Supplementary information

Waste materials, including oil palm leaves, sesbania, and filter cake, were preliminarily studied their composition using Thermogravimetric Analysis (TGA). It was found that oil palm leaves, sesbania, and filter cake consisted of approximately 7%, 0.727%, and 67% of ash, respectively (Table S1). When the carbons derived from these waste materials were activated with potassium hydroxide, their morphology was analyzed using a scanning electron microscope (SEM) (Fig. S1). The resulting materials displayed distinctive structures: oil palm leaves exhibited an irregular and porous structure, sesbania showed a layered sheet-like surface, and filter cake had a lumpy appearance. Energy dispersive Xray spectroscopy (EDX) revealed that the carbon material derived from oil palm leaves was composed of carbon, along with other elements such as oxygen, silicon, and iron. These elements may be primarily silica, a major dietary component found in plants. The AC material from sesbania consisted of carbon, with similar additional elements like oxygen, silicon, and iron, akin to other plantbased biomass materials. For the filter cake, the as-prepared material mainly contained carbon and other elements such as oxygen, silicon, potassium, and iron. The high silicon content indicates the presence of silica, which has low electrical conductivity and may affect the material's charge storage capacity^{1,2}. When the surface area and porosity of the material were analyzed using nitrogen gas adsorption analysis (Fig. S2A), the carbon material derived from oil palm leaves exhibited a type IV isotherm with type I characteristics. This indicates that the

resulting carbon contains both mesopores and micropores. The synthesis of carbon materials via activation with potassium hydroxide can produce a range of pore sizes. The Brunauer-Emmett-Teller (BET) surface area of the carbon material from oil palm leaves was $877.63 \text{ m}^2/\text{g}$, with a pore volume of $0.56 \text{ cm}^3/\text{g}$ and an average pore diameter of 4.42 nm (Table S2). X-ray diffraction (XRD) analysis of this carbon material showed a peak at 26° in the pattern, indicating the presence of stacked graphene layers. The peak at 43° corresponded to sp² carbon, consistent with the 002 and 100 planes of graphite or carbon materials^{3,4} (Fig. S2B). Raman spectroscopy analysis supported these findings, showing a D band peak at 1345 cm⁻¹, indicative of defects in the carbon, and a G band peak at 1586 cm^{-1} , indicative of sp² carbon⁵ (Fig. S2C). The I_D/I_G ratio, representing the quality of the carbon material, was 0.84 (Table S3). For the sesbania, the BET-specific surface area was 1,140 m²/g, with a pore volume of 0.62 cm³/g and an average pore diameter of 2.18 nm. The XRD analysis of the carbon material from sesbania showed peaks at 26.5° , 42.9° , 44° , 49° and 54° , corresponding to the (002) (020) (111) (022) and (004) planes of graphite, indicating high crystallinity⁶. Similar to the AC derived from oil palm leaves, Raman spectroscopy analysis confirmed the presence of a D band peak and a G band peak⁷ and the I_D/I_G ratio was 0.85. For the filter cake, the carbon material had a BET-specific surface area of 246.79 m^2/g , a pore volume of 0.37 cm³/g, and an average pore diameter of 6.01 nm. Xray diffraction analysis confirmed the carbon character of the material, showing peaks at 20° and 26° ⁸. The I_D/I_G ratio of this material is 0.88.

Table S1 TGA analysis of waste materials (oil palm leaves, sesbania, and filter cake)

Waste material	% Ash	% Moisture content
Oil palm leaves	7	9.69
Sesbania	0.7	17.99
Filter cake	67	1.76

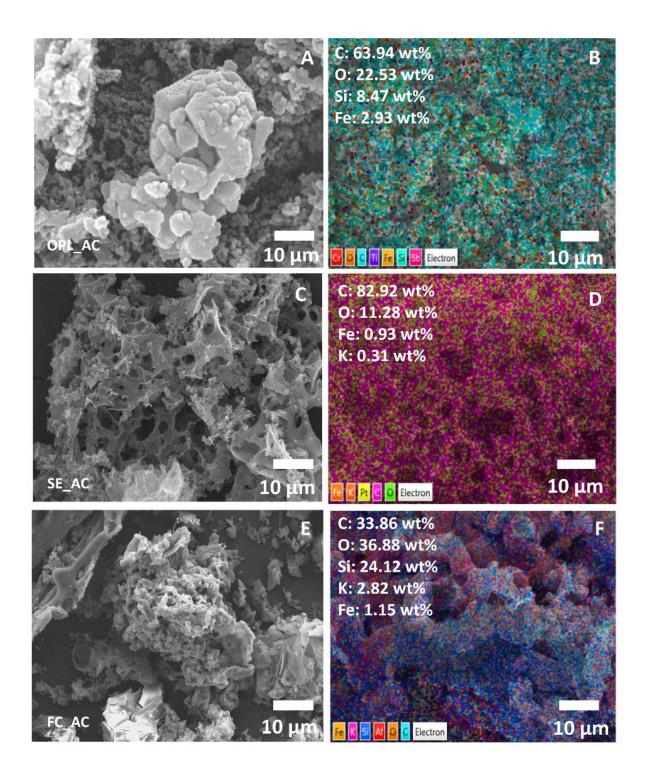


Fig. S1 SEM images of as-prepared activated carbon (AC) derived from oil palm leaves (A), sesbania (C), and filter cake (E), along with EDX analysis of AC derived from oil palm leaves (B), sesbania (D), and filter cake (F).

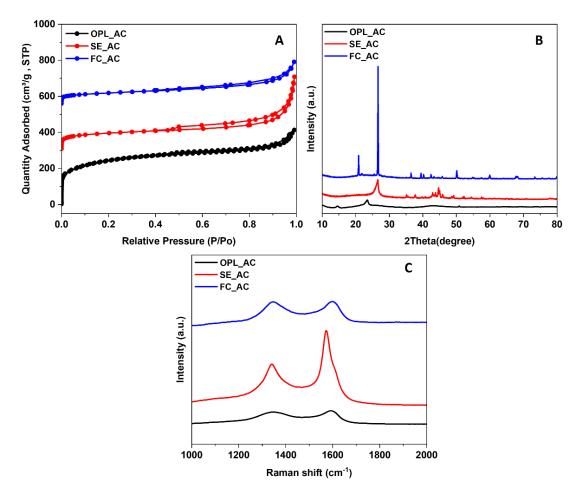


Fig. S2 N₂ adsorption-desorption isotherms (A), XRD patterns (B), and Raman spectra (C) of the AC derived from oil palm leaves (black line), sesbania (red line), and filter cake (blue line).

Table S2 The BET surface area and pore size of the AC derived from oilpalm leaves, sesbania, and filter cake.

Material	Surface area	Total pore volume	Average pore diameter
	$(\mathbf{m}^2 \cdot \mathbf{g}^{-1})$	$(\mathbf{cm}^3 \cdot \mathbf{g}^{-1})$	(nm)
Oil palm leaves	877.63	0.56	4.42
Sesbania	1,140	0.62	2.18
Filter cake	246.79	0.37	6.01

Table S3 The I_D/I_G ratios from Raman spectra for AC samples derived from

oil palm leaves, sesbania, and filter cake

Material	I _D /I _G
Oil palm leaves	0.84
Sesbania	0.85
Filter cake	0.88

References

1. J. K. Srivastava, M. Prasad and J. B. Wagner, Journal of The Electrochemical Society, 1985, 132, 955.

2. R. Scipioni, L. Stixrude and M. P. Desjarlais, Proceedings of the National Academy of Sciences, 2017, 114, 9009–9013.

3. X. Zhu, S. Yu, K. Xu, Y. Zhang, L. Zhang, G. Lou, Y. Wu, E. Zhu, H. Chen,

Z. Shen, B. Bao and S. Fu, Chemical Engineering Science, 2018, 181, 36–45.

4. P. Iamprasertkun, A. Ejigu and R. A. W. Dryfe, Chem. Sci., 2020, 11, 6978–6989.

5. A. C. Ferrari, J. Robertson, A. C. Ferrari and J. Robertson, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 2004, 362, 2477–2512.

6. S. Shukla, A. Jadaun, V. Arora, R. K. Sinha, N. Biyani and V. Jain, Toxicology Reports, 2015, 2, 27–39.

7. N. G. Prikhodko, G. T. Smagulova, N. Rakhymzhan, M. Auelkhankyzy, B. Lesbayev, M. Nazhipkyzy and Z. A. Mansurov, Combustion Science and Technology, 2018, 190, 1923–1934.

8. A. Karuppuchamy, R. K. and S. R., Industrial Crops and Products, 2024, 209, 117985.

9. Y. Zhang, Y. Cai, T. Li, M. Wang, X. Chen and Y. Xu, Journal of Materials Science: Materials in Electronics, 2024, 35, 116.