Supplementary Information

Feasibility and sustainability of emerging CCU pathways for formic acid production

Tesfalem Aregawi Atsbha^b, Ha-Jun Yoon^a, Ali Cherif^c, and Chul-Jin Lee^{a,b,*}

^a Department of Chemical Engineering, Chung-Ang University, 84

Heukseok-ro, Dongjak-gu, Seoul, Republic of Korea

^b Department of Intelligent Energy and Industry, Chung-Ang University, 84 Heukseok-ro,

Dongjak-gu, Seoul, Republic of Korea,

^c Bureau of Economic Geology, The University of Texas at Austin, TX 78758, USA

*Corresponding author: C.-J. Lee

Associate Professor,

Department of Chemical Engineering, Chung-Ang University, 84

Heukseok-ro, Dongjak-gu, Seoul, Republic of Korea

Department of Intelligent Energy and Industry, Chung-Ang University, 84 Heukseok-ro,

Dongjak-gu, Seoul, Republic of Korea

Tel.: +82 2 820 5941

Fax: +82 2 824 3495

E-mail: cjlee@cau.ac.kr

VLE validation results for important pairs involved in separation procedure based on the experimental data

Fig.S1. T_{XY} diagram for H₂O/MeOH (3 bar) for the conventional process. Experimental data is form Hirata et al ¹.

Fig.S2. T_{XY} diagram Formic acid/n-butylemidazol mixture for the thermo-catalytic process at 50 mmHg².

Fig.S3. T_{XX} diagram of water and 2-methyltetrahydrofuran LLE data for the electrochemical reduction process. The Experimental data was obtained from M. Glass et al (2017) ³.

Table S1. Process operating conditions and parameters used for designing the electrochemical reduction downstream process.

Unit operation	Parameter	Value	Reference	
PSA	Operating conditions	400 °C, 30 bar	X. Zhu et al. ⁴	
	H ₂ purification	99.99 mol%		
	Catalyst	Fe ₂ O ₃ -Cr ₂ O ₃		
Extractor	Operating conditions	40 °C, 1 bar	A.T. Laitinen et al. ⁵	
Azeotropic Distillation	Operating conditions	1.1 bar, equilibrium	A.T. Laitinen et al. ⁵	
Striper	Operating conditions	4 bar, equilibrium	A.T. Laitinen et al. ⁵	

Table S2. CO_2 electrolyzer technoeconomic assumption parameters and process operating conditions.

Parameter	Value	Reference
Electrolyzer faradaic efficiency (HCOOH)	90%	X. Jiang et al. ⁶
Current density	500 A/cm ²	X. Jiang et al. ⁶
catalyst	BiO _n cluster	X. Jiang et al. ⁶
HCOOH concentration	~5.04 g/l	K. Fernández-Caso et al. ⁷
Total CO ₂ conversion	44%	X. Jiang et al. ⁶
Reference electrolyzer total cost per area	\$48,493/m ²	J.M. Spurgeon et al. ⁸
scaling factor	0.65	

Parameter	Value
Reference total gas flow to separator	4.40 x 106 mol/h
Reference separator/recycle cost, 2018 USD	11,214,299
Scaling exponent	0.65
CO ₂ recycling efficiency	97%
CO loss to recycle	0%
Case-dependent total gas flow to separator	Y mol/h
CO2/CO separator/recycle scaled capital expense	[<i>Y</i> /(4.40 x 10 ⁶)] ^{0.65} *(11,214,299)
Reference power to operate separator/recycle	10 kW
Reference annual energy usage to operate separator/recycle 8.76 x 10^4 kWh/yr	8.76 x 104 kWh/yr

Table S3. PSA gas separation and recycle technoeconomic assumption parameters⁹.

Materials and utilities	Cost
Gray H ₂ (USD/kg)	1.88 10
Green H ₂ (USD /kg)	3.53 11
Captured CO ₂ (USD /kg)	0.035 12
TREA (USD /kg)	2.5 (from www.alibaba.com)
Catalyst (CH ₃ ONa, in USD /kg)	3.5 (from www.alibaba.com)
Catalyst (Ru/bpyTN-30-CTF, in USD /g)	175.35/g ¹³
Catalyst (BiO _{n,} in USD $/g$)	$1.8/g^{14}$
KOH (USD /kg)	0.6 (from www.alibaba.com)
2-Methyltetrahydrofuran (USD /kg)	2.5 (from www.alibaba.com)
O ₂ (Tonne /hr)	38.07(from www.alibaba.com)
CO (USD /Tonne)	70 ¹⁵
Methanol (USD /Tonne)	420(from www.alibaba.com)
CO ₂ from DAC (USD /kg)	0.17 ¹⁷
Cooling water (USD 0.028/ Tonne)	0.354 ¹⁶
Electricity (USD /kWh)	0.06 ¹⁶
LP Steam (USD /GJ)	14.05 ¹⁶
MP steam (USD /GJ)	14.83 ¹⁶
HP Steam (USD/GJ)	17.7 ¹⁶

Table S4. List of parameters with their cost reference

	Ratio factor for fluid processing plant (of delivered equipment cost)	Reference
Direct cost		MS Peters et al ¹⁸
Delivery, % of purchased equipment	0.1	
Subtotal: Purchased equipment (delivered)	1	
Purchased equipment installation	0.47	
Instrumentation and Controls	0.36	
Piping	0.68	
Electrical systems	0.11	
Buildings (including services)	0.18	
Yard improvements	0.1	
Service facilities	0.7	
Indirect cost		
Engineering and supervision	0.33	
Construction expenses	0.41	
Legal expences	0.04	
Contractor's fee	0.22	
Contingency	0.44	
Working capital (WC)	0.89	

Table S5. Total capital investment estimation used based on the ratio factor for fluid processing plant.

Fig.S4. cost break down of other operational expenses for the electrochemical reduction pathway (CCUER)

Fig.S5. System boundary of the conventional process pathway

Fig.S6. System boundary of the thermo-catalytic process pathway

Fig.S7. System boundary of the electrochemical reduction process pathway

Table S6.	LCA	methodo	ology and	l GWI	values	of the	conventional	pathway	compared to	previous
works.										

Reference	This work	N. Thonemann et al (2019) ²⁰	D. Kang et al (2021) ²¹	Y. Ahn et al (2019) ²³
Scope	Cradle to gate	Cradle to gate	Cradle to gate	Cradle to gate
Software	SimaPro LCA	openLCA 1.7.4	SimaPro LCA	SimaPro LCA
Database	Ecoinvent 3.9	_	Ecoinvent 3	_
LCIA method	ReCiPe 2016	ILCD 1.0.8 (2016)	ReCiPe 2008	ReCiPe 1.13
Lifetime horizon of the LCA	100 years (GWP100)	100 years (GWP100)	100 years (GWP100)	100 years (GWP100)
Purity	85.0 wt% FA	85.0 wt% FA	98 wt%	98%
GWI	4.23 kgCO _{2eq} /kg FA	4.4 kgCO _{2eq} /kg FA	2.04 kgCO _{2eq} /kg FA	$2.007 \text{ kgCO}_{2eq}/\text{kg FA}$

Table S7. LCA methodology and GWI values of the thermo-catalytic pathway compared to previous works.

Reference	This work	D. Kang et al (2021) ²¹	Y. Ahn et al (2019) ²³	
Scope	Cradle to gate	Cradle to gate	Cradle to gate	
Software	SimaPro LCA	SimaPro LCA	SimaPro LCA	
Database	Ecoinvent 3.9	Ecoinvent 3	_	
LCIA method	ReCiPe 2016	ReCiPe 2008	ReCiPe 1.13	
Lifetime horizon of the LCA	100 years (GWP100)	100 years (GWP100)	100 years (GWP100)	
Purity	85.0 wt% FA	99 wt%	98%	
GWI	0.75 to 2.59 kg CO _{2eq} /kg FA	$0.27~kg~CO_{2eq}\!/kg~FA$	0.098 kgCO _{2eq} /kg FA	

Table S8. LCA methodology and GWI values of the electrochemical reduction pathway compared to previous works.

Reference	This work	A. Dominguez- Ramos et al (2015) ¹⁹	N. Thonemann et al (2019) ²⁰	D. Kang et al (2021) ²¹	A. Banu et al (2023) ²²
Scope	Cradle to gate	Cradle to gate	Cradle to gate	Cradle-to- gate	Cradle-to-gate
Software	SimaPro LCA	_	openLCA 1.7.4	SimaPro LCA	GaBi professional software
Database	Ecoinvent 3.9	Ecoinvent v2.2	Ecoinvent 3.4	Ecoinvent 3	_
LCIA method	ReCiPe 2016	ReCiPe, 2011	ILCD 1.0.8 (2016)	ReCiPe 2008	ReCiPe 1.08
Lifetime horizon of the LCA	100 years (GWP100)	100 years (GWP100)	100 years (GWP100)	100 years (GWP100)	10 years (GWP10)
Purity	85 wt.%	84 wt.% formate solution	85.0 wt.% FA	85 wt.%	_
GWI	2.91 to 8.23 kgCO _{2eq} /kg FA	32 to 519 kg $CO_{2eq.}$ / kg $HCOO^{-1}$	4.2 to 7.2 kg CO2-eq/kg FA	2 kgCO _{2eq} /kg FA	3.27 kgCO _{2-eq} /kg FA

Table S9. Total electricity and heat use per unit of product of the electrochemical reduction

pathway

Reference	Electricity (MWh/Tonne FA)	Heat (MJ/Tonne FA)
This work	2.98	3 13.356
D. Kang et al (2021) ²¹	4.79	21.78
R. Aldoco et al (2019) ²⁴	4.59	62
A. Dominguez-Ramos et al (2015) ¹⁹	8.259-16	35-5169

Table S10. Yield of formic acid for the electrochemical reduction pathway

Reference	CO ₂ Conversion	Faraday's efficiency	Formic acid yield
	(%)	(%)	(%)
This work	44	90	39.6
Z. Xing et al (2021) ²⁵	35	83	29.05
Qian et al (2020) ²⁶	36	81	29.16

Stream Name	Units	Feed to	MeOH with Recycle	R-100 to R-	Water feed	D-101 to D-103	D-103
		R-100(CO)	·	101	to R-101		
Description							
From						D-101	D-103
То		R-100	R-100	R-101	R-101	D-103	
Stream Class		CONVEN	CONVEN	CONVEN	CONVEN	CONVEN	CONVEN
Temperature	С	80	79.8526401	80	80	158.6559053	25
Pressure	bar	40	40	3	3	4.053	4
Enthalpy Flow	cal/sec	-	-15053754234	-29683423.11	-	-17969715.05	-9235223.017
		156789008.6			382529113.6		
Average MW		28.0104	28.40887903	41.87809528	18.01528	25.91353893	36.82065841
Mole Flows	kmol/hr	21650	2022439.133	1543.50942	20460	880.1403768	369.6589583
СО	kmol/hr	21650	1996341.702	205.7666268	0	2.91036E-35	0
MF	kmol/hr	0	25015.03052	827.2613747	0	1.59179E-21	0
METHANOL	kmol/hr	0	1082.4	0	0	4.45641E-13	0
WATER	kmol/hr	0	0	510.4814185	20460	631.9619648	121.4805463
FA	kmol/hr	0	0	3.00921E-09	0	248.178412	248.178412
Mole Fractions							
СО		1	0.987096061	0.133310898	0	3.3067E-38	0
MF		0	0.012368743	0.535961338	0	1.80857E-24	0
METHANOL		0	0.000535195	0	0	5.06329E-16	0
WATER		0	0	0.330727764	1	0.718024058	0.328628709
FA		0	0	1.94959E-12	0	0.281975942	0.671371291
Mass Fractions							
CO		1	0.973250493	0.089165745	0	3.57427E-38	0
MF		0	0.026145864	0.768560514	0	4.19121E-24	0

Table S11. Heat and mass balance of Conventional pathway

METHANOL	0	0.000603643	0	0	6.26078E-16	0
WATER	0	0	0.142273741	1	0.499175527	0.150788494
FA	0	0	2.14267E-12	0	0.500824473	0.849211506

Table S12. Heat and mass balance of Thermo-catalytic pathway

Stream Name	Units	CO ₂	H ₂	TREA	H ₂ O	R-100 feed with recycle	From R-100 to V-100
Description							
From							R-100
То		C100	C100	T-100	T-100	R-100	V-100
Stream Class			CONVEN	CONVEN	CONVEN	CONVEN	CONVEN
Temperature	С	25	25	25	25	120	120
Pressure	bar	1	30	120	120	120	120
Enthalpy Flow	cal/sec	-15990156.5	1025.9174	-3933304	-62473484	-79591740.11	-81137215.78
Average MW		44	2	101	18	24.81784387	28.26006907
Mole Flows	kmol/hr	612	612	324	3294	4842	4254.48
CO ₂	kmol/hr	612	0	0	0	612	318.24
H_2	kmol/hr	0	612	0	0	612	318.24
H ₂ O	kmol/hr	0	0	0	3294	3294	3294
N_2	kmol/hr	0	0	0	0	0	0
O ₂	kmol/hr	0	0	0	0	0	0

NTRIET	kmol/hr	0	0	0	0	0	0
TREA	kmol/hr	0	0	324	0	324	30.24
AMMON-01	kmol/hr	0	0	0	0	0	0
НСООН	kmol/hr	0	0	0	0	0	0
TREA-FO	kmol/hr	0	0	0	0	0	293.76
N-ISO-01	kmol/hr	0	0	0	0	0	0
Mole Fractions							
CO_2		1	0	0	0	0.126394052	0.074801151
H_2		0	1	0	0	0.126394052	0.074801151
H_2O		0	0	0	1	0.680297398	0.774242681
N_2		0	0	0	0	0	0
O ₂		0	0	0	0	0	0
NTRIET		0	0	0	0	0	0
TREA		0	0	1	0	0.066914498	0.007107802
AMMON-01		0	0	0	0	0	0
НСООН		0	0	0	0	0	0
TREA-FO		0	0	0	0	0	0.069047216
N-ISO-01		0	0	0	0	0	0
Mass Fractions							
CO ₂		1	0	0	0	0.224086279	0.116462937

H ₂		0	1 0	0	0.01018574	0.00529377
H ₂ O		0	0 0	1	0.493409227	0.493146999
N_2		0	0 0	0	0	0
O ₂		0	0 0	0	0	0
NTRIET		0	0 0	0	0	0
TREA		0	0 1	0	0.272318754	0.025402909
AMMON-01		0	0 0	0	0	0
НСООН		0	0 0	0	0	0
TREA-FO		0	0 0	0	0	0.359693385
N-ISO-01		0	0 0	0	0	0
Stream Name	Units	V-100 to D-100	D-100 to D-101	nBIM	D-101 to D-102	D-102 Distillat
Description						
From		V-100	D-100	D-102	D-101	D-102
То		D-100	D-101	D-101	D-102	
Stream Class		CONVEN	CONVEN	CONVEN	CONVEN	CONVEN
Temperature	С	100	34.61082716	25	100	29.11059499
Pressure	bar	120	0.199983553	0.199983553	0.133322368	0.066661184
Enthalpy Flow	cal/sec	-74789011.65	-11598123.81	-1048297.032	-9558658.557	-8686064.137
Average MW		27.98776683	66.62370624	124.18576	76.24208293	37.50160635

Mole Flows	kmol/hr	3912.356832	661.8297544	276	628.3459354	356.4989791
CO ₂	kmol/hr	265.203606	0	0	0	0.37497292
H_2	kmol/hr	0.012593845	0	0	0	2.16122E-11
H ₂ O	kmol/hr	3077.64008	92.32920241	0	92.26638277	108.402864
N_2	kmol/hr	0	0	0	0	0
O ₂	kmol/hr	0	0	0	0	0
NTRIET	kmol/hr	0	0	0	0	0
TREA	kmol/hr	295.0464022	295.0464022	0	9.17039E-21	0
AMMON-01	kmol/hr	0	0	0	0	0
НСООН	kmol/hr	274.4541498	274.4541498	0	260.0795527	247.7211422
TREA-FO	kmol/hr	0	0	0	0	0
N-ISO-01	kmol/hr	0	0	276	276	6.2393E-224
Mole Fractions						
CO ₂		0.06778615	0	0	0	0.00105182
H ₂		3.21899E-06	0	0	0	6.06236E-14
H ₂ O		0.786646058	0.139505971	0	0.146840104	0.304076226
N_2		0	0	0	0	0
O ₂		0	0	0	0	0
NTRIET		0	0	0	0	0
TREA		0.075413981	0.445804076	0	1.45945E-23	0

AMMON-01	0	0	0	0	0
НСООН	0.070150592	0.414689953	0	0.413911411	0.694871954
TREA-FO	0	0	0	0	0
N-ISO-01	0	0	1	0.439248485	1.7502E-226
Mass Fractions					
CO ₂	0.106567652	0	0	0	0.001234083
H ₂	2.30028E-07	0	0	0	3.23312E-15
H ₂ O	0.505922074	0.0376909	0	0.034667493	0.145950336
N_2	0	0	0	0	0
O ₂	0	0	0	0	0
NTRIET	0	0	0	0	0
TREA	0.272147902	0.675828684	0	1.93337E-23	0
AMMON-01	0	0	0	0	0
НСООН	0.115362142	0.286480416	0	0.249869277	0.852815581
TREA-FO	0	0	0	0	0
N-ISO-01	0	0	1	0.71546323	5.7956E-226

Table S13. Heat and mass balance of Electrochemical reduction pathway

Stream Name	Units	CO ₂	water/KOH	R-100 to V-100	O ₂	Solvent
Description						
From				R-100	R-100	

То		R-100	R-100	V-100		E-100
Stream Class		CONVEN	CONVEN	CONVEN	CONVEN	CONVEN
Temperature	С	25	25	25	25	40
Pressure	bar	1	1	1	81.00000278	1
Enthalpy Flow	cal/sec	-7637021.468	-155085860.9	-165358205.7	2.31099E-11	-27461733.5
Average MW		44.0098	18.08527022	19.92982037	31.9988	86.1338
Mole Flows	kmol/hr	292.3261806	8163.360481	8561.018596	187.004873	1620
H_2O	kmol/hr	0	8148.360481	7780.472928	0	0
CO ₂	kmol/hr	292.3261806	0	391.4228634	0	0
НСООН	kmol/hr	0	0	260.6421236	0	0
O ₂	kmol/hr	0	0	0	187.004873	0
CO	kmol/hr	0	0	6.122193882	0	0
H_2	kmol/hr	0	0	107.3584858	0	0
КОН	kmol/hr	0	15.00000049	15.00000049	0	0
2-MET-01	kmol/hr	0	0	0	0	1620
Mole Fractions						
H_2O		0	0.998162521	0.908825608	0	0
CO ₂		1	0	0.045721529	0	0
НСООН		0	0	0.030445223	0	0
O ₂		0	0	0	1	0
CO		0	0	0.000715124	0	0
H_2		0	0	0.012540387	0	0
КОН		0	0.001837479	0.001752128	0	0
2-MET-01		0	0	0	0	1
Mass Fractions						
H_2O		0	0.99429962	0.821520089	0	0
CO_2		1	0	0.100964049	0	0
НСООН		0	0	0.070309821	0	0
O ₂		0	0	0	1	0

СО	0	0	0.001005073	0	0
H ₂	0	0	0.001268447	0	0
КОН	0	0.00570038	0.004932521	0	0
2-MET-01	0	0	0	0	1

Stream Name	Units	V-100 to E-100	E-100 to D-100	D-100 to D-101	D-101
Description					
From		V-100	E-100	D-100	D-101
То		E-100	D-100	D-101	
Stream Class		CONVEN	CONVEN	CONVEN	CONVEN
Temperature	С	40	45.88817494	114.8619566	25
Pressure	bar	1	1.1	5.1	4
Enthalpy Flow	cal/sec	-152321371.8	-50598505.48	-11326836.34	-
					8431871.724
Average MW		19.03372859	58.65799418	32.8046018	41.49039323
Mole Flows	kmol/hr	7946.903461	2707.793959	514.4808522	324.1229369
H ₂ O	kmol/hr	7662.107075	926.5722468	248.322803	57.96489617
CO ₂	kmol/hr	14.23911279	14.01372085	5.80619E-50	0
НСООН	kmol/hr	255.3933502	255.1616312	250.916971	250.9169625
O ₂	kmol/hr	0	0	0	0
CO	kmol/hr	0.037354884	0.023749338	4.43649E-64	0
H ₂	kmol/hr	0.126567157	0.070387709	3.38629E-74	0
КОН	kmol/hr	15.00000049	14.99999804	15.24107824	15.24107824
2-MET-01	kmol/hr	0	1496.952225	3.3195E-28	0
Mole Fractions					
H ₂ O		0.964162597	0.342187131	0.482666754	0.178836144
CO ₂		0.001791781	0.005175328	1.12855E-52	0
НСООН		0.032137467	0.094232292	0.487709056	0.774141333

O ₂	0	0	0	0
СО	4.70056E-06	8.77073E-06	8.62323E-67	0
H ₂	1.59266E-05	2.59945E-05	6.58196E-77	0
КОН	0.001887528	0.005539564	0.029624189	0.047022523
2-MET-01	0	0.55283092	6.45214E-31	0
Mass Fractions				
H ₂ O	0.912572598	0.105093893	0.26506576	0.077651306
CO ₂	0.004142958	0.003882934	1.51404E-52	0
НСООН	0.077711983	0.073938862	0.684268052	0.858762198
O ₂	0	0	0	0
СО	6.91743E-06	4.18821E-06	7.36299E-67	0
H ₂	1.6868E-06	8.93344E-07	4.04469E-78	0
КОН	0.005563857	0.005298524	0.050666188	0.063586497
2-MET-01	0	0.811780705	1.69411E-30	0

References

- 1. Hirata M, Suda S;, Y. Kagaku Kogaku. Vapor Pressure of Methanol in High Pressure Regions. 1967;31:339–41.
- 2. Park K, Gunasekar GH, Kim SH, Park H, Kim S, Park K, et al. CO₂ hydrogenation to formic acid over heterogenized ruthenium catalysts using a fixed bed reactor with separation units. Green Chemistry. 2020 Mar 7;22(5):1639–49.
- Glass M, Aigner M, Viell J, Jupke A, Mitsos A. Liquid-liquid equilibrium of 2methyltetrahydrofuran/water over wide temperature range: Measurements and rigorous regression. Fluid Phase Equilib. 2017 Feb 15;433:212–25.
- 4. Zhu X, Shi Y, Li S, Cai N. Elevated temperature pressure swing adsorption process for reactive separation of CO/CO₂ in H₂-rich gas. Int J Hydrogen Energy. 2018 Jul 19;43(29):13305–17.
- 5. Laitinen AT, Parsana VM, Jauhiainen O, Huotari M, Van Den Broeke LJP, De Jong W, et al. Liquid-Liquid Extraction of Formic Acid with 2-Methyltetrahydrofuran: Experiments, Process Modeling, and Economics. Ind Eng Chem Res. 2021 Apr 21;60(15):5588–99.
- 6. Jiang X, Lin L, Rong Y, Li R, Jiang Q, Yang Y, et al. Boosting CO₂ electroreduction to formate via bismuth oxide clusters. Nano Res. 2023 Oct 1;16(10):12050–7.
- Fernández-Caso K, Díaz-Sainz G, Alvarez-Guerra M, Irabien A. Electroreduction of CO₂: Advances in the Continuous Production of Formic Acid and Formate. Vol. 8, ACS Energy Letters. American Chemical Society; 2023. p. 1992–2024.
- Spurgeon JM, Kumar B. A comparative technoeconomic analysis of pathways for commercial electrochemical CO₂ reduction to liquid products. Energy Environ Sci. 2018 Jun 1;11(6):1536–51.
- Li X, Anderson P, Jhong HRM, Paster M, Stubbins JF, Kenis PJA. Greenhouse Gas Emissions, Energy Efficiency, and Cost of Synthetic Fuel Production Using Electrochemical CO₂ Conversion and the Fischer-Tropsch Process. Energy and Fuels. 2016 Jul 21;30(7):5980–9.
- 10. Al-Qahtani A, Parkinson B, Hellgardt K, Shah N, Guillen-Gosalbez G. Uncovering the true cost of hydrogen production routes using life cycle monetisation. Appl Energy. 2021 Jan 1;281.
- Yang H, Zhang C, Gao P, Wang H, Li X, Zhong L, et al. A review of the catalytic hydrogenation of carbon dioxide into value-added hydrocarbons. Vol. 7, Catalysis Science and Technology. Royal Society of Chemistry; 2017. p. 4580–98.
- Atsbha TA, Yoon T, Yoo BH, Lee CJ. Techno-economic and environmental analysis for direct catalytic conversion of co2 to methanol and liquid/high-calorie-sng fuels. Catalysts. 2021 Jun 1;11(6).

- 13. Sigma-Aldrich. ruthenium(ii) catalyst. [accessed 2023 May 4]. Available from: https://www.sigmaaldrich.com/KR/en/search/ruthenium(ii)
- 14. Sigma-Aldrich. Bismuth(III) oxide catalyst. [accessed 2023 May 4]. Available from: https://www.sigmaaldrich.com/KR/en/product/aldrich/202827
- 15. Sengupta D, Pike RW. Chemicals From Biomass Integrating Bioprocesses into Chemical Production Complexes for Sustainable Development. 1st ed. Boca Raton,FL: CRC Press; 2013.
- Turton Richard. Analysis, synthesis, and design of chemical processes. Prentice Hall; 2012. 1007 p.
- 17. Energy Agency I. Direct Air Capture: A key technology for net zero [Internet]. [accessed 2024 Jan 1]. Available from: <u>www.iea.org/t&c/</u>
- Peters MS, Timmerhaus KD, West RE. Plant Design and Economics for Chemical Engineers. Vol. 35, Journal of Chemical Education. McGraw-Hill Companies, Inc., 1221 Avenue of the Americas, New York, NY 10020; 2003. A506 p.
- Dominguez-Ramos A, Singh B, Zhang X, Hertwich EG, Irabien A. Global warming footprint of the electrochemical reduction of carbon dioxide to formate. J Clean Prod. 2015 Oct 1;104:148– 55.
- 20. Thonemann N, Schulte A. Supporting Information: From laboratory to industrial scale: A prospective LCA for electrochemical reduction of CO₂ to formic acid.
- Kang D, Byun J, Han J. Evaluating the environmental impacts of formic acid production from acid production from CO₂: Catalytic hydrogenation: Vs. electrocatalytic reduction. Green Chemistry. 2021 Dec 7;23(23):9470–8.
- Banu A, Mir N, Ewis D, El-Naas MH, Amhamed AI, Bicer Y. Formic acid production through electrochemical reduction of CO₂: A life cycle assessment. Energy Conversion and Management: X. 2023 Oct 1;20.
- 23. Ahn Y, Byun J, Kim D, Kim BS, Lee CS, Han J. System-level analysis and life cycle assessment of CO₂ and fossil-based formic acid strategies. Green Chemistry. 2019;21(12):3442–55.
- 24. Aldaco R, Butnar I, Margallo M, Laso J, Rumayor M, Dominguez-Ramos A, et al. Bringing value to the chemical industry from capture, storage and use of CO 2 : A dynamic LCA of formic acid production. Science of the Total Environment. 2019 May 1;663:738–53.
- 25. Xing Z, Hu X, Feng X. Tuning the Microenvironment in Gas-Diffusion Electrodes Enables High-Rate CO2Electrolysis to Formate. ACS Energy Lett. 2021 May 14;6(5):1694–702.
- 26. Qian Y, Liu Y, Tang H, Lin BL. Highly efficient electroreduction of CO2to formate by nanorod@2D nanosheets SnO. Journal of CO2 Utilization. 2020 Dec 1;42.