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1 The problem of over smoothing and gradient vanishing due to GNNs 

deep architecture
Convolutional Neural Networks (CNNs) have impressive performance in a wide variety 

of fields. A key reason behind the success of CNNs is the ability to design and reliably train 

very deep CNN models. However, it is not yet clear how to properly train deep GNN 

architectures. Most state-of-the-art GNN models are no deeper than 3 or 4 layers (ICCV., 2019, 

16, 9266) due to the over-smoothing problem and the vanishing gradient problems. The detailed 

theoretical descriptions for the over smoothing problem and gradient vanishing problem are 

discussed as follows.

Over smoothing problem: Over smoothing is a common phenomenon in GNNs as the 

number of layers increases. The discussions of over smoothing problem have been reported in 

previous literature (Chem. Sci., 2022, 13, 816; AAAI., 2020, 34, 3438; ICCV., 2019, 16, 9266; 

PMLR., 2018, 80, 5453; AAAI., 2018, 433, 3538). Li et. al. (AAAI., 2018, 433, 3538) 

suggested that the Over smoothing problem was due to the graph convolution operations in 

GNNs. Using graph convolution operations, the node feature update rule for the ( )-th layer 

in GNNs is given by:

                     (1)

where  is the node feature matrix at layer ,  is the adjacency matrix with self-loops, 

 is the degree matrix of , is the weight matrix at layer , and is the nonlinear activation 

function (typically the ReLU function). The graph convolution of the GCN model is actually a 

special form of Laplacian smoothing as demonstrated by Li et. al. (AAAI., 2018, 433, 3538). 

It is suggested that performing smoothing operations on nodes is the key mechanism for GNN 

to work, but nodes will converge to similar values after multiple Laplacian smoothing 

operations. This phenomenon is known as over smoothing. It makes the features 

indistinguishable and hurts the classification accuracy. Oono et. al. (ICLR., 2020, Graph 

Neural Networks Exponentially Lose Expressive Power for Node Classification; AI Open, 

2020, 1, 57) performed a more detailed analysis of the over smoothing phenomenon. They 

proved that if the maximum singular value of the weight matrix satisfies, as  the 

number of layers increases, the output of GNNs gradually loses the information necessay 

to distinguish between different nodes. All node feature representations will eventually 

cornverge to a shared subspace. This leads to the over-smoothing issue.

Gradient vanishing problem: The vanishing gradient problem is a phenomenon where 

the gradients become increasingly small. It will significantly slow down or even halt the 

learning process, as the updates to the weights become negligible. Similar discussion has been 

reported in previous literature (Chem. Eng. J., 2021, 414, 128817; ICCV., 2015, 1026; 



CVPR., 2017, 2261). As the network generates an output, the loss function( ) indicates how 

well it predicts the output. The network performs back propagation to minimize the loss. A 

back propagation method minimizes the loss function by adjusting the weights and biases of 

the neural network. In this method, the gradient of the loss function is calculated with respect 

to each weight in the network. In back propagation, the new weight( ) of a node is calculated 

using the old weight( ) and product of the learning rate( ) and gradient of the loss function (

).

                              (2)

With the chain rule of partial derivatives, the gradient of the loss function is represented 

as a product of gradients of all the activation functions of the nodes with respect to their weights. 

Therefore, the updated weights of nodes in the network depend on the gradients of the activation 

functions of each node. For the nodes with sigmoid activation functions, the partial derivative 

of the sigmoid function reaches a maximum value of 0.25. When there are more layers in the 

network, the value of the product of derivative decreases until at some point the partial 

derivative of the loss function approaches a value close to zero, and the partial derivative 

vanishes. This phenomenon is called the vanishing gradient problem. With shallow networks, 

sigmoid function can be used as the small value of gradient does not become an issue. When it 

comes to deep networks, the vanishing gradient could have a significant impact on 

performance. The weights of the network remain unchanged as the derivative vanishes. During 

back propagation, a neural network learns by updating its weights and biases to reduce the loss 

function. In a network with vanishing gradient, the weights cannot be updated, so the network 

cannot learn. Then, the performance of the network will decrease. 

2 Calculation details

A molecular graph (G) was a collection of vertices ( ) and edges ( ). In a molecule,

 represented the i-th atom and  represented the chemical bond between i-th and 

j-th atoms. GNNs typically mapped a graph G to a vector through the message 

passing phase and readout phase. During the message passing phase, nodes exchanged 

and aggregated information by passing messages to capture the local structure of the 

graph. In the readout phase, a global representation was generated from the aggregated 

node features to comprehensively represent and analyze the entire graph.

The general description of our database：

Table S1. Number of compounds of different chemical classes in the dataset



Compound 
class Density Boiling 

Point Flash Point
Viscosity/m
Pa·s

VNHOC/M
J/L

Cetane 
Number

Alkanes 106 111 98 88 102 75

Cycloalkanes 79 79 47 89 101 50

Alkene 105
 106 73 97 107 25

Cycloalkenes 19 20 17 9 19 5

Alkadienes 28 28 28 20 32 4

Alkynes 23 24 15 10 18 1

Aromatics 165 167 142 120 170 48

Message passing phase：Given a graph G, the embedding of the i-th vertex at time 

step t was represented as . The following graph's convolutional layer was used to 

update  into :

                   （3）                           

where the index i and j refer to the i-th and j-th nodes (atoms), respectively, W1, 

 were learnable weight matrices shared across all vertices,  was the set of 

neighbors of vertex i, and  contained a node-level batch normalization followed by a 

ReLU activation function, in which batch normalization was essential for very deep 

models. By using equation (3) to aggregate the neighboring messages and iterate them 

over time steps, vertex embeddings could gradually gather more global information on 

the graph.

Readout phase：The final output vector y from the set of vertex vectors in G was 

obtained by calculating the average of all the vertex embeddings:

                        (4)

where  was the number of vertices in the molecular graph, and L was the final time 

step. The readout phase aggregated vertex embeddings into a unified graph embedding.

Multiscale graph neural network：

Multiscale block. A multiscale block contained N graph convolutional layers described 



by equation (5). To solve the over-smoothing and vanishing gradient problems caused 

by the deep architecture of GNNs, dense connections were established (the output of 

each layer was connected to the input of all subsequent layers) between each layer and 

all subsequent layers in the network. This connection scheme allowed each layer to 

directly access the feature maps of all preceding layers and use them as inputs, enabling 

the network to more fully utilize the information from earlier layers, as shown in Figure 

3(b). Formally, the multiscale block could be expressed as:

                 (5)

where  was a graph convolutional layer described by equation (5) with parameters 

(consist of W1 and W2) in which n represented the n-th layer, and || was the 

concatenate operation. The multiscale block extracted multiscale features which 

described the structure information of a molecule in both local and global contexts.

 Transition layer. To enhance the depth of the MGNN, transition layers were employed 

as connectors between two neighboring multiscale blocks. The transition layer aimed 

to integrate the multiscale features from the previous multiscale block and reduce the 

channel number of the feature map. Specifically, for an input multiscale features at time 

step N + 1 as , the transition layer was formulated in the following 

manner:

    (6)

where were learnable weight matrices shared across all vertices in which 

. By using the transition layer, the channel numbers were reduced to half 

of the input to save computational cost. Finally, a readout layer described by equation 

(4) was used to convert the whole graph to a feature vector . 

After obtaining the vector representation of fuel molecules, the representation was 

then fed into a multi-layer perceptron (MLP) to predict properties. Concretely, the MLP 

contained three linear transformation layers to map the combined representation into 

affinity score in which each linear transformation layer was followed by a ReLU 



activation and dropout layer with a dropout rate of 0.1 following with the previous 

studies. The mean squared error (MSE) was used as the loss function.

Isomeric effects：The isomeric property variance within a group was caused by 

differences in topology. To explore how the structure of cycloalkane-based high-

density biofuels affects their properties, we introduced the following several 

parameters. 

The core count of a non-hydrogen vertex  was defined as                                                                      

                        (7)                                                                                                      

where PN stood for period number, Z is the atomic number and Zv is the valence electron 

number.. Considering the hydrogen atom was the reference, the value of  for hydrogen 

was taken as zero.  described the molecular bulk relative to molecular size. The 

terms such as

  

    

           

could be used as shape parameters.  stood for summation of  values 

of the vertices that were joined to one, three, and four other vertices, respectively, in 

the molecular graph.

In a connected molecular graph, the composite index ( ) comprehensively 

considered bonded and non-bonded interactions. Its specific calculation process was as 

follows:

                              (8)

                           (9) 

                             (10)

                       (11)

where  was the measure of electronegativity. The VEM (valence electron mobile) 

count ( ) for non-hydrogen vertex consisted of two parts: namely sigma contribution 

to VEM count ( ) and non-sigma contribution to VEM count ( ), which were 



defined as below: 

                          (12)

                       (13)

For the calculation of the VEM count , the contribution of a sigma bond x between 

two atoms of similar electronegativity ( ) was considered to be 0.5, and for a 

sigma bond between two atoms of different electronegativity ( ), it was 

considered to be 0.75. Again, in the case of π bonds, contributions (y) were considered 

based on the type of the double bond: (a) for π bond between two atoms of similar 

electronegativity ( ), y was taken to be 1; (b) for π bond between two atoms of 

different electronegativity ( ) or for conjugated (non–aromatic) π system, y was 

considered to be 1.5; (c) for aromatic π system, the value of y was taken as 2. served 

as a correction factor having a value of 0.5 per atom with a loan pair of electrons capable 

of making resonance with an aromatic ring (e.g. nitrogen of aniline, oxygen of phenol, 

methoxide, halogens, etc.). In eq 4, the VEM vertex count ( ) was the i-th vertex in a 

connected molecular graph.

When all hetero-atoms and multiple π bonds in the molecular graph were replaced 

by carbon atom and single bond respectively, it corresponded to a molecular graph 

which might be considered as the reference alkane and the corresponding composite 

index value was defined as Considering functionality as the presence of heteroatoms 

(atoms other than carbon or hydrogen) and multiple bonds, the functionality index 

might be calculated as When only bonded interactions were considered, the 

corresponding local composite index was written as It could be calculated as eq 10

                       (14)

where  and respectively represent the i-th and j-th nodes (atoms) in a connected 

molecular graph.

Similarly, the value for the corresponding reference alkane could also be 

calculated. The local functionality contribution (without considering global 

topology) could be calculated as follows:

                         (15)



For the calculation of branching, consideration of the local topology was sufficient. 

Branching was calculated with respect to the value of the corresponding normal alkane 

(the straight-chain compound of the same vertex count obtained from the reference 

alkane), , which might be conveniently calculated as (when ):

                       (16)

Finally, the branching index  could be calculated as:

                       (17)

where NR  was the number of rings in the molecular graph of the reference alkane, 

which could account for ring structures.

The premise of implementing the above calculations was the need to provide an 

adjacency matrix of the molecules. A molecule's adjacency matrix referred to a 

mathematical representation that described the connectivity between atoms in a 

molecule. In this matrix, each row and column corresponded to an atom in the molecule, 

and the elements of the matrix indicated whether there was a chemical bond between 

the atoms represented by the corresponding row and column indices. An example for 

the calculation of the adjacency matrix for cyclopentane was shown in Figure S1.

Figure S1. The adjacency matrix for cyclopentane.

3 The Hyperparameter Settings
Table S2. Search range and selected values of hyperparameters for MGNN

Hyperparameter Search range Responsivity

Number of multiscale 
blocks [1, 2, 3, 4, 5] 3 



Number of graph 
convolutional layers in 
each multiscale block

[2, 3, 4, 5, 6, 7, 8, 9, 
10] 6

The hidden channel 
number of each graph 
convolutional layer

[32, 64, 96, 128, 
160]
 

64 

4 Classic graph neural network methods struggle to distinguish 

stereoisomers
Classic graph neural network methods struggle to distinguish stereoisomers due to 

the missing of the 3D information of the molecules as reported in literature (Nat Rev 

Methods Primers., 2024, 4, 17; Commun Mater., 2022, 3, 93; Nat Mach Intell., 2022, 

4, 127). Detailed reasons have been shown as follows: 

Existing GNNs only consider the topology information of the molecules, neglecting 

the molecular geometry, that is, the three-dimensional spatial structure of a molecule. 

These works conduct self-supervised learning by masking and predicting in nodes, edges 

or contexts in the topology. Yet these tasks only enable the model to learn the laws of 

molecular graph such as which atom/group could be connected to a double bond, and lack 

the ability to learn the molecular geometry knowledge, which plays an important role in 

determining molecules’ physical, chemical and biological activities. For example, the 

water solubility (a critical metric of drug-likeness) of the two molecules illustrated in 

Figure S2 is different due to their differing geometries, even though they have the same 

topology .

Figure S2. Comparison between two stereoisomers with the same topology but different 
geometries. The two chlorine atoms are on different sides in trans-1,2-dichloroethene (left) but the 
same side in cis-1,2-dichloroethene (right).

5 Specific Isomeric Effects

Specific Isomeric Effects on Density



As an important property of diesel and jet fuels, density directly related to energy 

density, combustion efficiency and storage and transportation efficiency, making it a 

crucial indicator for evaluating fuels performance. The different influence of the 

composite index (Figure S3a) and the branching index (Figure S3b) in determining 

the alkane density could be observed. The composite index not only considered the 

local topology characteristics inside the alkane molecules, but also integrated the global 

topology role of the overall structure, thus providing a more comprehensive structural 

description. The color change of the points visually showed the differences in the 

number of carbon atoms. The apparent stratification arose from the ring numbers of the 

alkane molecules (Figure S3a). The difference in ring numbers led to differences in 

molecular structure, which in turn affected the physical properties of alkanes, including 

their density.

Figure S3. The relationship between density and composite and branching index of biofuels.

Similarly, the effects of the shape parameters Shape-P, Shape-Y, and Shape-X on 

the alkane density were analyzed inFigure S4. It was clearly observed that, among these 

topological descriptors there was a significant correlation between the alkane density 

and the composite index, Shape-P and Shape-X. These findings provided new ideas and 

methods for the regulation of alkane density.



Figure S4. The relationship between density and shape parameters of biofuels.

To clarify the effect of the branching index on the density, biofuels were classified 

based on the total number of carbon atoms in order to observe the changing relationship 

between density and branching index when the number of carbon atoms was fixed 

(Figure S5). The blue dots in the figure represented cycloalkanes, while the green dots 

represented alkanes (chain alkanes) without cyclic structures. The red rectangular 

region intuitively reflected the range of density changes under different conditions. In 

each subgraph, the common feature of high-density biofuels was that they have a cyclic 

structure and a small branching index. The phenomenon that blue dots were generally 

above green dots strongly indicated the importance of cyclic structure for increasing 

the alkane fuel density. Further comparison of the changes in density of cyclic and chain 

alkanes in response to changes in branching index, differences could be found. For 

catenae with the same number of carbon atoms, the density remained largely stable and 

not significantly affected by changes in the branching index. However, for 

cycloalkanes, a decreasing density was observed in most cases as the branching index 

increased. This was might because the more branches, the more complex the spatial 

configuration of the molecule, and the more complex the molecular interactions. This 

might led to increased intermolecular repulsion, which reduced the molecular tightness, 

reducing the density of cycloalkanes. Based on the above analysis, in order to improve 



the biofuels density, we could consider to improve the composite index and reduce the 

branching index, Shape-P and Shape-X.

Figure S5. The effect of branching index on biofuels density

Specific Isomeric Effects on VNHOC

The volumetric heat of combustion referred to the amount of heat released when a 

unit volume of fuel was completely burned. This metric was typically used to measure 

the energy density of liquid fuels. Higher volumetric heat of combustion meant that the 

same volume of fuels contains more energy, which was crucial for long-distance flights 

of jet aircraft and the efficient operation of diesel engines. The relationship between 



VHOC of biofuels and each topological descriptor was shown in Figure S6 and Figure 

S7. Given the strong correlation between the volume combustion heat and the density 

of the fuel, it was observed that the trend of VHOC with each topological descriptor 

roughly matched the trend of the density with these descriptors. Therefore, the logic 

used in analyzing the density changes of biofuels could also be applied to the analysis 

of the volume combustion heat changes. This observation suggested that topological 

descriptors were not only crucial for understanding the density properties of fuels, but 

were also valuable in explaining their volumetric combustion thermal properties.

Figure S6. The relationship between VHOC and composite and branching index of biofuels.

Figure S7. The relationship between VHOC and shape parameters of biofuels.



3 Specific Isomeric Effects on Boiling Point

The boiling point determined the evaporation rate and combustion characteristics 

of fuels. In practical applications, the boiling point of fuels needed to be optimized 

according to the specific application environment and performance requirements, 

thereby balancing the engine's cold start performance and combustion efficiency at high 

temperatures. For the relationship of biofuels between the boiling point and each 

topological descriptor showed a stronger linear correlation than the density and VHOC 

(Figure S8 and Figure S9). This suggested that the boiling point of the biofuels was 

more directly responsive to the composite index. Indeed, the composite index, as a 

topological descriptor, had a tight correlation with the number of carbon atoms in the 

molecule. Therefore, when the various properties of biofuels changed with the 

composite index, we could find that this change was significantly similar to the trend 

based only on the number of carbon atoms. However, the composite index was unique 

in that it was not limited to reflecting the effect of the number of carbon atoms and 

further considering other topological structure parameters in the molecule.

In particular, the complex index was able to capture the influence of complex 

structural features such as the number of molecular loops. For example, with the same 

number of carbon atoms, alkanes with ring structure would show a higher complexity 

index compared to alkanes without ring structure. Thus, the complex exponent as a 

more comprehensive topological descriptor provided us with a more precise and 

comprehensive view to understand and predict the various properties of the fuel. The 

Shape-Y had a more pronounced effect on the boiling point compared to the Shape-P. 

For molecules with the same number of carbon atoms, those with a larger Shape-Y 

generally exhibited higher boiling points compared to those with a smaller Shape-Y. 

Figure S8. The relationship between BP and composite and branching index of biofuels



Figure S9 . The relationship between BP and shape parameters of biofuels.

4 Specific Isomeric Effects on Viscosity

Viscosity affected the flow ability of fuels within the fuels system. Appropriate 

viscosity ensured smooth transportation of fuel from the storage tank to the engine 

combustion chamber, which maintained the proper supply rate and ensured the engine 

operates normally. In the investigation into the relationship between the viscosity of 

biofuels and various topological descriptors (Figure S10 and Figure S11), we noted 

that，when the carbon atom count within the biofuel molecule was low, the influence 

of composite index on fuel viscosity appeared to be relatively minor. However, as the 

number of carbon atoms escalated, the impact of these intricate factors on viscosity 

became increasingly pronounced, particularly at higher carbon atom counts. 

Concurrently, the correlation between viscosity and the shape factor Shape-P exhibited 

greater robustness in comparison to other properties of the biofuels under scrutiny. This 

relationship was non-linear. Specifically, at lower values of Shape-P, the viscosity of 

the biofuels decreased rapidly as Shape-P increases. However, as Shape-P continued to 

increase, the rate of viscosity decrease diminished progressively and eventually 

stabilized at a relatively low viscosity level.



Figure S10. The relationship between viscosity and composite and branching index of biofuels.

Figure S11. The relationship between viscosity and shape parameters of biofuels.

5 Specific Isomeric Effects on Flash Point

The flash point was the minimum temperature at which a liquid vaporizes and 

ignites with a certain ignition source under specified test conditions. Flash point was a 

safety index of flammable liquid storage, transportation, and use, and also a volatile 

index of flammable liquid. The flash point of biofuels exhibited a trend similar to that 

observed for the boiling point when analyzed in relation to each topological descriptor 

(Figure S12 and Figure S13).



Figure S12. The relationship between FP and composite and branching index of biofuels.

Figure S13. The relationship between BP and shape parameters of biofuels.

6 Specific Isomeric Effects on Cetane Number

Cetane number was an indicator of the spontaneous combustion of diesel fuel in a 
diesel engine. The higher the cetane number, the better the combustion performance of 
diesel, the less prone to knock and other abnormal combustion phenomena. The 
influence of topological descriptors on the cetane values of biofuels was notably 
complex (Figure S14 and Figure S15), making it challenging to identify a direct 
correlation between any single topological descriptor and cetane values.



Figure S14. The relationship between CN and composite and branching index of biofuels.

Figure S15. The relationship between CN and shape parameters of biofuels.


