Electronic Supplementary Material (ESI) for Green Chemistry. This journal is © The Royal Society of Chemistry 2024

Supplementary Information

Continuous Production of 1,2-Pentanediol from Furfuryl Alcohol over Highly Stable Bimetallic Ni–Sn Alloy Catalysts

Ajaysing S. Nimbalkar^{a,b}, Kyung-Ryul Oh^a, Do-Young Hong^{a,b}, Byung Gyu Park^c, Maeum Lee^a,

Dong Won Hwang^{a,b}, Ali Awad^{a,b}, Pravin P. Upare^{c,*}, Seung Ju Han^{d,*} and Young Kyu Hwang^{a,b,*}

^aResearch Center for Nanocatalysts, Chemical & Process Technology Division, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Korea

^bDepartment of Advanced Materials and Chemical Engineering, University of Science and Technology (UST), Daejeon, 34113, Korea

^cActivon Co. Ltd. Ochang-Eup, Cheongwon-gu, Cheongju, Chungcheongbukdo 28104, Korea

^dC1 Gas & Carbon Convergent Research Center, Chemical & Process Technology Division, Research Institute of Chemical Technology (KRICT), Daejeon 34114, Korea

*Corresponding authors.

*E-mail addresses: <u>pravin2122@activon.kr</u> (P. P. Upare), <u>hansj@krict.re.kr</u> (S. J. Han), <u>ykhwang@krict.re.kr</u> (Y. K. Hwang).

Synthesis of Co-Sn and Cu-Sn supported ZnO catalysts

The Co-Sn and Cu-Sn supported ZnO catalysts, containing a total metal concentration of 10%, were synthesized by the sequential co-precipitation-deposition method. The catalysts Co-Sn(10%)/ZnO and Cu-Sn(10%)/ZnO were prepared by dissolving prescribed amounts of Zn(NO₃)₂·6H₂O (99.9%), SnCl₄·5H₂O (99.9%), and Cu(NO₃)₂·xH₂O (99.9%) or Co(NO₃)₂·6H₂O (99.9%) separately in 400 mL of distilled water for 1 h. Subsequently, the mixtures underwent the co-precipitation and agitation process under the same conditions as those used for the 3Ni-3Sn/ZnO catalyst.

Product analysis details

The liquid samples underwent examination utilizing a gas chromatography (Donam GC, DS6200) equipped with a flame ionization detector (FID) and capillary column (HP-INNOWAX). Considering the clear separation of peaks (**Fig. S10**), n-octane was employed as an internal standard. The response factor for each product in equal concentrated was calculated from multiple injections with a known amount of internal standard. Finally, the conversion and product yield were calculated from the GC areas of initial feed and product with a known amount of n-octane using the formulas,

$$Conversion of FAL (mol\%) = \frac{Initial moles of FAL - unreacted moles of FAL}{Initial moles of FAL in feed} \times 100 (\%)$$

Product yield (mol%) = $\frac{Moles \ of \ desired \ product}{Initial \ moles \ of \ FAL \ in \ feed} \times 100 \ (\%)$

The carbon balances of each product were calculated based on reaction mass balance and GC data.

Fig. S1 XRD patterns of calcined Sn/ZnO, Ni/ZnO, 3Ni–1Sn/ZnO, 3Ni–2Sn/ZnO, 3Ni–3Sn/ZnO, and 3Ni–4Sn/ZnO.

Fig. S2 XRD patterns of reduced (i) unsupported Ni–Sn, (ii) ZnO support, (iii) 3Ni–1Sn/ZnO, (iv) 3Ni–2Sn/ZnO, (v) 3Ni–3Sn/ZnO, and (vi) 3Ni–4Sn/ZnO catalysts.

Fig. S3 XRD patterns of calcined and reduced (a) Co-Sn/ZnO and (b) Cu-Sn/ZnO catalysts.

Fig. S4 In-situ XRD patterns of calcined (a) 3Ni-3Sn(4%)/ZnO, (b) 3Ni-3Sn(6%)/ZnO, (c) 3Ni-2Sn/ZnO, and (d) unsupported 3Ni-2Sn catalysts under 10% H₂/Ar flow.

Fig. S5 XPS survey spectra for the reduced 3Ni–3Sn/ZnO catalyst.

Fig. S6 NH₃-TPD results of the synthesized catalysts.

Fig. S7 Time-on-stream data for the furfuryl alcohol (FAL) hydrogenolysis over 3Ni-3Sn/ZnO catalyst at low conversion level. Reaction conditions: 10% FAL in IPA, 1.0 g catalyst, 250 °C, WHSV= 5.0, H₂ 40 bar, H₂ flow 61 cc/min, TOS <30 h.

Fig. S8 (a) XRD and (b) TGA patterns of the fresh and used catalysts after 450 h reaction. (c), (d) TEM images of the used 3Ni–3Sn/ZnO catalyst. SEM images of (e) fresh and (f) used 3Ni–3Sn/ZnO catalysts.

Fig. S9 Time-on-stream data for the furfuryl alcohol (FAL) hydrogenolysis over 3Ni-3Sn(10%)/ZnO catalyst in an 1-inch scale-up reactor. Reaction conditions: 10% FAL in IPA, WHSV = 0.71, H₂ 40 bar, H₂ flow 600 cc/min, TOS <150 h. Temperature optimizations for the preheating zone/reaction zone: (I) 210°C/290°C, (II) 240°C/290°C, (III) 260°C/290°C, and (IV) 270°C/290°C.

Fig. S10 GC chromatographs of the 10% furfuryl alcohol (FAL) feed solution (black) and the reaction product (red) with n-octane as an internal standard at 100% conversion.

Fig. S11 GC results of isolated (a) 1,2-PDO and (b) 1,5-PDO by distillation process.

Fig. S12 ¹H-NMR spectra of isolated (a) 1,2-PDO and (b) 1,5-PDO by distillation process.

Fig. S13 Diagonal view of (a) Ni (111), (b) Ni₃Sn (100), and (c) Ni₃Sn₂ (101) surface slabs used for DFT study.

Fig. S14 Top view of H adsorption configuration on (a) Ni (111), (b) Ni₃Sn (100), and (c) Ni₃Sn₂ (101) surfaces.

Fig. S15 Top and side views of optimized configurations of THFA adsorption on (a) Ni (111), (b) Ni_3Sn (100), and Ni_3Sn_2 (101) surfaces. The bond lengths between THFA and surfaces are included.

Fig. S16 Top and side views of optimized configuration of FAL adsorption on (a) Ni (111), (b) Ni_3Sn (100), and (c) Ni_3Sn_2 (101) surfaces. The bond lengths between FAL and surfaces are included.

Fig. S17 Relative energy diagrams for (a) THFA dehydrogenation-scission mechanism, (b) THFA hydrogenolysis mechanism, and (c) FAL dehydrogenation-scission mechanism on Ni (111) surface. T = $250 \text{ }^{\circ}\text{C}$ and P = 6 MPa.

Fig. S18 Relative energy diagrams for (a) THFA dehydrogenation-scission mechanism, (b) THFA hydrogenolysis mechanism, and (c) FAL dehydrogenation-scission mechanism on Ni₃Sn (100) surface. T = $250 \text{ }^{\circ}\text{C}$ and P = 6 MPa.

Catalyst	Ni(NO ₃) ₂ ·6H ₂ O (g)	SnCl ₄ ·5H ₂ O (g)	Zn(NO ₃) ₂ ·6H ₂ O (g)
Ni/ZnO	4.95	-	33.23
Sn/ZnO	-	3.50	33.23
3Ni-1Sn/ZnO	2.95	1.18	33.23
3Ni-2Sn/ZnO	2.10	1.69	33.23
3Ni-3Sn/ZnO	1.63	1.97	33.23
3Ni-4Sn/ZnO	1.34	2.15	33.23
3Ni-3Sn(6%)/ZnO	0.98	1.36	33.23
3Ni-3Sn(4%)/ZnO	0.66	0.79	33.23
	Ni(NO ₃) ₂ ·6H ₂ O (g)	SnCl ₄ ·5H ₂ O (g)	Al(NO ₃) ₃ ·9H ₂ O (g)
3Ni-3Sn/Al ₂ O ₃	1.63	1.97	33.11
	Ni(NO ₃) ₂ ·6H ₂ O (g)	SnCl ₄ ·5H ₂ O (g)	Ce(NO ₃) ₃ ·6H ₂ O (g)
3Ni-3Sn/CeO ₂	1.63	1.97	22.70
	Ni(NO ₃) ₂ ·6H ₂ O (g)	SnCl ₄ ·5H ₂ O (g)	30% colloidal silica
3Ni-3Sn/SiO ₂	1.63	1.97	30.00
	Co(NO ₃) ₂ ·6H ₂ O (g)	SnCl ₄ ·5H ₂ O (g)	Zn(NO ₃) ₂ ·6H ₂ O (g)
3Co-3Sn/ZnO	1.64	1.97	33.23
	Cu(NO ₃) ₂ ·xH ₂ O (g)	SnCl ₄ ·5H ₂ O (g)	Zn(NO ₃) ₂ ·6H ₂ O (g)
3Cu-3Sn/ZnO	0.97	1.97	33.23

 Table S1. Amounts of precursors used in the catalyst synthesis.

Catalyst	H ₂ consumed (mmol/g)	Ni (at%/wt%)	Sn (at%/wt%)	Zn (at%/wt%)	Ni ²⁺ /Ni total	Sn ^{2+/4+} /Sn total	Sn/Ni (surface)
Ni/ZnO	1.75	7.0/13.1	-	28.1/58.4	-	-	-
Sn/ZnO	1.23	-	12.7/36.2	27.5/43.0	-	-	-
3Ni-1Sn/ZnO	1.77	4.4/5.6	13.8/36.0	27.6/39.5	65.6	82.3	3.1
3Ni-2Sn/ZnO	1.61	3.7/4.9	13.7/36.7	25.5/37.7	62.2	73.0	3.7
3Ni-3Sn/ZnO	1.73	2.7/3.5	14.0/37.0	27.1/39.5	57.0	67.9	5.2

Table S2. The amount of H_2 consumed estimated from H_2 -TPR analysis and the surface atomic concentration, and Sn/Ni ratio of the catalysts from XPS analysis.

Catabat	Tem	H ₂	Conv	Product yield (%)					
Catalyst	р (°С)	(bar)	. (%)	1,2-PDO	1,5-PDO	THFA	MTHF	2-MF	Others
4% (3Ni-3Sn)/ZnO	250	40	100	66.4	17.4	9.4	0.6	1.3	2.9
6% (3Ni-3Sn)/ZnO	250	40	100	72.4	16.8	4.6	0.9	1.4	3.8

Table S3. Catalytic results of furfuryl alcohol (FAL) hydrogenolysis over 4% and 6% (3Ni-3Sn)/ZnO catalysts.

Reaction conditions: 10% FAL in IPA, 1.0 g of catalyst, WHSV = 1.0, H_2 40 bar, H_2 flow 60 cc/min, and TOS < 50 h.

F 4	II (here)	Conv.	Product yield (%)							
	Entry	Π_2 (Dar)	(%)	1,2-PDO	1,5-PDO	THFA	MTHF	2-MF	Others	
	1	5	100	14.6	1.6	2.1	34.2	41.2	6.3	
	2	10	100	43.3	3.5	1.4	22.9	23.3	5.6	
	3	20	100	74.3	6.4	5.3	4.5	5.1	4.4	
	4	30	100	83.5	6.2	5.3	1.6	1.3	2.1	
	5	40	100	90.1	7.3	0.5	0.3	0.2	1.6	

 Table S4. Effect of pressure in furfuryl alcohol (FAL) hydrogenolysis over 3Ni-3Sn/ZnO catalyst.

Reaction conditions: 10% FAL in IPA, 1.0 g of catalyst, 250 °C, WHSV = 1.0, H₂ pressure = 5–40 bar, H₂ flow = 60 cc/min, and TOS 20~50 h.

Catalant	Тетр	H_2	Conv.	Product yield (%)				
Catalyst	lyst (°C) (bar)	(%)	1,2-PDO	1,5-PDO	MTHF	2-MF	Others	
3Ni–3Sn/ZnO	250	40	100	89.4	7.4	1.7	0.6	2.9

Table S5. Catalytic result of tetrahydrofurfuryl alcohol (THFA) hydrogenolysis over 3Ni-3Sn/ZnO catalyst.

Reaction conditions: 10% THFA in IPA, 0.1 g of catalyst, WHSV = 1.0, H_2 40 bar, H_2 flow 60 cc/min, and TOS < 50 h.

Table S6. Binding energies of THFA, FAL, and H over Ni (111), Ni₃Sn (100), and Ni₃Sn₂ (101) surfaces. T = 250 °C and P = 6 MPa.

Surface	Binding energy of THFA (eV)	Binding energy of FAL (eV)	Binding energy of H (eV)	
Ni (111)	2.10	2.23	-0.26	
Ni ₃ Sn (100)	1.86	1.90	-0.62	
$Ni_{3}Sn_{2}(101)$	1.81	2.23	-0.14	