cl₂-saturated HCl solutions. *Pamukkale Univ Muh Bilim Derg* **2019**, 25, 893-898.

8. R. X. Wang, C. L. Zhang, Y. F. Zhao, Y. J. Zhou, E. Ma, J. F. Bai, J. W. Wang, Recycling gold from printed circuit boards gold-plated layer of waste mobile phones in "mild aqua regia" system. *J. Cleaner Prod.* **2021**, 278. 9. Y. Chen, M. J. Xu, J. Y. Wen, Y. Wan, Q. F. Zhao, X. Cao, Y. Ding, Z. L. Wang, H.
X. Li, Z. F. Bian, Selective recovery of precious metals through photocatalysis. *Nat. Sustain.* 2021, 4, 618-626.

10. A. V. Bossche, N. R. Rodriguez, S. Riano, W. Dehaen, K. Binnemans, Dissolution behavior of precious metals and selective palladium leaching from spent automotive catalysts by trihalide ionic liquids. *RSC Adv.* **2021**,11, 10110.

11. J. Z. Cao, Y. Chen, H. J. Shang, X. Chen, Q. Y. Qiao, H. X. Li, Z. F. Bian, Aqueous photocatalytic recycling of gold and palladium from waste electronics and catalysts. *ACS ES&T Engg.* **2022**, 2, 1445-1453.

12. F. Forte, S. Riano, K. Binnemans, Dissolution of noble metals in highly concentrated acidic salt solutions. *Chem. Commun.* **2020**, 56, 8230-8232.

13. A. T. Ding, M. Li, C. Y. Liu, X. W. Zhang, L. C. Lei, C. L. Xiao, Salt aqua regia as a green solvent for recovering precious metals. *Cell Rep. Phy. Sci.* **2022**, 3, 101159.

14. V. T. Nguyen, S. Riano, E. Aktan, C. Deferm, J. Fransaer, K. Binnemans, Solvometallurgical recovery of platimun group metals from spent automotive catalysts. *ACS Sustainable Chem. Eng.* **2021**, 9, 337-350.

15. A. Luyima, H. L. Shi, L. F. Zhang, Leaching studies for metals recovery from waste printed wiring boards. *JOM* **2011**, 63.

16. Y. C. He, Z. M. Xu, Recycling gold and copper from waste printed circuit boards using chlorination process. *RSC Adv.* **2015**, 5, 8957.

17. A. Tripathi, M. Kumar, D. C. Sau, A. Agrawal, S. Chakravarty, T. R. Mankhand, Leaching of gold from the waste mobile phone printed circuit board (PCBs) with ammonium thiosulphate. *International Journal of Metallurgical Engineering* **2012**, 1, 17-21.